000118033 001__ 118033
000118033 005__ 20240319081002.0
000118033 0247_ $$2doi$$a10.1016/j.patcog.2022.108740
000118033 0248_ $$2sideral$$a128708
000118033 037__ $$aART-2022-128708
000118033 041__ $$aeng
000118033 100__ $$0(orcid)0000-0003-2674-4844$$aBerenguel-Baeta, B.$$uUniversidad de Zaragoza
000118033 245__ $$aAtlanta scaled layouts from non-central panoramas
000118033 260__ $$c2022
000118033 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118033 5203_ $$aIn this work we present a novel approach for 3D layout recovery of indoor environments using a non-central acquisition system. From a single non-central panorama, full and scaled 3D lines can be independently recovered by geometry reasoning without additional nor scale assumptions. However, their sensitivity to noise and complex geometric modeling has led these panoramas and required algorithms being little investigated. Our new pipeline aims to extract the boundaries of the structural lines of an indoor environment with a neural network and exploit the properties of non-central projection systems in a new geometrical processing to recover scaled 3D layouts. The results of our experiments show that we improve state-of-the-art methods for layout recovery and line extraction in non-central projection systems. We completely solve the problem both in Manhattan and Atlanta environments, handling occlusions and retrieving the metric scale of the room without extra measurements. As far as the authors’ knowledge goes, our approach is the first work using deep learning on non-central panoramas and recovering scaled layouts from single panoramas.
000118033 536__ $$9info:eu-repo/grantAgreement/ES/AEI-FEDER/RTI2018-096903-B-I00
000118033 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000118033 590__ $$a8.0$$b2022
000118033 592__ $$a2.085$$b2022
000118033 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b30 / 274 = 0.109$$c2022$$dQ1$$eT1
000118033 593__ $$aArtificial Intelligence$$c2022$$dQ1
000118033 591__ $$aCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE$$b25 / 145 = 0.172$$c2022$$dQ1$$eT1
000118033 593__ $$aSoftware$$c2022$$dQ1
000118033 593__ $$aSignal Processing$$c2022$$dQ1
000118033 593__ $$aComputer Vision and Pattern Recognition$$c2022$$dQ1
000118033 594__ $$a13.9$$b2022
000118033 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118033 700__ $$0(orcid)0000-0002-8479-1748$$aBermudez-Cameo, J.$$uUniversidad de Zaragoza
000118033 700__ $$0(orcid)0000-0001-5209-2267$$aGuerrero, J.J.$$uUniversidad de Zaragoza
000118033 7102_ $$15007$$2520$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ingen.Sistemas y Automát.
000118033 773__ $$g129 (2022), 108740 [13 pp.]$$pPattern recogn.$$tPattern Recognition$$x0031-3203
000118033 8564_ $$s3413475$$uhttps://zaguan.unizar.es/record/118033/files/texto_completo.pdf$$yVersión publicada
000118033 8564_ $$s2721398$$uhttps://zaguan.unizar.es/record/118033/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118033 909CO $$ooai:zaguan.unizar.es:118033$$particulos$$pdriver
000118033 951__ $$a2024-03-18-14:13:36
000118033 980__ $$aARTICLE