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Abstract: Since its discovery in 1911, superconductivity has represented an equally inciting and
fascinating field of study in several areas of physics and materials science, ranging from its most
fundamental theoretical understanding, to its practical application in different areas of engineering.
The fabrication of superconducting materials can be downsized to the nanoscale by means of Focused
Ion/Electron Beam Induced Deposition: nanopatterning techniques that make use of a focused beam
of ions or electrons to decompose a gaseous precursor in a single step. Overcoming the need to
use a resist, these approaches allow for targeted, highly-flexible nanopatterning of nanostructures
with lateral resolution in the range of 10 nm to 30 nm. In this review, the fundamentals of these
nanofabrication techniques are presented, followed by a literature revision on the published work
that makes use of them to grow superconducting materials, the most remarkable of which are based
on tungsten, niobium, molybdenum, carbon, and lead. Several examples of the application of these
materials to functional devices are presented, related to the superconducting proximity effect, vortex
dynamics, electric-field effect, and to the nanofabrication of Josephson junctions and nanoSQUIDs.
Owing to the patterning flexibility they offer, both of these techniques represent a powerful and
convenient approach towards both fundamental and applied research in superconductivity.

Keywords: superconductivity; nanofabrication; focused ion beam; focused electron beam; tungsten;
niobium; superconducting vortex; SQUID; superconducting proximity effect

1. Introduction
1.1. Superconductivity

Superconductivity is an electronic state of matter attained below certain critical values
of temperature, magnetic field, and applied current. In this state, the resistance to the
passage of an electric current exhibited by the material is zero. In the case of isotropic s-wave
superconductivity, the microscopic justification of this behavior is provided by the Barden-
Cooper-Schiefer theory [1], accounted for by the transport of charge via bosonic Cooper
pairs; while the macroscopic framework, built upon the definition of a superconducting
wavefunction that characterizes the superconducting state, comes from the Ginzburg–
Landau theory [2].

In a three-dimensional phase diagram, the superconducting state can be thought of as
bound by fundamentally three experimentally controllable parameters: the temperature,
the magnetic field, and the driving current. Different materials exhibit characteristic, critical
values for each of these parameters: the critical temperature, Tc, typically used as the
trademark “signature” of each superconductor, the critical magnetic field, Bc, and the
critical current density, Jc. The actual values of these critical variables depend on the value
the others take when the measurement is performed, achieving their nominal value only
when the rest of variables are set (or extrapolated) to zero. Other spatial parameters of
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interest are the penetration depth λ, which quantifies the extent to which an externally
applied magnetic field can enter the material, and the coherence length ξ, which reflects
the allowed spatial variations of the electron density.

Depending on how they respond to an externally-applied magnetic field, super-
conducting materials may be classified into type-I and type-II superconductors. Type-I
materials exhibit what one might think of as the “standard” behavior against such a field:
below the critical temperature, if the material is subject to an external magnetic field, the
non-dissipative nature of the superconducting state allows for the appearance of virtually
unbound screening supercurrents that oppose the incoming magnetic flux. As such, the
material maintains perfect diamagnetism as long as the magnetic field is kept below its
critical value (which would drive the material back into the normal state): in a type-I
superconductor, all magnetic field flux lines are completely expelled from the bulk of the
material while it is kept in the superconducting state. This phenomenon is known as
Meissner effect [3].

On the other hand, type-II superconductors are characterized by the existence of a
mixed state between the normal and Meissner phases, bound by the so-called lower and
upper critical fields (Bc1 and Bc2, respectively), in which the magnetic field flux lines can
penetrate the material. However, the penetration of the flux takes place in a quantized
form: the incoming magnetic flux is redistributed in an array of individual flux quanta Φ0
(Φ0 = h/2e = 2.07 × 10−15 Wb) that pierce the material. Each flux quantum threads the
superconductor through a locally normal region, oriented along the direction of the field,
and screened from the rest of the bulk by a circular supercurrent. These entities are named
superconducting vortices and are typically called Abrikosov vortices (or Pearl vortices in very
thin films) [4–6].

The dissipationless regime provided by superconductors exhibits tremendous poten-
tial for many technological applications. Since the restrictive condition of attaining low
critical temperatures severely hampers the applicability of the materials for macroscopic
current transport, the search for room-temperature superconductors represents one of the
most compelling ongoing quests in physics and materials science [7,8]. Still, the supercon-
ducting regime can be practically exploited for the generation of stable magnetic fields,
finding application to provide such required fields in syncrotron facilities [9] and particle
colliders [10], in magnetic resonance imaging equipment [11], and in plasma confinement
systems [12]. Nanopatterned superconductors are no exception to this trend, representing
an inciting field of study and application.

1.2. Nanopatterning Superconducting Materials Using Focused Beams

Scaling superconducting materials down to micro- and nanometric sizes provides
with an additional element of interest—by reducing the characteristic dimensions of the
material to values comparable to those of its characteristic lengths, new effects that were
initially absent in the macroscale, do emerge [13]. These include modifications in the
values of the critical parameters and in the transport properties of the material or device.
The appearance, investigation, and exploitation of such effects are foundational to the
development of quantum technologies, on which superconducting nanodevices represent
a particularly blooming research field. Remarkable examples of quantum technology
in the form of superconducting nanodevices include magnetic sensors in the form of
superconducting quantum interference devices (SQUIDs) [14], single-photon detectors [15],
quantum bits [16], and quantum switches [17].

The constant development of ever-improving nanofabrication techniques is a perennial
need for both the industry and the research communities. Three widely-known and amply
utilized nanopatterning techniques are optical lithography, electron beam lithography, and
focused ion/electron beam induced deposition. Optical lithography excels with its high
throughput [18], while electron beam lithography is capable of achieving remarkable reso-
lution in tailored designs [19]. Both of them, however, exhibit several significant drawbacks:
the unavoidable need for a resist, which needs to be exposed to the corresponding radiation
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and then revealed by means of a chemical agent [20,21]; the difficulties that arise in the
patterning of three-dimensional structures; and its complicated use on unconventional
substrates such as cantilevers.

Focused Ion Beam Induced Deposition (FIBID) and Focused Electron Beam Induced Deposition
(FEBID) are two very similar nanopatterning techniques that make use of a focused beam
of charged particles, either ions or electrons, to induce the decomposition of a precursor
material in gas form. The growth is performed in a single step, without the need to
use a sacrificial resist; and the beam can be freely steered to trace any shape or pattern
introduced by the user. This flexibility comes at the cost of a reduced throughput when
compared to the two previously mentioned nanolithography techniques, particularly
optical lithography. Depending on the species utilized and on the growth conditions (i.e.,
the operating parameters of the corresponding beam, mostly), typical achievable lateral
resolutions are in the ranges of 20 nm to 30 nm for Ga+ ions, and around 10 nm for electrons
and He+ ions [22,23].

The technique is also highly flexible in terms of the requirements imposed to the
substrate where the deposition is to be carried out. While “conventional” Si and SiO2
samples are commonplace, since the beam can be freely steered to the point of interest,
FIBID and FEBID also permit material growth in more geometrically complex, non-flat
substrates, that would prove cumbersome or unsuitable for other deposition techniques.
An example of such an application is the electron-beam induced deposition of magnetic
nanowires at the apex of the tips of atomic force microscopy cantilevers, which effectively
functionalizes them for the purposes of magnetic force microscopy [24,25].

Following on with the previous example, in focused beam induced deposition, the
beam can be steered in such a way that the growth is performed in a continuous way
over the same spot, inducing further deposition over previously grown material. Such
an approach allows for effective patterning of 3D nanostructures, generally in the form
of nanopillars [26]. 3D nanopatterning opens the door to investigate the differences that
arise in the composition, microstructure, and electrical response of the material, owing to
the contrast existing in the two deposition processes [27]; as well as to deposit functional
nanostructures with complex 3D geometry [28–30].

The versatility and ease of applicability of both FIBID and FEBID have solidly ce-
mented both techniques as powerful tools within the nanofabrication community. They
have seen use in various applications, including targeted growth of functional materials [31],
optical-lithography mask repair [32,33], and circuit editing [34].

In the following section, a summary of the working principles that govern the growth
mechanism by FIBID and FEBID is presented, followed by a review on relevant published
works that report the deposition of superconducting materials using these techniques.
For further insight on other non-superconducting materials nanopatterned by FEBID and
FIBID not discussed here, readers are invited to refer to our previous work on the matter
in [22,23]. Next, the potential of the technique is showcased by reviewing specific examples
that exploit its capability to investigate nanoscale physical phenomena in the field of
superconductivity and to fabricate functional nanodevices.

2. Growth of Superconducting Materials by FIBID/FEBID
2.1. Principles of the Deposition Process

Conceptually, both FIBID and FEBID share the same operating principle: a precursor
material in gas phase, adsorbed on a substrate, can be decomposed into volatile and non-volatile
constituents by scanning a focused beam of charged particles over it. The beam can be precisely
focused and steered to scan the surface of the substrate following any pattern defined
by the user, and the irradiation results in the non-volatile constituents forming a deposit
whose shape matches that of said pattern (Figure 1) [31,35,36].
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Figure 1. The FIBID/FEBID procedure. The beam is scanned over the surface of the substrate,
decomposing the adsorbed precursor molecules on its path. Reprinted from [23], with permissions
from IOP Publishing. © IOP Publishing Ltd. 2020.

To perform FIBID/FEBID, the instrument that is to be utilized must be fitted with at
least three fundamental constituents: a vacuum chamber where the deposition procedure
is to be carried out, a focused beam of charged particles (including the source from where
they are to be extracted, and the arrangements of lenses and apertures required to steer and
focus the beam), and a Gas Injection System (GIS), fitted with reservoir(s) of the precursor
material(s), and (at least) a nozzle used to deliver them.

One critical parameter that must be gauged when implementing a focused beam for
the purposes of nanofabrication is the spot size, which quantifies the absolute minimum
size the beam can be focused to, and therefore sets the ground for the resolution limit of the
technique (which, in general, is slightly worse). Electron beams typically make use of field-
emission sources, while the most commonly used ionic species for the purposes of FIBID
are Ga+ ions, extracted from liquid metal ion sources, and He+ and Ne+ ions, obtained
from gaseous ion sources. Ga+, He+, and Ne+ are typically chosen over other chemical
elements because these sources can be engineered for these specific species to provide
sufficiently reduced spot sizes, required for the purposes of nanopatterning [23]. The
specific value of the spot size for each of these beams depends on the operating conditions,
but representative values are in the range of 5 nm for Ga+ ions [35], 1 nm for electrons [37],
and 0.25 nm for He+ ions [38].

A commonly found, commercially available architecture is that of an FIB/SEM micro-
scope: an instrument housing both a Ga+ FIB and an FEB placed at an angle with respect
to each other [39]. The main advantage of this configuration is that the sample can be
simultaneously imaged with the FEB and processed with the FIB when it is positioned at
the convergence point of two beams. The usage of two different beams is mainly motivated
by the fact that imaging with Ga+ ions is often counter-productive due to the relatively high
milling rate and substrate damage induced by this ionic species [35]. On the other hand,
He+ imaging does not significantly damage the sample, and as such He+ FIBs are typically
found in dedicated equipment, where the same beam is utilized for both high-resolution
imaging and patterning [40].

The growth of a nanostructure by either FIBID or FEBID can be summarized as follows:

1. The substrate where the feature is to be deposited is positioned in an adequate
orientation relative to the direction of incidence of the beam. In most cases, such an
orientation is that of normal beam incidence, although some specific processes might
call for angled irradiation.

2. Making use of the GIS nozzle valve, which must be located in close proximity to the
substrate (typically in the order of 100 µm), a gaseous precursor material is released
into the chamber. The precursor molecules adsorb on the substrate, constituting a
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molecular monolayer in dynamical equilibrium—as adsorbed molecules exceed their
residence time and are pumped away by the vacuum system, they are promptly
replaced by fresh molecules coming from the GIS.

3. The focused beam is then scanned over the substrate, following a pattern defined by
the user and decomposing the adsorbed molecules in its path. The GIS nozzle is kept
open until the irradiation ends in order to replenish the precursor monolayer as it is
being depleted [41].

4. When the irradiation is completed, the GIS nozzle is closed, and the vacuum system
evacuates any gaseous remnants in the chamber.

The deposition of the material is achieved in both processes through a localized energy
transfer from the incoming charged particles to the precursor molecules, typically mediated
by the substrate. As the accelerated ions or electrons impinge on the substrate, several
particles are emitted from the substrate, whose number and nature vary depending on the
characteristics of the beam used to perform the irradiation.

This energy transfer may occur via elastic collisions of the charged particle with the
atoms in the substrate, or by inelastic scattering events that result in secondary excitations
being induced in the substrate. In the context of FEBID/FIBID, the main difference between
ions and electrons for the purposes of growth and processing resides in their mass, which
makes up for different beam-substrate interactions [42,43]. Owing to their comparatively
large mass, impinging ions lose energy via collisions more significantly than electrons,
inducing collision cascade events among the atoms in the substrate that eventually result
in substrate amorphization [44], sputtering (achieved when the energy transferred to a
surface atom exceeds its binding energy), and ion implantation [35]. All three of these are
side effects characteristic to Ga+ FIBID, greatly reduced in He+ FIBID due to the lighter
mass of those ions [40], and absent in FEBID, where inelastic events dominate [42]. FIB
irradiation also results in the emission of backscattered ions [43], which are also evidently
absent in FEB procedures.

Common to both procedures, and at the heart of their working principle, are secondary
electrons, emitted in close proximity to the irradiation point as secondary excitations in-
duced by electronic energy losses [35]. Named in such a way to differentiate them from the
incoming or primary beam, these secondary electrons have typical energies in the order of
eV, while the particles in the primary radiation are accelerated to the order of keV. The dis-
sociation of the adsorbed precursor molecules is achieved with most efficiency at precisely
these low energies characteristic to the secondary electrons [45]. Thus, the energetic primary
beam does not directly interact with the adsorbed precursor molecules in a significant
way whatsoever, but rather acts as a source for secondary electrons, which dominate the
deposition process by transferring their energy to the precursor molecules and separating
them into the aforementioned volatile and non-volatile constituents [31]. Other particles
emitted by inelastic scattering include backscattered electrons and second-order secondary
electrons, both of which can be exploited for imaging purposes in SEM microscopy.

One remarkable aspect of FIBID procedures is the delicate interplay that takes place
between deposition and sputtering mechanisms. While the operating conditions may
be adjusted to ensure that one of the mechanisms predominates over the other, both of
them do occur simultaneously during irradiation. A signature of this occurrence is that
nanostructures grown by FIBID typically appear slightly “embedded” on the surface of the
substrate [46], as a consequence of the material removal that occurs while the precursor is
being decomposed (and contrary to those grown by FEBID, whose cross-sectional views
show that the substrate surface remains flat, with the deposit simply growing on top of it).

The consequences of this interplay are of particular interest in the case of He+ FIBID,
where, owing to both the small probe size and to the sharp, narrow shape interaction
volume of He+ ions in an FIB, each reaction induced with a He+ FIB takes place in a highly
localized way, significantly higher than its Ga+ counterpart [47]. A particularly remarkable
example of this simultaneous milling/deposition effect is observed in the vertical growth
of 3D hollow nanopillars by He+ FIBID [48], which will be presented in Section 2.2.1.
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In both FIBID and FEBID, but particularly relevant for the latter, where the electrons
lack the necessary mass to induce milling in the material, another crucial balance that must
be gauged and optimized is that of the beam with the precursor gas. Depending on the
relative rates of precursor replenishment and precursor decomposition, two regimes can be
distinguished: the electron-limited regime, where the gaseous precursor gets replenished at a
rate that exceeds that at which the beam can decompose it; and the precursor-limited regime,
where, as the name implies, the decomposition speed dominates and the growth is reigned
by the amount of precursor available for decomposition [22]. This balance does influence
the nature of the deposit and must be taken into account when optimizing the process.

Valuable insight on the expected behavior of the beam-substrate interactions, including
their projected trajectories, energy transfer, and subsequent expected deposition yield,
can be gained by means of numerical simulations based on theoretical models. In both
FIBID and FEBID models, secondary electron trajectories are predicted using the Monte
Carlo computational method [49,50], with most models assuming a dependence of the
particle trajectory on elastic interactions only, and that incoming particles lose energy in a
continuous way as they describe a trajectory within the substrate [42].

Concerning FIBID, Transport of Ions in Matter (TRIM) is a software that employs the
Monte Carlo approach to describe the trajectories of ions in a substrate as a series of elastic
interactions that together define a collision cascade; whose specifics depend on both the
nature of the beam and the substrate [51]. Available as an open source software piece
named SRIM (Stopping and Range of Ions in Matter), TRIM permits a significantly reliable
estimation of the expected interaction volume of an FIB with the substrate [52]. In parallel,
the software CASINO, which is also freely available, exploits the Monte Carlo to predict
electron trajectories in a substrate [53]. Such a tool finds application not only in FEBID
processes, but also in electron based lithography and spectroscopy procedures as well.

Other numerical methods employed in FIBID studies, all of which build on TRIM or
SRIM, include IONiSE [54], which predicts secondary electron emission induced by a He+

FIB, EnvizION [55], centered in mass transport and growth rate in He+ FIBID processes,
TRIDYN [56] which takes dynamical compositional changes into account, as the substrate
is chemically modified by the impinging ions, and TRI3DYN, an expansion of TRIDYN that
allows for path simulations in three dimensions [57].

2.2. Precursor Materials

The feasibility of an FIBID/FEBID procedure is entirely dependent on the availabil-
ity of a precursor material that contains the element of interest while being suitable for
decomposition under an electron or ion beam [58]. As such, it is therefore not possible to
pattern any given compound known to display superconductivity using these techniques—
instead, the search for superconductivity using FIBID/FEBID is rather tackled by varying
the growth conditions and using different (and newer) precursors, investigating whether
the deposited material exhibits superconducting behavior thereafter.

In the following sections, a review on the published work on the deposition of super-
conducting devices of various materials is presented.

2.2.1. Tungsten

Tungsten-carbide (W-C) nanodevices fabricated by the focused beam-induced depo-
sition of the tungsten hexacarbonyl precursor material (W(CO)6), can be considered the
flagship of these growth techniques for superconducting materials, particularly in the case
of ion-induced deposition.

Bcc-crystalline tungsten becomes superconducting at the inconveniently low tempera-
ture of 15 mK [59]. Notwithstanding, the tungsten-based material fabricated by FIBID or
FEBID, which exhibits a significant amount of carbon in terms of atomic composition, does
show an enhanced critical temperature in the 4 K to 5 K range. Combined with the flexibility
and patterning capabilities of focused beam-induced growth, the deposition of W(CO)6
does represent a powerful tool for the fabrication of targeted superconducting nanodevices.
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The first published report of the occurrence of superconductivity in a material prepared
by FIBID dates back to 2004, when Sadki et al. [60] showed superconducting behavior in a
W-C compound obtained by Ga+ FIBID of W(CO)6 (Figure 2). Exhibiting a metallic atomic
content of around 40%, and with significant amounts of implanted Ga (20%), the non-
dissipative state was detected in a nanowire below a critical temperature of 5.2 K ±0.5 K.

Figure 2. First reported experimental evidence of superconductivity in W-C nanowires prepared by
Ga+ FIBID. (a) Superconducting transition at Tc = 5.2 K. (b) Dependence of the upper critical field
with temperature. Reprinted from [60], with permissions from AIP Publishing.

Since then, the Ga+ FIBID community has expanded on the investigation of the
tunability and applicability of this superconducting material, with a wide variety of reports
available in the literature [61–69]. While there are significant variations in the reported
values of the metallic atomic content (between 20% and 50%), depending on both the
deposition parameters and the technique utilized to determine it, the critical temperature
is consistently found in the vicinity of 4.5 K (Figure 3a). The specific component ratio
varies slightly between reports, but as representative examples, some reported values of
the W:C:Ga:O ratio in terms of atomic percentage are 53:34:11:2 [63], 48:30:16:6 [64], and
40:43:10:7 [65]. Some authors have found some strategies to tune Tc by post-growth Ga
irradiation [70], and co-deposition with a C-based precursor [71]. Remarkably, the latter
also report lack of superconducting behavior when the atomic W content is reduced below
17.5%, down to an insulating response when that amount is further reduced below 16%.

Most authors report the material to be amorphous, or exhibiting a microstructure
of very small nanocrystallites (with sizes of around 1 nm or below), a relatively frequent
microstructure also found in Pt FEBID nanostructures [72]. On this matter, care should be
taken in interpreting these results, as the distinction between amorphous and nanocrys-
talline microstructure may become somewhat blurred, as it is harder to assess the potential
crystallinity of clusters so reduced in size.

The microscopic origin of superconductivity in Ga+ FIBID W-C is, at the time of
writing, a matter of debate, with diverging hypotheses among different authors. Li et al. [59]
reported in 2008 a systematic study on the material properties with the ion beam current
utilized to induce the deposition of 45 µm-long nanowires. The tungsten, carbon, and
gallium contents are found to significantly depend on it, with both W and Ga concentrations
increasing with increasing current, and the C concentration decreasing with higher ion
beam currents. The value of Tc, however, presents a non-monotonic dependence with the
current, first increasing with increasing current, up to a significant figure of 6.2 K at 50 pA,
and then decreasing again when the ion beam current is further increased. Whereas W-C
deposits were first described within s-wave type-II superconductivity [73] some authors
have recently reported anisotropic superconductivity features [74].

As a general consideration for both these specific reports and those that follow in this
review, it must be kept in mind that beam current is far from being the sole parameter in
determining the nature of the deposits—rather, the operating conditions of such procedures
are better thought of as a set of intertwined parameters, the most relevant of which are
the acceleration voltage, the beam current, and dose, and the dwell time. The primary
task of FIBID/FEBID experimentalists is thus to find and optimize a set of these operating
parameters, and then assess how the deposition depends on them by systematic studies as
the one described above.
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When inducing the deposition using a He+ FIB, the material is also superconducting,
respectively exhibiting a critical temperature range and W atomic content of 6.2 K to
7.1 K and up to 70% in 3D nanostructures [27,30] (Figure 3b), and 3 to 4 K and 20% in
in-plane nanostructures [75]. The reported W:C:O component ratios in terms of atomic
percentage are 72:20:8 for 3D growth [27], and 20:40:20 to 15:70:15 for in-plane growth. Even
though the deposition of both materials is carried out in a conceptually equivalent manner,
the differences that exist between Ga+ and He+ ions make up for significantly different
growth conditions, and subsequently, different compositional and electrical properties of
the deposited material. In-plane nanowires can be patterned down to a width of 10 nm
(close to the coherence length of the material), virtually unattainable in a single step Ga+

FIBID procedure [75]. The superconducting state, however, is observed only in nanowires
with widths of 20 nm and above, in the vicinity of which the transition is comparatively
broad, a behavior ascribed to quantum phase slips akin to those observed in narrow
nanowires of other materials.

Figure 3. (a) Superconducting in-plane W-C nanowire (50 nm in width), nanopatterned by Ga+ FIBID.
Scale bar: 5 µm. Reprinted from [65], with permissions from Springer Nature. (b) Superconducting 3D
W-C nanohelices nanopatterned by He+ FIBID. Scale bar in inset: 100 nm. Reprinted from [30] with
permissions from ACS Publications (https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b03153,
accessed on 15 March 2022). Further permissions related to the material excerpted should be directed
to the ACS.

Based on the Tc differences with pure, crystalline W, early reports on the W-C material
obtained by Ga+ FIBID tended to associate the occurrence of superconductivity with the
lack of crystalline structure, while a justification based on the presence of implanted Ga
was also proposed. However, the development and application of He+ FIBID have shown
that the W-C material (which, when grown using that technique, is crystalline and lacks
any Ga content whatsoever) is still superconducting. Therefore, none of these proposed
reasons can fully account for the phenomenon, or be the sole reason for its appearance. At
the time of writing, a plausible hypothesis that is compatible with the present data is that
of the co-existence of two different superconducting phases in the material: one that is
micro-structurally amorphous (typically obtained using Ga+ FIBID), and one that exhibits
a crystalline structure (obtainable using He+ FIBID). In any case, further efforts, both in the
experimental and theoretical fronts, need to be taken to fully account for the phenomenon.

One consequence of the growth and milling mechanisms induced by the FIB occurring
simultaneously may be directly observed in the growth of vertical nanopillars, where a
highly focused He+ beam that is constantly irradiating a fixed position, locally removes
material while promoting vertical growth of a nanostructure, yielding a tube-like, hollow
pillar nanostructure [48]. This effect was practically demonstrated in superconducting
W-C hollow nanopillars grown via He+ FIBID first by Kohama et al. [76] and then further
investigated by Córdoba et al. [27].

Additionally related to 3D He+ FIBID deposition, Córdoba et al. reported the growth
of 3D nanohelices, achieved by scanning a series of circles arranged in the same location: by
combining optimized growth parameters with an arrangement of irradiation spots in such
a way that adjacent irradiation spots exhibit sufficient overlap, continuous vertical growth

https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b03153
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occurs as the circles are sequentially scanned [30]. In comparison with the previously
discussed nanopillars, the onset of the dissipative state is enhanced in up to 35%, suggesting
that the helical geometry forces a stronger pinning effect in the superconducting vortices
that appear in presence of an external magnetic field. Furthermore, the geometry is also
found to favor the formation of ordered normal/superconducting domains along the
length of the helix, exhibiting a matching effect comparable to those induced by thickness
modulation in a thin film (discussed below in Section 3.5). This effect is observed through
a transition to the superconducting state in a series of discrete steps, ascribed to the
occurrence of phase-slip phenomena, and accounted for by Ginzburg–Landau theory-based
numerical simulations.

With FIBID W-C being superconducting, it is only logical to consider whether the
growth using an FEB instead of an FIB would yield a material with comparable super-
conducting properties. Early reports in the matter indicated the lack of superconducting
behavior down to 2 K [77], deeming this approach unfeasible. Notwithstanding, a single
report by Sengupta et al. [78] presented the fabrication of superconducting W-C FEBID
nanowires with a composition W:C:O ratio of 50:40:10 and a critical temperature of 2 K.

More recently, Blom et al. [79] reported the growth of a superconducting W-C material
by using comparatively higher FEB currents, with a critical temperature of 5.7 K. Although
the usage of a higher beam current compromises the resolution of the technique, this
approach allows one to fabricate superconducting nanodevices without the main drawbacks
of Ga+ FIBID, and has been exploited to fabricate Josephson junctions.

2.2.2. Niobium

Niobium, a classical example of an element present in superconducting materials,
both in bulk form and constituting alloys, can be patterned by FIBID/FEBID of the
Nb(NMe2)3(N-t-Bu) precursor [80].

Porrati et al. [13], in 2019, reported the fabrication of Nb-based nanowires by Ga+

FIBID. As characterized by EDS, the deposits exhibited an atomic Nb content of 28.7%,
with a constituent Nb:C:Ga:N ratio of 28.7:42.9:15.5:12.9 in terms of atomic percentage.
TEM analysis indicate that the microstructure of the material is that of an array of partially
touching crystallites with sizes in the 15 nm to 20 nm range. Electron beam irradiation of the
FIBID nanowires was also shown to improve the quality of the nanocrystalline structures.

In-plane nanowires exhibited a room-temperature resistivity ρN of 550 µΩ·cm and a
superconducting transition at Tc = 5.0 K. These figures were improved on by irradiating the
samples with the electron beam, lowering the room-temperature resistivity to 520 µΩ·cm
and raising Tc to 5.4 K.

More significant differences were found in the study of freestanding NbC nanowires
also prepared by Ga+ FIBID: with ρN = 380 µΩ·cm and Tc = 8.1 K, further raised to 11.4 K
by hypothesized electromigration (i.e., inducing graphitization on the material by making
a current flow through the nanodevice for an extended period of time [81]). With the onset
of the transition approaching the value of Tc in bulk NbC, the authors attribute the origin
of superconductivity in this material to the nano-crystalline microstructure. In that same
study, Porrati et al. reported that NbC nanowires grown by FEBID of Nb(NMe2)3(N-t-Bu)
show insulating behavior at low temperatures.

2.2.3. Molybdenum

A molybdenum-based superconducting material may be obtained by both FIBID and
FEBID of the Mo(CO)6 precursor. The FIBID approach was first reported by Weirich et al. [82]
in 2014, making use of a focused beam of Ga+ ions.

Using a standard FIBID configuration, and setting the acceleration voltage to 30 kV and
the ion beam current to 10 pA, the resulting material exhibits room-temperature resistivity
in the 300 µΩ·cm to 600 µΩ·cm range, comparable to that obtained in the previous materials.
With the optimized growth parameters, the component ratio Mo:C:Ga:O is 41.5:25.7:26.1:6.7
in terms of atomic composition. The authors remark that these resistivity values indicate the
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proximity of the material to a disorder-induced metal-insulator transition [83]. Similarly
to the behavior observed in FIBID W-C, the resistivity of this material increases as the
temperature is reduced, and then sharply drops to zero when the critical temperature is
reached, found in the 2.7 K to 3.8 K range. The largest values of Tc are found in those
materials exhibiting lower Ga and C atomic content. In addition, the critical magnetic field
at 0 K is extrapolated to 2.5 T to 4.5 T.

On the other hand, as demonstrated by Makise et al. [84] in 2014, superconducting
MoC may also be obtained by FEBID of a mixtures of the Mo(CO)6 precursor with water
vapor, H2O. As reported, increasing the partial pressure of H2O during the deposition
process results in a reduced amount of oxygen being present in the deposit, down to a
near-complete suppression of O presence at a threshold value of the partial pressure ratio
of the two gases. With a minimal influence of the hydrogen from the water vapor, the final
contents of Mo and C were found to be 70% and 30%, respectively.

As evidenced by TEM analyses, the as-grown MoC material is microstructurally amor-
phous, yet its crystallization may be induced by post-annealing it. Notwithstanding, only the
amorphous material shows superconducting behavior: showing a semiconductor-like resistivity-
temperature dependence (increasing with decreasing temperature down to 10 K, then decreasing
down to the critical temperature) and a superconducting transition at 7.2 K.

2.2.4. Other Precursors

Two last examples of superconducting materials obtained by FIBID and FEBID are
carbon and lead-based nanostructures.

Concerning the former, Dhakal et al. [85] reported in 2010 the fabrication of carbon-
based superconducting nanostructures by Ga+ FIBID of phenanthrene (C14H10). Grown
using an acceleration voltage of 30 kV and an ion beam current of 100 pA, the nanowires
exhibited an incomplete transition to the superconducting state near 7.0 K, and an upper
critical field of 8.8 T. TEM analysis indicated that the material lacked any crystalline
structure, and that the C:O:Ga ratio was of 34:38:26 in terms of atomic composition.

Lead-based superconducting deposits may be obtained by FEBID of the tetraethyllead
((CH3CH2)4Pb) precursor material, as reported by Winhold et al. [86] in 2014. The resulting
material exhibits a Pb:C:O ratio in the range of 40.1:36.5:23.4 to 45.8:31.2:23, largely inde-
pendent of the voltage and current employed to grow it. Samples with Pb content above
43% exhibit metallic behavior, with decreasing resistivity from a room-temperature value
near 166 µΩ·cm, down to a transition to the superconducting state near 7.2 K.

A more detailed analysis, based on a fit to the Ginzburg–Landau equations of super-
conductivity, revealed that in some samples, the temperature dependence of the material
could not be explained by a single superconducting transition, but rather by the co-existence
of two superconducting phases. The first phase has an associated critical temperature of
7.2 K and is very susceptible to the external magnetic field, which promptly suppresses it.
After that magnetic field-induced suppression, a second phase with a lower Tc of 6.6 K, and
a significantly enhanced associated zero-temperature critical field of 9.9 T, dominates. The
corresponding coherence length for this lower Tc phase is 5.75 nm; while the critical field
and coherence length for the higher Tc phase are 0.20 T and ξ = 40.23 nm (both phases
appear separated with a slash in Table 1).

The authors ascribe the appearance of these distinct superconducting phases to the
incorporation of C to the nanostructure as a side effect of the FEBID procedure. Since the
Pb-C bond in the precursor molecule is weak enough for the FEB to decompose effectively,
the Pb content in the deposited nanostructures is sufficiently high for them to exhibit a Tc
comparable to that of bulk lead. Such a higher Tc is only observed at low magnetic fields,
and when the presence of this phase in the nanostructure is significant enough to constitute a
percolating path. The lower-Tc phase, richer in C, dominates after applying a magnetic field
that suppresses the superconductivity of the higher-Tc phase. The preferential appearance
of one of the phases over the others is strongly influenced by the deposition parameters.
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Table 1. Reported features and characteristic parameters of superconducting materials prepared
by FIBID and FEBID. The values of reported critical field are indicated along with the temperature
at which they were estimated. In the case of lead, parameters corresponding to the two different
superconducting phases detected by the authors are separated by a slash. (*: see text for clarification).

Met. Cont. ρN (µΩ·cm) Tc (K) Bc2 (T) ξ (nm) λ (nm) Ref.

Tungsten

Ga+ FIBID 40% to 50% 200 to 300 4.3 to 5.5 9.5 (0 K) 6.25 850 [59–65]
2D He+ FIBID 20% to 30% 110 to 240 2.5 to 4.0 4.0 (0.5 K) 6.40 616 to 812 [75]
3D He+ FIBID 72% 400 to 460 6.4 7.0 to 9.0 (4 K) 4.86 to 5.05 830 to 902 [27]

FEBID 50% 270 2.0 3.7 (0 K) — — [78]
26% to 38% 270 4.7 to 5.7 4.0 (1.5 K) — 830 [79]

Niobium 2D Ga+ FIBID 29% 520 5.4 1 (2 K) 5.94 1101 [13]3D Ga+ FIBID — 380 8.1 8 (4 K) 5.85 471

Molybd. Ga+ FIBID 38% to 45% 300 to 600 2.7 to 3.8 2.5 to 4.5 (0 K) 7.6 to 11.2 — [82]
FEBID 70% — 7.2 — 8.00 — [84]

Carbon Ga+ FIBID n/a * — 7.0 8.8 (0 K) 6.00 — [85]

Lead FEBID 40% to 46% 170 to 640 6.6/7.2 * 9.9/0.2 * (0 K) 5.75/40.23 * — [86]

3. Applications

As previously discussed, the main two virtues of FIBID and FEBID reside in its
single-step nature, and in its patterning flexibility. Concerning the former, dropping the
requirement to use a resist that may contaminate or otherwise hamper the process provides
with a significant advantage over other techniques. In addition, the technique allows for
great adjustability in both designing the pattern and the substrate for the deposit to be
grown. In combination, these two factors allow for complex patterning in conventional and
unconventional substrates, making the technique a powerful tool.

The W(CO)6 precursor is undoubtedly the most reported and utilized material for the
nanopatterning of superconducting devices using focused beams. Thanks to its commercial
availability and the high reproducibility exhibited in the growth, its deposition is conve-
niently achieved with ease. Moreover, the superconducting parameters of the deposited
material make for an experimentally accessible investigation, which further settles W-C as
the most popular option for nanopatterning of superconductors using FIBID. Thus, W-C
has been the material of choice for most of the reported applications in superconductivity,
which exploit it in different ways.

Materials grown by FIBID and FEBID represent an inciting object of study by them-
selves, exhibiting the unique and defining characteristics imposed by the nature of the
deposition process. In this section, several remarkable examples of the application of such
materials (mostly centered in W-C) are presented.

3.1. Superconducting Proximity Effect

The possibility of controlling the superconducting properties at the nanoscale, offered
by superconducting materials grown by FEBID or FIBID, paves the way for the investigation
of physical effects that occur at interfaces at the nanoscopic scale. A relevant example is
the superconducting proximity effect [87,88]. It occurs at the interface between a normal
metal (N) and a superconductor (S) when both materials are brought into electrical contact
with each other. Superconducting properties could be induced in the normal material,
while degrading in the superconducting material forming the interface. Superconducting
proximity effect takes place through Andreev reflection at the interface, which involves
an electron reaching the superconductor—normal interface from the normal side, being
retroreflected as a hole and accordingly creating a Cooper pair in the superconductor [89].
It is remarkable that this process makes it possible that a current flows without dissipation
through a normal metal if two superconductors are close enough to each other and in
electrical contact to the normal metal. When the normal metal is replaced by a ferromagnetic
(F) one, if the superconductor forming the F–S contact is a conventional superconducting
material, it results in conventional superconducting proximity effect in which there is
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a strong pair-breaking effect that causes an exponential decay of the superconductivity
in the F side [90]. However, if the superconductor forming the F–S interface presents
odd triplet superconductivity, long-range proximity effect arises because superconducting
correlations can extend to the F side over much longer distances [91]. The high resolution
and versatility offered by FEBID and FIBID techniques makes them very useful techniques
for investigations of the superconducting proximity effect. The most used material in this
type of studies is W-C grown by Ga+ FIBID due to its remarkably high upper critical field
that allows one to investigate this interfacial effect in a wide range of magnetic field values.

One of the first experiments of proximity-induced superconductivity by using super-
conducting nanoelectrodes fabricated by FEBID/FIBID was reported by Kasumov et al. [92].
The controlled fabrication of nanometer-size gaps between micron-long suspended W-C
nanoelectrodes deposited by Ga+ FIBID and the deposition of Gd metafullerenes molecules
in the gaps enabled the study of proximity-induced superconductivity in these molecules,
finding that the proximity effect is very sensitive to the magnetic state of the molecules.

The study of the electronic transport properties of few-layer graphene connected to
superconducting electrodes was reported by the same group in 2007 [93]. By mechanically
exfoliating graphite, a sheet of few-layer graphene is connected to two W-C supercon-
ducting electrodes, separated by 2.5 µm and grown by Ga+ FIBID. The superconducting
proximity effect in the few-layer-graphene foil occurs at around 1 K and the different
peaks observed in the differential resistance measured below this temperature are inter-
preted as the signature of incoherent multiple Andreev reflections in the W-C—few-layer
graphene—W-C devices.

In 2011, the same group also reported the fabrication of N—S rings composed by
two superconducting electrodes on both sides of a gold wire [94]. Superconducting W-C
nanoelectrodes were deposited by Ga+ FIBID. They measured the high frequency linear
response of these N—S rings when inductively coupled to a multimode superconducting
resonator. The dynamics of Andreev states was studied, showing that at low temperatures
the response is non-dissipative but there is a strong additional dissipative component at
higher temperatures (around 1 K).

Proximity-induced superconductivity in bismuth nanowires has also been studied
by H. Bouchiat’s group. They first reported the transport properties of micrometer-long
90-nm-wide bismuth nanowires connected to W-C superconducting electrodes grown
by Ga+ FIBID [95]. Taking advantage of the high upper critical field of Ga+ FIBID W-
C nanodeposits, they were able to measure the persistence of supercurrent in magnetic
fields as high as 11 T in the Bi nanowires. They found periodic oscillations of the critical
current occurring up to high magnetic fields, the period and decay of these oscillations
indicate that the interferences occur between strongly confined 1D channels, possibly
located at the edges of specific facets of the nanowires. Few years later they reported the
investigation of superconducting proximity effect in micrometer-long 30-nm-wide 200-nm-
thick monocrystalline bismuth nanowires, connected to two superconducting Ga+FIBID
W-C electrodes [96]. They measured the relation between the Josephson current flowing
through the bismuth nanowire and the superconducting phase difference at its ends, finding
that the contribution of the two ballistic edge states of the nanowire outweighs that of the
diffusive channels on the non-topological surfaces. In addition to being ballistic rather than
diffusive, they found that topological edge states are better coupled to superconducting
electrodes due to their spin-momentum locking.

Another example of induced superconductivity in bismuth by using superconducting
electrodes grown by Ga+ FIBID was reported by our group in 2017 [97]. The possibility of
inducing superconductivity in bismuth nanostripes through electrical contact with W-C
nanodeposits grown by Ga+ FIBID was investigated, finding, as illustrated in Figure 4a, that
bismuth nanostripes with inner probe distance shorter than 125 nm become superconductor
at temperatures above 2 K due to proximity-induced superconductivity. From the study of
the electrical transport properties of these bismuth-nanostripes-based S–N–S devices, the
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superconducting proximity length in bismuth was estimated to be around 120 nm at very
low temperatures.

Figure 4. (a) Resistance, normalized at its value at 6 K, as a function of temperature for W-C—
bismuth nanostripes—W-C devices with inner probe distances of 105 nm, 120 nm, 125 nm, and
160 nm. Adapted from [97], with permissions from IOP Publishing. (b) Resistance as a function of
temperature for W-C—Bi2Se3—W-C devices N4 and N5, with junction lengths 368 nm and 286 nm,
respectively. Insets show false-colored SEM micrographs of the devices with Ga+FIBID W-C su-
perconducting electrodes in pink and Bi2Se3 nanowires in green. Reprinted from [98], under CC
BY license. (c) Relative change in resistance, normalized at its value at 15 K for single-crystal Cu
nanowires with an inner Ga+FIBID W-C superconducting inducer electrode. Resistance measure-
ments were performed by probing different lengths between 2 µm and 12 µm. The inset shows the
scheme of the electrical contacts used for the resistance measurements. Reprinted from [99], with
permissions from AIP Publishing.
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The interest in studying proximity-induced superconductivity on strong spin-orbit
coupling materials, such as bismuth, relies on the possibility of designing and fabricating
devices based on Majorana excitations occurring in these systems for fault-tolerant
quantum computation. One of the first studies of proximity-induced superconductivity
in topological insulators, very interesting for the possibility of the formation of Majorana
fermionic excitations at the interface of a topological insulator with a conventional
superconductor, was performed by Zhang and co-workers [100]. The study reports
the transport properties of Bi2Se3 nanoribbons interfaced with superconducting W-C
contacts deposited by Ga+ FIBID. They observed multiple Andreev reflection for channel
lengths much longer than the inelastic and diffusive thermal lengths, which suggests
that the superconducting proximity effect couples preferentially to a ballistic surface
conduction channel in topological insulators, even when diffusive bulk conduction
coexists. Moreover, they observed magnetoresistance oscillations when the nanoribbons
were place in a perpendicular magnetic field that can be explained using a Weber
blockade model in which the perpendicular magnetic field controls the number of Pearl
vortices in the superconducting nanoribbon.

Supercurrent studies on nanowires for its implementation in quantum computation
devices was taken a step further by Bhattacharyya et al. [98]. They fabricated topological
insulator, Bi2Se3, nanowires proximity-coupled to W-C electrodes grown by Ga+ FIBID. A
sharp superconducting transition was observed for the shortest Bi2Se3 nanowires (Figure 4b)
and the dominant role of topological surface states in propagating the long-range proximity
induced superconductivity was demonstrated.

Proximity-induced superconductivity in gold nanowires connected to two supercon-
ducting Ga+FIBID W-C electrodes as a function of the length of the nanowire has also been
studied by M. H. W. Chan’s group [101]. They found that short gold nanowires exhibit
a sharp superconducting transition, long nanowires show nonzero resistance, whereas
at intermediate lengths, there are two sharp transitions, indicating that the normal and
superconducting regions are separated by a minigap state. This state originates from a
coexistence of proximity-induced superconductivity with a normal region near the centre
of the wire.

Our group reported for the first time the possibility of combining superconducting
nanostructures grown by FIBID with magnetic nanostructures grown by FEBID to fabricate
functional S–F devices [102,103]. Planar nanocontacts between a ferromagnetic Co nanode-
posit grown by FEBID and a superconducting W-C nanodeposit grown by Ga+FIBID were
created. The magnetic field dependence of the conductance in these S–F nanocontacts was
studied, which allowed us to extract both, the spin polarization of the Co-based nanodeposit
and the magnetic field dependence of the superconducting gap of W-C nanodeposits.

A similar attempt of combining FIBID-grown superconducting nanostructures with
FEBID-grown magnetic nanostructures was reported by Sharma et al. [104]. They fabricated
nanocontacts formed by Co-based nanodeposits grown by FEBID and W-C nanodeposits
grown by Ga+ FIBID. They observed multi-channel electron transport, revealed by the
presence of multiple shoulders in Andreev reflection measurements and explained in
terms of the properties of the W-C superconducting nanodeposit and the specific structural
properties at the interface.

Interplay between superconductivity and ferromagnetism when using Ga+FIBID
W-C superconducting electrodes has been investigated by M. H. W. Chan’s group. They
sandwiched ferromagnetic Co and Ni nanowires between two W-C electrodes grown
by Ga+ FIBID [105]. They found that both ferromagnetic Co and Ni nanowires exhibit
proximity-induced superconductivity when connected to superconducting W-C electrodes
over a spatial extent of the order of 500 nm, similar to the value they had found in para-
magnetic gold nanowires [101]. Co and Ni nanowires that do not reach zero resistance at
low temperature, show and unexpected resistance peak immediately before the onset of
superconductivity, not present in their measurements of gold nanowires.
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Transport properties in S–F devices in which the superconducting electrode is de-
posited by means of FIBID have been extensively studied by M. Huth’s group [99,106,107].
They first reported the study of the superconducting proximity effect in polycrystalline Co
nanowires in contact with a W-C superconducting inducer floating electrode [106]. A long-
range superconducting proximity effect was observed in these Co nanowires, with a prox-
imity length of around 1 µm at 2.4 K. They later published the study of proximity-induced
superconductivity in single crystal Cu nanowires and FEBID-grown Co nanowires [99].
In this case they used the same inner W-C superconducting inducer electrode grown
by Ga+ FIBID but they added two extra pairs of Pt-based voltage leads to probe the
proximity effect over three different distances, as shown in Figure 4c. The proximity
length in the single crystal Cu nanowires was estimated to be 1.6 µm at 2.4 K, while
proximity-induced superconductivity in nanogranular Co nanowires grown by FEBID was
found to be strongly suppressed due to the dominating Cooper pair scattering caused by
its intrinsic microstructure.

3.2. Vortex Dynamics
3.2.1. Vortex Observation in W-C Deposits

As aforementioned, the W-C deposits fabricated by Ga+ FIBID exhibit type-II super-
conductivity, with a lattice of superconducting vortices populating the material when it is
subject to an externally applied magnetic field. As such, the material also provides with an
excellent playground for the investigation of several physical phenomena related to the
detection, motion and behavior of superconducting vortices.

One first approach to explore vortex physics is by means of Scanning Tunneling
Microscopy/Spectroscopy (STM/STS) [108], a scanning probe technique that makes use of
an atomically sharp tip to sequentially probe the density of states of a sample by mea-
suring the changes and dependence of the tunneling current that is established between
the two when they are counter-biased. The electronic structure of a superconductor
is unmistakably defined by the presence of a superconducting gap. In the mixed state,
the superconducting bulk does exhibit such a gap, but the normal cores of any present
vortices do not, which allows for the retrieval of STS images where vortices can be easily
visualized (Figure 5).

Guillamón et al. have extensively investigated the superconducting properties and
vortex dynamics of W-C thin films nanopatterned by Ga+ FIBID. Such films proved to be a
system with a level of surface homogeneity appropriate for STM experiments. Measure-
ments indicate a good fit to the s-wave BCS model of superconductivity, with a value of
the superconducting gap of 0.66 meV, and a subsequent gap dependence with temperature
also in agreement with that theory. Superconducting vortices populate the sample above
a lower critical magnetic field of 0.3 T, forming arrangements of hexagonally distributed
vortices between surface deffects [73,109].

A remarkable investigation performed on such W-C thin films is that of the observation
of the temperature-induced melting of the vortex lattice. The STS setup in combination with
the homogeneous W-C material enables for direct, dynamical microscopic observation of the
evolution of the hexagonal lattice. At a fixed value of magnetic field, the following several
phases can be observed in the order of increasing temperature: a (relatively) disordered vortex
array, with the distribution mainly determined by local pinning sites; a more ordered lattice,
with the re-ordering of the vortices driven by thermal depinning; a hexatic phase after the onset
of melting, identified by the appearance of free dislocations in the film, and followed by smectic-
like vortex arrangements; an isotropic liquid of thermally-excited vortices that are able to move
faster than the scan speed of the instrument; and finally, the normal state [110].
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Figure 5. (a) Temperature dependence of the superconducting gap, as probed by STS. Inset shows
individual spectra taken at different temperatures. Reprinted from [73] (https://doi.org/10.1088/13
67-2630/10/9/093005, accessed on 15 March 2022). © IOP Publishing Ltd and Deutsche Physikalische
Gesellschaft. Reproduced by permission of IOP Publishing. All rights reserved. (b) Abrikosov vortex
lattice in a W-C thin film at 1.2 K and 2 T, as imaged by STS, with each dark region corresponding to
an individual vortex. Pink lines outline the hexagonal symmetry of the lattice. Lateral image size:
220 nm. Reprinted from [110], with permissions from Springer Nature.

Similarly, the direct evolution of the lattice was also monitored as a function of an increasing
magnetic field. While the “initial” vortex positions are determined by the surface roughness,
which translates to linear extended pinning centers, it is the distribution of the different pinning
centers which determines the direction of motion. Observing the evolution of the lattice in small
steps of magnetic field, vortex avalanches are observed, in which several vortices (that form a
“bundle”) quickly switch between different arrangements, all at a time [111].

The technique was also exploited to investigate the correlation effects that arise between
the lattice and an artificially induced pinning potential, in the form of a periodic thickness mod-
ulation (which will also be later discussed as a means for vortex immobilization, in Section 3.5).
With the coupling strength between the two depending on the magnetic field, two distinct
phases are once again observed as this parameter is sequentially increased: a vortex lattice that
is “locked” to the film corrugation (or “commensurate” with it), and a floating 2D “solid”, with
an arrangement independent of the pinning potential [112].

Overall, the technique-sample combination provided by STM and Ga+ FIBID W-C
gives rise to a convenient scenario for the microscopic investigation of superconductivity
phenomena, not only limited to vortex dynamics, but also potentially including the de-
tection of nanoscale Bitter effect [113] and Yu-Shiba-Rusinov states [114]. At the time of
writing, such studies are still to be carried out.

3.2.2. Non-Local Vortex Transport

Injecting a current in a type-II superconductor material in the mixed state induces
a force in any present vortices by electrostatic interaction between the charges in their
screening circular currents and the charge carriers of the injected current. The normal cores
dissipate energy as they drift along the superconducting bulk, yielding a finite resistance to
the superconducting material [3,115]. Energy dissipation is generally counter-productive in
superconductivity applications, and as such, vortex motion within a type-II superconductor
is usually regarded an unwanted effect, and immobilization of the vortices is a desirable
goal [116,117].

Contrary to this trend, vortex motion can also be a productive and interesting goal by
itself, should it be considered the actual object of study rather than a nuisance that hinders
superconductivity. The possibility of transporting vortices to areas depleted of current
was first presented in 1965 through Giaever’s sandwich-like Sn–SiO2–Sn device [118].
By injecting a current through one of the (type-II superconducting) Sn films, a finite
resistance was detected in the other, the two films being insulated one from the other by
the intermediary SiO2 layer. In virtue of the stiffness of the Abrikosov lattice, the repulsive
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force between neighboring vortices resulted in net motion of the whole array, promoted
at the region where the driving current was injected, but with this repulsion extending
through the insulating barrier and reaching the other superconducting film. The transport
of vortices to areas depleted of current, and the subsequent detection of the finite voltages
they yield as they move is referred to as non-local transport, relating to the fact that the
motion and its associated resistivity extend beyond the vicinity of the driving current
injection point.

In-plane non-local vortex transport in nanostructures was first investigated by Grig-
orieva et al. in a MoGe device patterned as a nano/micro-wire with two leads perpen-
dicularly placed to its longitudinal axis [119]. Injecting a driving current through one of
these leads results in a force being exerted on vortices present therein, which in turn push
other neighboring vortices in the lattice. With the momentum transfer being maintained
throughout the whole length of the nanostructure, vortices passing through the opposite
lead, depleted of current, yield a finite voltage as they pass through (Figure 6a).

This effect has been further explored in superconducting devices fabricated by Ga+

and He+ FIBID of W(CO)6. As reported by Córdoba et al., by patterning a nanowire whose
width is comparable to the coherence length of the W-C material, the energetically favorable
arrangement of the Abrikosov lattice is that of a single row of vortices along the long axis
of the nanowire, confined between potential barriers at the edges [65].

As such, the non-local transport in devices with a channel width in the order of 50 nm
is constrained to a single row of vortices. It has been experimentally found that such a
geometry yields a more efficient vortex transfer—while transport experiments in 200 nm-
wide nanowires yield an equivalent non-local resistance in the order of mΩ (estimated
using Ohm’s law, V = IR), by reducing the width of the channel, the non-local signal is
enhanced to the order of Ω [120].

This enhancement in the effectiveness of vortex transport has been confirmed by
both retrieving significantly high values of non-local resistance associated to long-range
transport: up to 36 Ω in a 3 µm-long nanostructure, and 9 Ω in a 10.25 µm-long one [121].
Numerical simulations based on the Ginzburg–Landau theory of superconductivity indicate
that the effect is in principle able to persist among distances much greater than the lattice
parameter, which further reinforces the applicability of this technique-material pairing for
the fabrication of vortex-based nanocircuits. Similar experiments have also been carried
out in nanowires fabricated by He+ FIBID of W(CO)6, yielding equivalent results to those
retrieved when Ga+ FIBID was used [75].

The potential of vortex-based nanocircuits lies in the quantized nature of the vortices.
Each of them encloses a precisely-defined and known amount of magnetic flux which de-
pends on physical constants only, and is therefore not affected by the experiment conditions.
More general examples that showcase the prospective applications, to date still not demon-
strated in nanodevices fabricated by FIBID, are their consideration as quantized information
carriers [122] (this example being the most tailored to the described non-local transport),
the tuning of the Josepshon effect at a junction by an optically-driven vortex [123], and the
possibility of controlling their generation in superconducting nanotubes [124].

While the MoGe samples from the original experiments of Grigorieva et al. were
fabricated by electron beam lithography, but at the time of writing, the highest reported
absolute values of non-local voltage have been detected in narrow nanowires fabricated by
FIBID, which reassures its viability for this particular purpose. Thus, the patterning flexibil-
ity of FIBID and FEBID is most welcome in the design of such vortex-based nanocircuits,
and as such, it represents the most promising approach towards their further potential
applicability in the examples outlined above.
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Figure 6. (a) Schematic representation of the non-local configuration for vortex transport mea-
surements. (b) Ginzburg–Landau theory-based numerical simulations of the distribution of the
superconducting parameter in a 50 nm-wide nanowire, evidencing the single-row distribution of
vortices along the axis. Reprinted from [65], with permissions from Springer Nature. (c) SEM image
of a superconducting W-C nanowire fabricated by Ga+ FIBID, showing the supporting contacts
placed for non-local voltage measurements. (d) Non-local magneto-resistance curves of the previous
nanowire, with the characteristic non-local resistance peaks appearing near the transition at each
temperature. Figures (a,c,d), reprinted from [121], under CC BY license.

3.2.3. Ultra-Fast Vortex Transport

Vortex dynamics have also been investigated by Dobrovolskiy et al. in Nb-C mi-
crostripes fabricated by Ga+ FIBID of the Nb(NMe2)3(N-t-Bu) precursor [125]. Specifically,
the authors focus on ultra-fast velocities (&5 km/s), for these values are expected to shed
light on interesting physics as the speed of the vortices exceeds that of other excitations in
the system [126,127].

Ga+ FIBID-grown NbC does exhibit strong edge barriers, a value of the critical current
close to its depairing value, and a fast quasiparticle relaxation time, all of which are highly
convenient factors in ultra-fast vortex dynamics investigations. Paramountly, nanopattern-
ing this material by FIBID yields near-perfect edge-barriers that restrict and order vortex
motion at high currents, allowing for the investigation of the aforementioned ultra-fast
regime, which would otherwise not be possible as the flux-flow instability phenomenon
takes over the superconducting state [128]. The nanowires are able to sustain ultra-fast
vortices that nucleate at one of the edges of the microstrip, and driven by the injected cur-
rent, transversally cross the strip through highly resistive “vortex rivers” [129,130]. These
results indicate the potential applicability of FIBID NbC for the fabrication of single-photon
detectors (discussed below in Section 3.5).

3.2.4. Emergent Phenomena in 3D Nanostructures

Within the framework of the Ginzburg–Landau theory, superconductivity is described
by means of an order parameter, whose absolute value is physically related to the presence or
absence of the superconducting gap at a given location [3]. Superconductors are character-
ized by a strong interplay between the physical geometry of the sample and the topological
properties of this order parameter, which results in the appearance of interesting phenom-
ena when the superconductor is nanostructured with geometries different to conventional
in-plane arrangements [131,132].

Vortices behave as defects in the topology of the superconducting parameter and
are therefore also sensitive to this interplay. Geometrically breaking the symmetry of the
superconductor in the presence of an externally applied magnetic field gives rise to strong
inhomogeneities in the field components and to the appearance of complex patterns in the
Meissner screening currents that arise therein, which eventually lead to the occurrence of
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vortex-related effects that are simply absent in “simpler” geometries. Recent reviews on
the matter may be found in [131,132].

Three dimensional (3D) nanopatterning of superconducting nanostructures repre-
sents one plausible approach towards the exploration of such geometry-topology interplay
effects, and FIBID and FEBID exhibit the potential for it. The aforementioned 3D W-C
nanohelices patterned by He+ FIBID [30] represent one notable example, whose character-
ization evidences the appearance of complex vortex and phase slip patterns that are not
found in 2D W-C nanostructures. These features exhibit the potential to utilize 3D-grown
He+ FIBID W-C in the fabrication of metamaterials [133] and for the study of commen-
surability effects [134]. Together with the already-exhibited capability of FEBID in the
fabrication of complex 3D magnetic nanostructures [135], both FIBID and FEBID hold great
potential towards the nano-printing of intriguing 3D nanostructures, bound to undergo
interesting development and application in the coming years.

3.3. Electric Field-Induced Critical Current Modulation

Tuning the resistivity of a semiconductor material by applying an electric field in its
vicinity is one of the most important founding stones of modern circuitry, with the design
of gate voltage-modulated transistors being firmly rooted in this principle. Modifying the
electrical properties of a metallic material in a similar manner is, in principle, not feasible,
since the large density of free charge carriers in metals induces an effective screening of the
electric field as soon as it is applied, nullifying its influence in the bulk.

Very recently, however, the research community in superconductivity has taken a keen
interest in the possibility of achieving this kind of control in superconducting nanostruc-
tures. It has been experimentally found that the application of an external electric field
in close proximity to a superconducting channel can quench the non-dissipating state,
thus enabling for an externally controlled switching of the resistivity of the material via
the application of a gate voltage. Such an effect has been observed in titanium [136,137],
aluminium [138], vanadium [139], and niobium [140] nanodevices, fabricated by various
lithography approaches (other than FIBID/FEBID).

The effect has also been observed in W-C nanowires fabricated by Ga+ FIBID [141].
The application of an increasing side-gate voltage to a 2.7 µm-long, 45 nm-wide W-C
nanowire is found to progressively reduce its critical current, down to a full suppression
of the superconducting state at a comparatively low voltage of 3 V (Figure 7). These
experiments have added FIBID to the list of nanopatterning techniques suitable for the
fabrication of devices in which such a phenomenon may be observed.

Figure 7. (a) Artificially colored SEM image of a W-C nanowire placed between two gate electrodes.
(b) Critical current dependence of the nanowire with the side-gate voltage. Reprinted from [141],
under CC BY license.

A complete and fully accepted microscopical justification for the occurrence of the
phenomenon is, at the time of writing, still lacking. Reports on the observation of the
effect have stirred up discussion on the matter with mainly two proposed (and competing)
hypotheses: an electrostatic-field effect akin to that characteristic to semiconductors [142–145],
and the injection of energetic electrons from the gate electrodes, which trigger the formation
of quasiparticles which in turn are responsible for the transition to the normal state [146–148].
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The more recent experiments trend towards highly tailored approaches to rule out or
confirm some of the hypotheses, for which the FIBID capability of at-will patterning might
prove of use in the near future.

3.4. Fabrication of SQUIDs

The aforementioned proximity effect occurring in superconductor-normal metal-
superconductor (SNS) heterostructures represents a special case of a Josephson Junction
(JJ) [149]. First described in a Superconductor-Insulator-Superconductor (SIS) heterostruc-
ture, a phase sensitive superconducting tunnel current is able to pass such an insulating
barrier. The same effect was later found in SNS junctions [150] as well as in constrictions
in the superconductor, i.e., Dayem Bridges (DBs) [151]. An intriguing application of the
Josephson effect is its usage in Superconducting Quantum Interference Devices (SQUIDs), i.e.,
superconducting magnetic field sensors with a high magnetic field sensitivity.

SQUIDs consist of a superconducting ring, interrupted by two JJs in parallel. An
injected current splits into two Josephson currents running through either of the JJs. The
flux of an external magnetic field is repelled from the superconductor and focused into
the ring in integer multiples of the magnetic flux quantum, Φ0. The flux quantization is
ensured by the induction of a circular current in the SQUID loop, supporting or opposing
the flux to an integer multiple of Φ0. This results in a periodic modulation of the critical
current, Ic in dependence of the magnetic flux with a period of Φ0. In turn, the modulation
of the critical current results in a sinusoidal voltage drop across the structure upon injection
of a constant bias current Ib ∼ Ic, thus forming a sensitive flux-voltage-transducer. For a
comprehensive review of the working principle of a SQUID please refer to [152].

It was long found that the sensitivity scales reciprocally with the inductance, which can
in turn be reduced by reducing the size of these devices, which lead to the development of
various techniques for the fabrication of nanoSQUIDs [153–156]. A comprehensive review
on the recent advancements in nanoSQUIDs can be found in [157].

Recently, Blom et al. reported the fabrication of SNS-JJs with a junction length of
160 nm from W-C by means of FEBID (Figure 8a) [79]. The structures exhibit Shapiro
steps in the current versus voltage characteristics upon microwave irradiation of 6.4 GHz
(Figure 8b) as well as an Ic(B) dependence resembling a Fraunhofer diffraction pattern,
as expected for a single JJ. In the structure, the superconducting part is deposited using a
high electron beam current, whereas the normal conducting region results from irradiation
with a low electron beam current. Contrary to conventional methods, e.g., Electron Beam
Lithography (EBL), the entire structure is directly written in a single step procedure.

Alternatively, the JJs can be fabricated by FIBID. Recently, our group demonstrated
the single-step fabrication of a SQUID by connecting two large W-C pads of 50 nm thick-
ness with two W-C nanowires (50 nm in width, and 300nm in length) fabricated by Ga+

FIBID [158]. The nanowires form DBs, resulting in two parallel JJs connecting the pads
(Figure 8c). The resulting structure exhibits the expected oscillation of the critical current as
well as the voltage modulation at constant Ib (Figure 8d). The resulting W-C SQUIDs suffer
from a low modulation depth, i.e., a reduced difference between the minimum and the
maximum of Ic, in comparison with SQUIDs fabricated from conventional superconductors
by means of EBL. The low modulation depth is due to the comparably high London pene-
tration depth (λ = 850 nm [141]) of the material, resulting in lower screening of the external
magnetic field inside the superconducting film. In turn, this results in a higher SQUID
inductance, L. Still, the comparably high normal state resistivity of the material yields a
high transfer coefficient dV/dΦ of up to 1300 µV/Φ0, making it a promising candidate for
use as a flux-voltage-transducer.
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Figure 8. (a) SEM image of a W-C SNS-JJ fabricated by a single-step, direct write FEBID process. The
superconducting leads (red) are deposited with a high electron beam current whereas the normal
conducting part (purple) is deposited with a low electron beam current. Yellow represents the Au
leads. (b) The current voltage characteristics of the SNS-JJ exhibiting the expected Shapiro steps.
Reprinted from [79] with permissions from ACS Publications (https://pubs.acs.org/doi/10.1021/
acsnano.0c03656, accessed on 15 March 2022). Further permissions related to the material excerpted
should be directed to the ACS. (c) SEM image of a W-C DB-nanoSQUID fabricated by Ga+ FIBID and
(d) the corresponding modulation of the critical current Ic. Reprinted from [158].

The use of FEBID/FIBID for the fabrication of nanoSQUIDs is in its infancy and many
parameters are yet to be optimized. However, the technique offers a vast flexibility and
many measures to improve the procedure can be readily implemented in the same single-
step approach. The inductance can be possibly reduced by both a thicker film layer in
the SQUID loop and a reduced inner loop area, possibly resulting in higher modulation
depth and flux sensitivity. In a DB-SQUID, the thickness of the superconducting ring
can hereby be tuned independently from the thickness of the DB, resulting in a higher
difference in the achievable cross-sectional area between the constriction and the SQUID
loop. Furthermore, the effects of a thermal hysteresis commonly found in SNS- and DB-
SQUIDs can be mitigated by a resistive shunt of normal conducting W-C or any other
normal conducting metal for which a precursor is available. If the shunt is placed on
top of the junction, it may also improve the transport of the dissipated heat, further
suppressing the thermal hysteresis. Albeit its high λ, the single-step fabrication method
makes FIBID/FEBID-grown W-C a promising candidate for the fabrication of nanoSQUIDs
due to its high flexibility and resolution.

3.5. Other Applications

The previously mentioned applications have been deemed noteworthy enough to
merit their own section in this review, yet they are far from being the only ones where
FIBID and FEBID finds application for nanopatterning of superconducting devices. Within
the restrictions imposed by the precursor of choice and its associated superconducting
properties, the technique still finds many different applications. Some last examples are
reviewed in this section.

Basset et al. [159] report the usage of He+ FIBID in the fabrication of hybrid Nb/W-C
superconducting microwave resonators, exploiting the advantages of He+ FIBID over
Ga+ FIBID and FEBID (reduced substrate damage and ion implantation, and improved
superconducting properties, respectively). The devices consist of a sputtered Nb thin
film, pre-patterned by means of optical lithography, on top of which a superconducting
W-C nanowire is placed. Exploring two different approaches (lumped resonator and

https://pubs.acs.org/doi/10.1021/acsnano.0c03656
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coplanar waveguide), the authors report appropriate quality factors, large values of kinetic
inductance, and high immunity to external applied magnetic fields, which indicates their
suitability for the study of spin properties in mesoscopic systems.

Martínez-Pérez et al. [160] report the usage of FIBID for repair and modification of
superconducting circuits, combining the know-how of circuit edit developed for FIBID with
the superconducting properties of W-C grown using a Ga+ FIB. The combined approach
of FIB milling and FIBID allowed for the functional modification of a commercial SQUID,
replacing the original wiring with newly-grown superconducting W-C deposits. A super-
conducting Nb device, damaged and rendered inoperable by the effect of an electrostatic
discharge, was successfully repaired, replacing the destroyed superconducting and insu-
lating materials with FIBID-grown W-C and SiO2 (from the tetraethylorthosilicate, TEOS,
precursor material), respectively. In-situ monitoring of the electrical response of the materi-
als is recommended by the authors, to assess the quality of the modifications and potentially
detect any short-circuits appearing from the deposition halo, a thin layer of deposited W-C
whose growth is induced by scattered secondary particles and backscattered ions away
from the irradiation point.

García-Serrano et al. [161] show how the competing deposition and sputtering effects
of FIBID can be exploited to grow a thickness-modulated thin film, whose corrugation
defines a potential landscape that pins vortices. Such a periodic modulation in thickness is
achieved by sequentially scanning the area in a series of evenly-spaced lines: the substrate
undergoes a slight, yet noticeable milling effect along the line through which it is directly
irradiated, with the trench being filled with a thicker amount of material, whereas a thinner
film gets deposited between lines by the effect of the secondary electrons. The two effects
define a continuous film with regular variation of thickness. Owing to the high sensibility
that vortices have to minute changes in the film thickness, when the periodicity of the
corrugation matches the vortex density imposed by an external magnetic field (a mode) [162],
vortices tend to remain in their equilibrium positions even under the effect of an externally
applied current. Such an effect is experimentally detected through local minima in the
magneto-resistance of the film, that would otherwise be higher as unpinned vortices drift
along the material. This application exemplifies how side effects of the growth procedure
(even those that are potentially unwanted) may find a practical use if the deposition
conditions are adjusted accordingly.

As discussed in Section 3.2.3, Dobrovolskiy et al. [125] demonstrated that NbC mi-
crostrips fabricated by Ga+ FIBID host ultra-fast vortex motion, which points towards
their potential applicability as single-photon detectors. Conventionally, these devices have
been designed as narrow (50 nm to 100 nm), meandering nanostripes, with the reduced
width being a requirement to ensure the single-photon nature of the sensor and to main-
tain an adequate sensing efficiency [15]. However, more recent studies indicate that the
current density plays a more fundamental role in determining such detection factors [163],
therefore loosening the small-width condition that was classically required. As such, the
wider microstripes nanopatterned by FIBID do satisfy the requirements for fast detec-
tion of individual photons, with the material therefore representing a strong candidate
for its fabrication. The authors also remark the possibility of combining the ion-induced
growth with the deposition of insulating materials via FEBID to design other advanced
functional devices using this material, including superconductor/quantum layered lattices
and photonic crystals.

4. Conclusions and Outlook

In this review, the fundamentals of focused ion/electron beam induced deposition
and their application to the nanopatterning of superconducting materials have been pre-
sented. Both techniques, whose applicability for this purpose is restricted to the availability
of a suitable precursor, have been reported to yield several superconducting materials
containing different elements.
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In the case of FIBID, W-C deposited with a Ga+ FIB represents the main source of ref-
erences in the literature, with recent reports being published on its in-plane and 3D growth
using He+ ions instead. Other superconducting materials grown using FIBID are nio-
bium, molybdenum, and carbon. On the other hand, reports on FEBID of superconducting
materials include tungsten, molybdenum, and lead.

Several specific applications have been discussed here, including the superconductivity
proximity effect induced by W-C deposits in different materials, the different approaches
for the investigation of vortex dynamics in W-C and Nb, including STS and electrical
characterization-based approaches, the possibility of tuning the critical current using an
external gating voltage, and the utilization of the technique for the fabrication of functional
nanoSQUIDs for magnetic sensing (Figure 9).

Figure 9. Summary of selected reported phenomena observed in Ga+ FIBID-grown W-C nanos-
tructures outlined in this review: (a) Superconducting proximity effect (reprinted from [99], with
permissions from AIP Publishing) (b) Non-local vortex transport, (c) Electric field-induced critical
current modulation, and (d) SQUID nanofabrication (reprinted from [158]).

Overall, this review will have hopefully illustrated the wide range of applicability
and potential that the single-step deposition procedures based on irradiation with an FIB
and an FEB offer for the research community. With ongoing efforts towards different ion
sources and novel precursors, the way is paved towards new and exciting developments in
the near future.
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