000117980 001__ 117980
000117980 005__ 20240319081008.0
000117980 0247_ $$2doi$$a10.3390/nano12081367
000117980 0248_ $$2sideral$$a129196
000117980 037__ $$aART-2022-129196
000117980 041__ $$aeng
000117980 100__ $$0(orcid)0000-0002-6087-7467$$aOrús, P.
000117980 245__ $$aSuperconducting materials and devices grown by focused ion and electron beam induced deposition
000117980 260__ $$c2022
000117980 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117980 5203_ $$aSince its discovery in 1911, superconductivity has represented an equally inciting and fascinating field of study in several areas of physics and materials science, ranging from its most fundamental theoretical understanding, to its practical application in different areas of engineering. The fabrication of superconducting materials can be downsized to the nanoscale by means of Focused Ion/Electron Beam Induced Deposition: nanopatterning techniques that make use of a focused beam of ions or electrons to decompose a gaseous precursor in a single step. Overcoming the need to use a resist, these approaches allow for targeted, highly-flexible nanopatterning of nanostructures with lateral resolution in the range of 10 nm to 30 nm. In this review, the fundamentals of these nanofabrication techniques are presented, followed by a literature revision on the published work that makes use of them to grow superconducting materials, the most remarkable of which are based on tungsten, niobium, molybdenum, carbon, and lead. Several examples of the application of these materials to functional devices are presented, related to the superconducting proximity effect, vortex dynamics, electric-field effect, and to the nanofabrication of Josephson junctions and nanoSQUIDs. Owing to the patterning flexibility they offer, both of these techniques represent a powerful and convenient approach towards both fundamental and applied research in superconductivity. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
000117980 536__ $$9info:eu-repo/grantAgreement/ES/CSIC/PIE-202060E187$$9info:eu-repo/grantAgreement/ES/CSIC/PTI-001$$9info:eu-repo/grantAgreement/ES/DGA/E13-20R$$9info:eu-repo/grantAgreement/EC/H2020/892427/EU/Focused Ion Beam fabrication of superconducting scanning Probes/FIBsuperProbes$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 892427-FIBsuperProbes$$9info:eu-repo/grantAgreement/ES/MCIU/PID2020-112914RB-I00
000117980 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117980 590__ $$a5.3$$b2022
000117980 592__ $$a0.811$$b2022
000117980 591__ $$aPHYSICS, APPLIED$$b39 / 160 = 0.244$$c2022$$dQ1$$eT1
000117980 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000117980 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b51 / 107 = 0.477$$c2022$$dQ2$$eT2
000117980 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ2
000117980 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b58 / 178 = 0.326$$c2022$$dQ2$$eT1
000117980 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b110 / 343 = 0.321$$c2022$$dQ2$$eT1
000117980 594__ $$a7.4$$b2022
000117980 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000117980 700__ $$aSigloch, F.
000117980 700__ $$0(orcid)0000-0002-4123-487X$$aSangiao, S.$$uUniversidad de Zaragoza
000117980 700__ $$0(orcid)0000-0001-9566-0738$$aTeresa, J. M. de$$uUniversidad de Zaragoza
000117980 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000117980 773__ $$g12, 8 (2022), 1367 [29 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000117980 8564_ $$s9609883$$uhttps://zaguan.unizar.es/record/117980/files/texto_completo.pdf$$yVersión publicada
000117980 8564_ $$s2745293$$uhttps://zaguan.unizar.es/record/117980/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117980 909CO $$ooai:zaguan.unizar.es:117980$$particulos$$pdriver
000117980 951__ $$a2024-03-18-14:53:24
000117980 980__ $$aARTICLE