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Background: Colorectal cancer (CRC) is a heterogeneous disease with variable
mutational profile and tumour microenvironment composition that influence tumour
progression and response to treatment. While chemoresistant and poorly immunogenic
CRC remains a challenge, the development of new strategies guided by biomarkers could
help stratify and treat patients. Allogeneic NK cell transfer emerges as an alternative
against chemoresistant and poorly immunogenic CRC.

Methods: NK cell-related immunological markers were analysed by transcriptomics and
immunohistochemistry in human CRC samples and correlated with tumour progression
and overall survival. The anti-tumour ability of expanded allogeneic NK cells using a
protocol combining cytokines and feeder cells was analysed in vitro and in vivo and
correlated with CRC mutational status and the expression of ligands for immune
checkpoint (IC) receptors regulating NK cell activity.

Results: HLA-I downmodulation and NK cell infiltration correlated with better overall
survival in patients with a low-stage (II) microsatellite instability-high (MSI-H) CRC,
suggesting a role of HLA-I as a prognosis biomarker and a potential benefit of NK cell
immunotherapy. Activated allogeneic NK cells were able to eliminate CRC cultures
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without PD-1 and TIM-3 restriction but were affected by HLA-I expression. In vivo
experiments confirmed the efficacy of the therapy against both HLA+ and HLA− CRC cell
lines. Concomitant administration of pembrolizumab failed to improve tumour control.

Conclusions: Our results reveal an immunological profile of CRC tumours in which
immunogenicity (MSI-H) and immune evasion mechanisms (HLA downmodulation)
favour NK cell immunosurveillance at early disease stages. Accordingly, we have shown
that allogeneic NK cell therapy can target tumours expressing mutations conferring poor
prognosis regardless of the expression of T cell-related inhibitory IC ligands. Overall, this
study provides a rationale for a new potential basis for CRC stratification and NK cell-
based therapy.
Keywords: colorectal cancer, cancer biomarker, NK cell immunotherapy, tumour immune microenvironment, immune
checkpoints, HLA-I
INTRODUCTION

Immunotherapy has emerged as a new strategy in cancer
treatment, with outstanding results after the introduction of
immune checkpoint inhibitors (ICIs) (1). However, the global
response rate to ICIs is relatively low, as their efficacy seems to be
limited to immunogenic tumours, defined by their mutational
burden and neoantigen expression, as well as the degree of
immune infiltration (2). This limitation is exemplified by
colorectal cancer (CRC), the third most common cancer and
the second leading cause of cancer-related deaths. Only about
10%–20% of CRC tumours that present microsatellite instability
(MSI) have good response rates (3).

T cells represent the main target population for ICIs.
Therefore, sensitivity to ICIs has been associated with HLA-I
and HLA-II expression on tumours and antigen-presenting cells
(APCs) (4, 5). However, downregulation of these molecules is a
common mechanism of immune evasion (6), albeit its
correlation with tumour prognosis is not clear yet (7). For
instance, NK cell infiltration has been associated with a lower
risk of disease relapse in CRC (8). As a safeguard for T-cell
function, NK cells control tumours that have reduced HLA-I
expression and provide an activating balance of signals through
surface receptors (9) . Accordingly , NK cel l-based
immunotherapy is a promising alternative to conventional
treatments and/or to the new immunotherapeutics based on T-
cell activity.

Allogeneic adoptive NK cell transfer has been studied as a
potential treatment for haematological malignancies and solid
tumours over the last decades (10, 11). Although clinical trials
have shown promising results against haematological
malignancies (10, 12), its efficacy against solid tumours is
controversial because of the need for migration and infiltration
into a three-dimensional (3D) architecture (13, 14). Also,
immunosuppressive mechanisms (i.e., HLA-I overexpression,
TGF-b release, and the polarisation of tumour-associated
macrophages) might negatively influence NK cell activity (15).
As for the main immune checkpoints (ICs) involved in T-cell
regulation such as CTLA-4, PD-1, LAG-3, or TIM-3, their role in
tiersin.org 2
regulating the anti-tumour ability of NK cells is not yet properly
understood (16). Therefore, while the mechanism by which NK
cells contribute to the efficacy of ICIs in cancer treatment is
under evaluation (17–20), preliminary studies suggest that anti-
tumoural activity of “healthy”NK cells might not be restricted by
T cell-related ICs commonly expressed in the tumour
microenvironment (TME). Thus, the role of these emergent
ICs in the context of adoptive in vitro expanded NK cell
transfer is still an important question to be addressed to
optimise the anti-tumoural potential of NK cells to treat solid
cancers like CRC.

CRC is a heterogeneous disease with challenges in therapy at
both advanced and early stages. For the former, mutations in the
KRAS/BRAF and PI3K/AKT pathways are commonly
responsible for treatment failure and relapse after approved
therapy treatment (21). For the latter, the use of adjuvant
chemotherapy is controversial, as it has shown little benefit on
overall survival. This is likely due to the use of traditional staging
systems, which do not incorporate the effects of disease
heterogeneity and the host immune response (22, 23). Further
classification into different subtypes would allow us to better
understand the mechanisms that determine clinical behaviour
and to define personalised treatments (24). For instance,
sporadic CRC can be classified into two types according to
their genomic status and mutation abundance due to
mismatch repair gene inactivation: microsatellite stable (MSS)
and MSI tumours (25). In this line, a new classification of CRC
tumours defined as consensus molecular subtype (CMS) was
recently proposed (24). This classification considers the presence
of specific molecular determinants in four main subtypes
(CMS1-4). Each subtype differs in the immunological
environment, survival prognosis, and response to therapy.
While CMS2 and CMS3 tumours are poorly immunogenic,
CMS1 and CMS4 differ in the type of immune infiltration.
CMS1 tumours tend to accumulate a high number of
mutations due to MSI status and attract immune effector cells,
whereas CMS4 tumours exhibit an immunosuppressive TME
with stromal infiltration (26). Despite that immunogenic
tumours are susceptible to ICI therapies (3, 26), different
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immune evasion mechanisms such as HLA-I downmodulation,
mutations in b2-microglobulin, loss-of-function mutations in
JAK1/2, or WNT signalling activation can lead to acquired
resistance to ICIs (27).

This landscape reveals new features of the CRC TME that
influence disease progression and response to conventional
treatments. This opens a niche for the implementation of novel
therapeutic strategies where adoptive allogeneic NK cell therapy
could provide positive results. Using transcriptomics and
immunohistochemistry (IHC) data in a large cohort of CRC
patients, we demonstrate a positive correlation between HLA-A
downmodulation and survival in early-stage MSI tumours,
which is associated with NK cell infiltration. Given this
potentially protective role of NK cells, we have analysed the in
vitro and in vivo efficacy of expanded allogeneic NK cells to
eliminate CRC cells expressing mutations conferring
chemoresistance and bad prognosis, as well as the effect of ICs
on the anti-tumour ability of NK cells, as a basis for
implementing allogenic adoptive NK cell transfer against
difficult-to-treat CRC tumours.
MATERIAL AND METHODS

Ethical Statement
Human blood samples from healthy donors (HDs) were provided
by the Blood and Tissue Bank of Aragón, integrated into the
Spanish National Biobanks Network (PT20/00112) and processed
following the Ethics and Scientific Committees procedures.

Animal experimental procedures were conducted according
to the Federation of European Laboratory Animal Science
Associations (FELASA). Protocols were approved by the
University of Zaragoza’s Advisory Ethics Commission for
Animal Research (P.I 47/18).

Colonomics series and CRC samples were used in IHC,
written informed consent was obtained from all patients, and
the Institution’s Ethics Committee authorised the protocol.

Human Colorectal Cancer Samples
Our series, hereafter named Colonomics (CLX), includes gene
expression data from 98 paired normal and stage II MSS tumour
patients diagnosed at Bellvitge University Hospital (Colonomics
project: www.colonomics.org; NCBI BioProject PRJNA188510).
None of the patients received chemotherapy before the collection
of the sample, and all of them have had a minimum follow-up of
3 years. In addition, public transcriptomic data from GSE39582
(n = 421), GSE13294 (n = 121), GSE14333 (n = 185), GSE17536
(n = 111), and The Cancer Genome Atlas (TCGA) (n = 143)
series have been used. Their clinicopathologic features are
described in Supplementary Table 1.

Also, for IHC staining, the “MSI series” comprising 36
patients with MSI colon cancer diagnosed at stage II at
Bellvitge University Hospital was used. These samples were
provided by the Biobank HUB-ICO-IDIBELL (PT17/0015/
0024), integrated into the Spanish Biobank Network, and they
were processed following standard operating procedures with the
Frontiers in Immunology | www.frontiersin.org 3
appropriate approval of the Ethics and Scientific Committees.
Written informed consent was obtained from all patients, and
the Institution’s Ethics Committee authorised the protocol.

Consensus Molecular Subtype
Classification and Microsatellite Instability
Imputation
With the use of gene expression data, consensus gene expression
signatures have been used to classify tumour samples into four
different categories of CRC (CMS1, CMS2, CMS3 and CMS4) by
applying the library CMS classifier in R. This method uses a
Random Forest Approach to categorise a group of samples into
different clusters of tumours.

Three out of the gene expression datasets had no information
about the MSI/MSS status of the samples. Thus, missing MSI/
MSS values were imputed using gene expression data. Datasets
with MSI/MSS information were used to create a prediction
model. The 50 most significant genes from each dataset were
selected as predictors in the classification model. This list of
genes was used in a classification model based on cross-
validation (10-fold) based on K Nearest Neighbour (k = 5) to
predict missing MSI/MSS values.

HLA Immunohistochemistry Staining
Tissue samples of Colonomics series were cut with a microtome
(4 µm) and deposited on adhesion slides. These sections were
incubated for 15 min at 60°C to melt the paraffin, whereas the MSI
series was incubated for 20 min because as they had been cut for a
long time, the slides were immersed in paraffin for better
preservation. After that, slides were deparaffinised. An indirect
IHC technique was used. For antigen retrieval, the slides were
boiled at 110°C in TRIS/EDTA buffer (Target Retrieval Solution,
pH 9; Dako, Carpinteria, CA, USA) inside the Decloaking
Chamber™ NxGen (BioCare Medical, Concord, CA, USA).
Endogenous peroxidase was blocked for 5 min with 2% H2O2

followed by block buffer with 6% donkey serum. Thereafter, the
primary antibody was incubated overnight at 4°C. The antibody
used was rabbit anti-human HLA-A (1:500 dilutions; EP1395Y,
GeneTex, Irvine, CA, USA). Excess of the primary antibody was
washed with TBS 1× pH 7.4. For detection, slides were incubated
with EnVision™+ Dual Link System-HRP (Dako) for 30 min at
room temperature. The reaction was visualised using DAB
(diluted in an imidazole-HCl buffer; DAB+ Kit, Dako) for 1 min
10 s. Finally, sections were counterstained with haematoxylin,
dehydrated in increasing concentrations of ethanol, cleared with
xylene, and mounted with Cytoseal™ 60 (Thermo Fisher
Scientific, Waltham, MA, USA). Negative control was performed
in the same conditions except for primary antibody absence. The
stained slides were evaluated using a Leica DM600 microscope.
Following the pathologist’s instructions (XS), a score of 1 to −2
was assigned for each sample, taking into account the intensity of
HLA-A staining between tumour cells and stromal cells: i) 1 when
the tumour cell was more intense than the stroma; ii) 0 when
tumour cell and stroma had the same intensity; iii) −1 when
tumour cell was less intense than the stroma; and iv) −2
when tumour cell was completely negative.
June 2022 | Volume 13 | Article 890836
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Survival Analysis
HLA-A gene expression data were used to stratify patients
between “High” and “Low” categories. The median value by
the study was used as a cutoff. Disease-free survival (DFS) was
plotted using a Kaplan–Meier curve and the Log-rank test was
used to compare survival distributions between groups. Cox
proportional hazards regression models were fitted to evaluate
the prognostic value of HLA-A expression, adjusting by sex, age,
and stromal infiltration and stratifying by study. Cox regression
with Firth’s Personalized Likelihood was used in non-
convergent models.

Immune Cell Infiltration
To eliminate the batch effect, gene expression data from the 6
datasets were adjusted using the ComBat function from the R
package SVA (28). The resulting expression matrix was used to
infer the immune and stromal infiltrate. The R package
microenvironment cell populations-counter (MCP-counter)
(29) was used to quantify the relative fraction of a total of nine
cell types, including seven immune and two stromal cell types.
Moreover, a list of 18 gene markers from the R package
Consensus TME (30) was used to perform enrichment analysis
using the gene set variation analysis (GSVA) method (31). All
comparisons between continuous variables were analysed using
non-parametric tests (Wilcoxon test and Kruskal–Wallis test).
For all tests applied, differences were considered statistically
significant when the p-value <0.05. For the categorisation of
HLA-A gene expression into “High” and “Low” groups, the
median value was used as a cutoff.

Cell Lines and Cultures
A panel of CRC cell lines, as well as LCL-EBV+ feeder cells, were
cultured in basal medium (Supplementary Table 2)
supplemented with 10% foetal bovine serum (FBS) (Sigma, St.
Louis, MO, USA), 2 mM of ultraglutamine (Gibco, Grand Island,
NY, USA), and 100 UI/ml of penicillin–0.1 mg/ml of
streptomycin (Sigma-Aldrich). Cells were incubated at 37°C
and 5% CO2.

Three-dimensional cultures of CRC cell lines were generated
by the hanging drop method using methylcellulose, as described
(32). Briefly, 25-µl droplets containing 1,000 cells/droplet were
placed on the lid of a Petri dish filled with sterile water. The
percentage of methylcellulose solution (Methocell) in the medium
and the incubation time were adjusted for each cell line to favour
the formation of spheroids (Supplementary Table 2).

Detachment of cells from plate surface and spheroid
disaggregation was induced using Trypsin-EDTA (Sigma-
Aldrich). Prior incubation of the spheroids in basal medium
supplemented with 2 mM of EDTA promoted cell detachment
and reduced the exposure time to Trypsin.

NK Cell Activation
Peripheral blood mononuclear cells (PBMCs) from HDs were
obtained by Ficoll gradient centrifugation (Sigma, Histopaque-
1077). For NK cell in vitro activation, PBMCs were cultured in
RPMI-1640 medium (Gibco) supplemented with 10% FBS
Frontiers in Immunology | www.frontiersin.org 4
(Sigma), 2 mM of ultraglutamine (Gibco), with the LCL-EBV+
R69 feeder cell line, at a 10:1 ratio (PBMCs:feeder cells) for 5
days, as described (33).

In order to establish a protocol to generate large numbers of
NK cells, our previously developed activation protocol using
LCL-R69+ as feeder cells was compared with the combination of
these feeder cells and interleukins (100 UI/ml of IL-2, Miltenyi,
Bergisch Gladbach, Germany; and 5 ng/ml of IL-15, Miltenyi).
Cultures were maintained for 21 days, and stimuli and medium
were renewed as explained: cell cultures were half diluted at day 7
of expansion, adding feeder cells and ILs according to PBMC
number and final volume. From that time, and every 3 days,
PBMC density was adjusted to 106 cells/ml, and corresponding
stimuli were incorporated. NK cell expansion rate was calculated
by considering the number of PBMCs in culture and the
percentage of NK cells at the beginning of the expansion and
on days 7, 14, and 21 (analysed by flow cytometry).

To expand NK cells in the context of adoptive cell transfer in
the mouse model, CD3+ cells were depleted from PBMCs before
NK cell expansion. The combination of feeder cells and ILs was
selected as the preferred stimuli to maintain the culture until the
administration time. In all the experiments, NK cells were
expanded for at least 14 days.

Fluorescence-Activated Cell Sorting
Characterisation
The phenotypic characterisation of NK cell receptors and their
ligands in the CRC cell lines was analysed by flow cytometry
(Beckman Gallios, Brea, CA, USA). Staining with labelled
monoclonal antibodies was performed in phosphate-buffered
saline (PBS) with 5% foetal calf serum (FCS) and 0.1% sodium
azide, for 20 min at 4°C. Cells were then washed with PBS and
fixed in 1% paraformaldehyde (PFA).

The following antibodies were used to label cell membrane
receptors on the PBMC suspensions: CD3-FITC (clone BW264/
56; Miltenyi), CD3-PerCP (clone BW264/56; Miltenyi), CD3-
VioGreen (clone BW264/56; Miltenyi), CD56-PE (clone AF12-
7H3; Miltenyi), CD56-APC (clone AF12-7H3; Miltenyi), CD56-
PerCPVio700 (clone REA196; Miltenyi), CD16-FICT (clone
REA423; Miltenyi), CD16-APC (clone VEP13; Miltenyi),
NKG2A-PE (clone Z199; Beckman Coulter), NKp44-PE (clone
2.29; Miltenyi), CXCR3-PE (clone REA232; Miltenyi), PD-1-
FITC (clone PD1.3.1.2; Miltenyi), TIM-3-APC (clone F38-2E2;
Miltenyi), LAG-3-APC (REA351; Miltenyi), and CTLA-4-APC
(clone BNI3; Miltenyi).

The expression of NK cell ligands on CRC cell lines was
analysed in cell suspensions from both monolayer and spheroid
cultures. The following antibodies were used for cell surface
staining: ICAM-1-APC (clone HA58; BD, San Jose, CA, USA),
HLA-ABC-FITC (clone W6/32; eBioscience, San Diego, CA,
USA), HLA-E-PE (clone REA1031; Miltenyi), HLA-G-
PerCPVio700 (clone 87G; Miltenyi), HLA-II-APCVio700
(REA332; Miltenyi), MICA/B-VioBright515 (clone REA1076;
Miltenyi), PVR-PE (clone PV404.19; Miltenyi), Nectin-2-PE
(clone R2.525; Miltenyi), ULBP-1-Alexa Fluor 405 (clone
170818; R&D, Minneapolis, MN, USA), ULBP-2,5,6-Alexa
June 2022 | Volume 13 | Article 890836
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Fluor 405 (clone 165903; R&D), B7H6-Alexa Fluor 647 (clone
875002; R&D), PD-L1-APC (clone MIH1; eBioscience), PD-L2-
PE (clone MIH18; Miltenyi), CEACAM-1-PeVio770 (clone
TET2; Miltenyi), and Galectin-9-PE (clone REA435; Miltenyi).
Galectin-9 was also analysed intracellularly, after fixation with
4% PFA for 15 min and subsequent permeabilisation with 1%
saponin for 5 min.

Moreover, Annexin-V-FITC (Immunostep, Salamanca,
Spain) was used to characterise phosphatidylserine (PS) basal
level expression on the surface of CRC cells. In this case, Annexin
Binding Buffer was used for cell staining.

NK Cell Purification and Labelling
For in vitro experiments, activated NK cells were enriched from
HD PBMCs by CD56-positive immunomagnetic separation
(MACS, Miltenyi). NK cells were then fluorescently labelled
with 3 µM of eFluor670 (eBioscience), following the
manufacturer’s instructions.

For in vivo experiments, NK cells from freshly isolated
PBMCs o f HDs were enr i ched by CD3-nega t i v e
immunomagnetic separation (MACS, Miltenyi) before NK
cell expansion.

Cytotoxicity Assays
Labelled NK cells were incubated with CRC cell lines at different
effector:target (e:t) ratios and times at 37°C. For 2D assays, target
cells were seeded in 96-multiwell flat-bottom plates 24 h prior to
the 4 h of co-culture with NK cells. For 3D assays, 48–72-h-old
formed spheroids were co-cultured with NK cells in 96-multiwell
round-bottom plates for 48 h.

Subsequently, monocellular suspensions of cell cultures were
obtained after Trypsin-EDTA disaggregation, and cell death was
analysed by flow cytometry. Cell death markers, such as PS
translocation and membrane permeabilisation, were monitored
by Annexin-V and 7-Amino-Actinomycin (7-AAD) staining in
the eFluor-negative target cell population.

Checkpoint Blockade Experiments
Blocking monoclonal antibodies were used to analyse the impact
of PD-1 and TIM-3 signalling on the anti-tumour response of
activated NK cells. Considering the direct effect of ICIs on NK
cell receptors, purified NK cells were incubated with 20 µg/ml of
anti-PD1 (pembrolizumab) and/or 20 µg/ml of anti-TIM-3
(clone F382E2; BioLegend, San Diego, CA, USA) for 20 min at
4°C, before the co-culture with target cells. Human IgG1 isotype
(Enzo, Farmingdale, NY, USA) measuring 5 µg/ml was used
as control.

The efficacy of blockade was assessed by flow cytometry. Total
PBMCs were incubated with the blocking antibodies before
staining with the labelled flow cytometry antibody targeting
PD-1 or TIM-3.

NK Cell Transfer in a Xenograft Mouse
Model
NK cells for adoptive cell transfer were obtained by initial
depletion of CD3+ cells followed by an expansion protocol
with the selected combination R69+IL-2+IL-15 for 14–21 days
Frontiers in Immunology | www.frontiersin.org 5
as described above. Enrichment of NK cells (CD56+CD3−)
during the expansion was monitored by flow cytometry, with a
final purity >85% in each cell culture. A pool of NK cells from 3
different donors was prepared before administration to avoid
perturbations in results depending on HLA-I mismatch with the
cell lines.

NOD-SCID IL2Rgammanull (NSG) mice (female, 8 weeks old)
were purchased from Charles River (Saint-Germain-Nuelles,
France) and were housed in s ter i l e fac i l i t i e s for
immunosuppressed animals at the Centre for Biomedical
Research of Aragon (CIBA).

The HCT-116 cell line was used to establish a xenograft CRC
model. Thus, 106 cells in 50 µl of Dulbecco’s modified Eagle
medium (DMEM) were injected subcutaneously into the right
flank, and mice were randomly divided into 3 groups: control,
early treatment, and late treatment. Tumour development was
analysed by measuring tumour volume (Volume = Width ×
Length × Height) every 2 days.

Early treatment started on day 5 after tumour induction when
tumours reached a volume <50 mm3 but enough to be detected
by palpation. Late treatment started on day 7 post tumour
induction when tumours reached a volume of 50–100 mm3.
Each mouse was administered up to three intraperitoneal (i.p.)
injections of 107 NK cells suspended in 100 µl of RPMI-1640
every 2 days. Treated and control groups received 10 µg/mouse
of human recombinant IL-2.

Further experiments compared the efficacy of NK cell transfer
alone or in combination with the anti-PD-1 monoclonal
antibody pembrolizumab. This time, HCT-116 and DLD-1 cell
lines were used to generate CRC xenograft models as described
above. Mice were then randomly divided into 3 groups before
receiving the therapy with the early treatment regimen: control,
NK cells alone, or NK cells combined with pembrolizumab.
Thus, treated mice received 107 NK cells suspended in 100 µl of
RPMI-1640 and 10 µg of IL-2 alone or in combination with 300
µg pembrolizumab/mouse. The control group receive only the
RPMI-1640 vehicle with IL-2 and pembrolizumab.

Mice were monitored every 2 days and were sacrificed when
they reached human endpoints as established by the Animal
Ethics Committee (Volume larger than 1,500 mm3).
Statistical Analysis of Target Cell
Sensitivity to NK Cells
Correlation analyses were performed using R software. The
correlation between NK cell ligand expression and the sensitivity
of CRC cell lines to NK cells was analysed at low (1:1) and high (6:1)
e:t ratios, in both 2D and 3D models. The non-parametric
Spearman’s test was used due to the limited sample size and the
inclusion of some variables that do not fit the normal distribution
(Shapiro’s test). The correlation coefficient (r) and p-value were
determined for each ligand and used to plot a correlation graph
matrix. A simple regression model was then fitted with ligand
expression level and percentage of cell death for each model and
ratio. Ligands with a significant p-value were represented in a
correlation plot. In addition, stepwise multivariate regression
analysis tested the most significant ligands for univariate analysis.
June 2022 | Volume 13 | Article 890836
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GraphPad Prism (v5.0) software was used for further analysis.
Depending on the characteristics of the experimental groups,
Student’s t-test, one-way ANOVA, or two-way ANOVA was
used as indicated. Survival curves were compared using the Log-
rank test (Mantel–Cox). Statistical significance was always set at
p < 0.05.
RESULTS

Decreased HLA Expression Provides a
Better Prognosis in Early Stages of
Microsatellite Instability Colorectal Cancer
and Correlates With NK Cell Infiltration
Immune-related markers were analysed in samples from CRC
patients. We found a better prognosis for patients with MSI stage
II CRC, but not MSS, who presented HLA-A mRNA
downregulation (Figure 1A). This effect was lost at stage III (late
stage; Figure 1A), which could be explained by tumour
immunosuppressive mechanisms responsible for cancer
progression and immune failure. Indeed, as indicated below, MSI
tumours presented increased NK cell infiltration that correlated
with HLA expression in low-stage tumours, suggesting that
immunological status as well as advanced stages restrict NK cell
infiltration and, thus, their protective role in CRC development.
Frontiers in Immunology | www.frontiersin.org 6
Therefore, we stratified CRC samples by CMS and found that HLA-
A mRNA downregulation is a good prognostic biomarker only in
stage II CMS1 samples (Supplementary Figure 1). Again, this effect
did not correlate with a better prognosis in any of the CMS
subgroups at stage III.

Similar results were obtained for the other MHC class I genes
HLA-B and HLA-C (Supplementary Figure 2), suggesting that
the immune system plays a role in controlling hypermutated
MSI/CMS1 tumours in the early stages of the disease.

Since the analysis of HLA mRNA expression does not always
predict the level of protein expression, we decided to confirm our
results by analysing the expression of HLA-I at the protein level
by IHC in order to validate the association between HLA
downmodulation and better survival in stage II MSI patients.
To this end, 134 samples from stage II CRC patients were
analysed by IHC. All nucleated cells showed positive HLA-A
staining (Figure 1B), which indicated the reliability of the
results. Two of the samples were excluded for further analysis
since they were found to be negative for the presence of tumour
cells. Total loss of HLA-A was observed in 14 CRC samples
(10.6%), partial loss was observed in 7 samples (5.3%), and a
mixed positive and negative expression of HLA-A was identified
in 3 samples (Figures 1B, C).

As expected, due to HLA-A loss and MSI status association,
significant differences were observed across the CMS subtypes
A

B

DC

FIGURE 1 | Characterisation of HLA-A expression as a prognostic biomarker in CRC patients. (A) Kaplan–Meier curves divided into high and low HLA-A categories
in different CRC subtypes according to early/late stage and MSS/MSI status stratification. To define low (green line) and high (red line) HLA-A categories, the median
gene expression was used as cutoff, in each dataset. p-Values were calculated using the binary Log-rank test and by fitting a Cox proportional hazards regression
model stratifying by study and adjusted for age, sex, and stroma. (B) IHC staining of representative slides of tumours losing (total and partial) HLA expression (HLA−),
tumours with HLA on surface (HLA+) and with a mixed phenotype (only part of the tumour with HLA lost). (C) Bar diagram showing the distribution of HLA− (red),
HLA mix (blue), and HLA+ (green) across the 4 CMS subtypes. (D) Kaplan–Meier curves divided into HLA− (red) and HLA+ (blue) tumours in stage II MSI patients.
CRC, colorectal cancer; MSS, microsatellite stable; MSI, microsatellite instability; IHC, immunohistochemistry; CMS, consensus molecular subtype.
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(p-value <0.001, Figure 1C). Only CMS1 tumours as well as one
CMS3 tumour lost HLA-A expression. Of note, the mixed HLA-
A score was only represented by CMS1 and CMS3 subtypes. As
shown by the Kaplan–Meier curves (Figure 1D), a clear
association between HLA-A loss and survival was observed.
None of the 21 patients in the HLA-A-negative group (20 MSI
patients) experienced disease relapse (p-value = 0.026). In this
case, the mixed phenotype was excluded from the analysis due to
the small number of samples.

We next wondered whether differences in immune cell
infiltration could explain this phenotype. Figure 2 shows
differences in macrophages, neutrophils, NK cells, and T cells
in MSI vs. MSS tumours and between stages II and III, and also in
Frontiers in Immunology | www.frontiersin.org 7
B cells between stage II and stage III. As expected, MSI tumours
were more infiltrated than MSS. Similar results were obtained
when a different tool was used (Supplementary Figure 3).
Therefore, we confirmed that CMS1 and CMS4 subtypes had
higher levels of immune and stromal infiltration than CMS2-3
subtypes in all our series. Consistent with all datasets, CMS4
samples had more fibroblasts and endothelial cells
(Supplementary Figure 3).

We hypothesise that tumours lacking HLA, and therefore
exhibiting a self-missing phenotype, could be recognised by NK
cells. We found no differences between stage II and stage III MSI
tumours in terms of NK infiltration based on a gene signature
score (Figure 2). However, as shown in Figure 3, detection of the
FIGURE 2 | Box plots showing stromal and immune infiltration across CRC patients stratified by stage and MSS/MSI status. Stromal (CAFs and endothelial) and
immune (B cells, dendritic cells, macrophages/monocytes, neutrophils, NK cells, T cells, and CD8+ T cells) infiltration scores were calculated using microenvironment
cell populations-counter (MCP-counter) tool. Differences were assessed using non-parametric Kruskal–Wallis and Tukey’s tests (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001;
****p ≤ 0. 0001). CAFs, cancer-associated fibroblasts; NK, natural killer; CRC, colorectal cancer; MSS, microsatellite stable; MSI, microsatellite instability.
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NK cell marker, NKp46/NCR1, which to date is the most reliable
marker for NK cell detection, revealed higher NK cell levels in
stage II MSI tumours without HLA expression. Meanwhile, no
differences in NKp46 expression were found between low or high
HLA expression in MSI stage III tumours or MSS tumours at any
stage. These results suggest that NK cells play a role in
controlling immune-infiltrated HLA-deficient tumours before
they progress and that they might be influenced by different
immunosuppressive mechanisms. Thus, adoptive NK cell
transfer could be considered a potential treatment for those
HLA-I-negative tumours that are refractory to ICI-based
immunotherapy and might play a role in eliminating less
immunogenic tumours.

Activated NK Cells Are Able to Kill
Colorectal Cancer Cell Lines That
Correlate With HLA-I Expression
To study the ability of allogeneic activated NK cells to eliminate
different types of CRC, we established a CRC cell line collection
with different mutational statuses on the EGFR pathway (Ras/
Raf; PI3K/AKT) and p53 (Supplementary Table 3). Our aim
was to have a representative model of the molecular
heterogeneity of CRC and to analyse the suitability of 3D
spheroid models to mimic the in vivo CRC architecture
(Figure 4, Supplementary Figure 4). We analysed ligands for
both conventional NK cell checkpoints (Figure 4A), which have
Frontiers in Immunology | www.frontiersin.org 8
been shown to affect NK cell activity, and emerging checkpoints
(Figure 4B), which are known to modulate T-cell activity but
whose effects on NK cells have not been well established yet (16).
Remarkably, the Colo201 and Colo205 cell lines expressed low
levels of ICAM-1, an essential molecule for immunological
synapse formation. In addition, DLD-1, LoVo, and SKCO-15
cell lines lack HLA-ABC, the major inhibitory molecule for NK
cells. Other ligands showed a variable expression pattern in the
different cell lines. However, notably, 3D conformation was
associated with changes in the expression of these molecules,
which could affect the cytotoxicity of NK cells. Although the
fluctuation pattern of the ligands depended on the cell line,
ICAM-1, HLA-ABC, and PS were among the ligands with a
decreased expression in 3D conditions, whereas MICA/B, PDL-
1, and CEACAM-1 were increased in the 3D model
(Figures 4A, B).

To determine whether these changes had an impact on the
sensitivity of the CRC cell lines to activated NK cells, we performed
cytotoxicity assays at low (1:1) and high (6:1) (e:t) ratios under both
2D and 3D conditions. We used NK cells activated following a
protocol previously established in our group combining the LCL-
EBV+ R69 feeder cell line (33) with cytokines (IL-2 and IL-15) that
promoted NK cell expansion (Supplementary Figure 5). The
population of activated NK (eNK) cells obtained with this
protocol is characterised by a high expression of CD56 and CD16
and a high cytotoxic activity that did not change from day 5 to day
FIGURE 3 | Box plots comparing NKp46 gene expression between low and high HLA-A categories (gene expression median was used as a cutoff) stratifying by
stage and MSI/MSS status. Differences were assessed using non-parametric Wilcoxon test. MSI, microsatellite instability; MSS, microsatellite stable.
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21 of expansion (Supplementary Figure 5). Regarding the
expression of other receptors involved in NK cell activity,
activated NK upregulated NKp44, NKG2A, and CXCR3
receptors, confirming the activated phenotype. Concerning IC
expression, activated NK cells expressed high levels of TIM3;
meanwhile, the level of PD1 and CTLA4 remained low, and
LAG3 expression was induced during the expansion of a
population of NK cells (Supplementary Figure 6).
Frontiers in Immunology | www.frontiersin.org 9
As shown in Figure 4C, the DLD-1 cell line was the most
sensitive to eNK cells in both 2D and 3D cultures, followed by
HCT-116 and HT-29 at a high e:t ratio under 2D conditions.
Remarkably, the results were different in 3D cell cultures, and
both cell lines became resistant when a 3D structure was
formed, with HCT-116 being the most resistant cell line.
These results could be related not only to the expression
level of the different NK cell ligands but also to the spheroid
A

B

D

C

FIGURE 4 | Phenotypic characterisation of CRC cell lines and their correlation with sensitivity to activated NK cells. (A) Expression of ligands for conventional NK cell
checkpoints in CRC cell lines cultured in 2D and 3D conditions. Data are presented as mean ± SEM of at least 4 experiments. Statistical analyses were performed by
t-test. ∗p < 0.05; ∗∗p < 0.01. (B) Expression of ligands for emerging NK cell checkpoints in CRC cell lines cultured in 2D and 3D conditions. Data are presented as
mean ± SEM of at least 4 experiments. Statistical analyses were performed by t-test. ∗p < 0.05; ∗∗p < 0.01. (C) Cytotoxicity of activated NK cells against a panel of
CRC cell lines in both 2D and 3D conditions. Cell death of CRC cells was analysed after 4 h co-culture (2D) or 48 h co-culture (3D) with activated NK cells, at low
(3:1) and high (6:1) e:t ratios, by flow cytometry using Annexin-V/PS staining in the e-Fluor670-negative population. Data are presented as mean ± SEM from at least
4 donors after subtraction of respective controls without effector NK cells. Cell viability without NK cells was always >85%. Statistical analyses were performed by
one-way ANOVA test with Dunnett’s multiple-comparison post-test. ∗∗p < 0.01; ∗∗∗p < 0.001. (D) Correlation between HLA-ABC or HLA-G expression and cell
death induced by activated NK cells in CRC cell lines. A simple regression model was then fitted with ligand expression level and percentage of cell death for both
low and high e:t ratios and 2D and 3D cultures. Plots represent ligands with a significant p-value. ∗p < 0.05. CRC, colorectal cancer.
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compaction. Indeed, the Colo205 cell line was unable to form a
compact spheroid and proved to be one of the most sensitive
cell lines in 3D conditions. Consequently, we performed a
multivariate regression analysis to analyse the correlation
between the ligand expression levels and the sensitivity of
the CRC cell lines to NK cells. A negative correlation was
found between sensitivity to NK cells and the levels of the
inhibitory ligands HLA-ABC and HLA-G (Figure 4D, and
Supplementary Figures 4 and 7). Moreover, this correlation
became significant when the CRC cell lines were cultured in
the 3D model, for both HLA-ABC and HLA-G, demonstrating
the greater robustness of the 3D model to mimic
physiological conditions.

These results indicate that the efficacy of adoptive NK cell
therapy is influenced by HLA-I expression in vitro. Nevertheless,
activated NK cells still showed cytotoxic activity against tumour
cells with high HLA-I expression regardless of the expression of
ligands for ICs or the presence of mutations in various signalling
pathways. This effect is likely due to the use of allogeneic NK
cells, as has been shown previously in haematological tumours
(34), although HLA mismatch was not determined.
Frontiers in Immunology | www.frontiersin.org 10
The Combination of Allogenic eNK Cells
With IL-2 Delay Colorectal Cancer
Xenograft Development In Vivo, Which Is
Not Improved by Including the PD-1
Blocking Antibody Pembrolizumab
Finally, we analysed the efficacy of adoptive NK cell transfer in
vivo. HCT-116 and DLD-1 cell lines were inoculated to generate
a xenograft model. As described above, they respectively
correspond with the most resistant and sensitive cell lines to
NK cell cytotoxicity in 3D cultures. For each experiment, NK
cells from different donors were simultaneously expanded for 2
weeks after CD3+ T-cell depletion (see Material and Methods,
Figure 5A). Then, a pool of NK cells was prepared to reduce the
effect of donor allogenicity. The purity of NK cells was analysed
by flow cytometry before the transfer, with acceptance values
above 85% (Figure 5A).

NSG mice were inoculated with 2 × 106 HCT-116 cells and
distributed into 3 different groups: control, early treatment (5 days
post-inoculation and tumour volume <50 mm3), or late treatment
(7 days post-inoculation and tumour volume 50–100 mm3).
According to the treatment schedule, mice were i.p. inoculated
A

B

FIGURE 5 | Efficacy of adoptive NK cell transfer against CRC tumours in a xenograft model. (A) NK cell expansion protocol for adoptive transfer. PBMCs derived
from six HDs were depleted from the CD3+ population and expanded for 14 days with LCL-EVB+R69 feeder cells (1:10 feeder:NK cells), IL-2 (100 UI/ml), and IL-15
(5 ng/ml). The NK cell purity for each donor was analysed by flow cytometry before preparing a pool of NK cells combining 3 different cell cultures. (B) Efficacy of
activated NK cells against HCT-116 tumours after an early or a late treatment. On day 0, NSG mice were inoculated with 2 × 106 HCT-116 cells. After 5 (early
treatment) or 7 (late treatment) days, mice were i.p. inoculated with vehicle (RPMI and 10 µg/mouse IL-2) or treatment (107 NK cells and 10 µg/mouse IL-2). Tumour
development was monitored over 40 days as described in Material and Methods. Data are presented as mean ± SEM of 10 mice in 2 independent experiments for
control and early treatment groups, and 6 mice in 1 experiment for late treatment group. Statistical analyses to compare tumour volume curves were performed by
two-way ANOVA test with Bonferroni’s post-test. Survival curves were analysed with Log-rank (Mantel–Cox) test. ∗p < 0.05; ∗∗∗p < 0.001. CRC, colorectal cancer;
PBMCs, peripheral blood mononuclear cells; HDs, healthy donors; RPMI, Roswell Park Memorial Institute.
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with vehicle (media and IL-2) or 106 NK cells and IL-2 (Figure 5B).
As shown, a significant delay in tumour growth was observed in the
early treatment group, while the late treatment could not restrain
tumour progression. This was translated into a significantly
prolonged survival for the early treatment group. These results
prove that eNK cells can control tumour development at an early
stage. At late stages, both the tumour volume and tumour-induced
immunosuppressive mechanisms can dampen NK cell function, in
agreement with our observations in CRC patient samples.

One study has previously reported in cancer mouse models that
the efficacy of PD-1/PDL-1 inhibitors partly depends on the
presence of NK cells (17). Although NK cells activated with our
protocol showed low PD-1 expression, it might be possible that PD-
1 expression is regulated by other factors derived from tumour cells
and/or from soluble or cellular components of the TME. Thus, we
analysed the impact of PD-1 blockade on the efficacy of allogeneic
adoptive NK cell transfer in vitro and in vivo. First, as shown in
Supplementary Figure 8A, we confirmed that pembrolizumab
binds to PD-1 as it completely prevented the staining with
Frontiers in Immunology | www.frontiersin.org 11
another fluorescently labelled anti-PD-1 antibody. Next, the
cytotoxicity of activated NK cells in combination with
pembrolizumab was analysed in vitro against HCT-116, HT-29,
and DLD-1 CRC cell lines (Figure 6A), which showed differences in
PD-L1 expression. In any case, the addition of pembrolizumab or
IgG isotype resulted in an increase in NK cell cytotoxicity. As NK
cells expressed high levels of TIM-3, we also tested a TIM-3 blocking
antibody alone or in combination with the anti-PD-1 antibody. As
shown in Supplementary Figure 8B, we were equally able to
confirm that anti-TIM-3 blocking antibodies bound to target cells.
However, TIM-3 blockade alone or in combination with
pembrolizumab did not enhance NK cell cytotoxicity
(Figures 6B, C).

Finally, we analysed the effect of the combination of
allogeneic adoptive eNK cells, IL-2, and pembrolizumab in the
control of tumour growth in HCT-116 and DLD-1 cells. In
contrast to the in vitromodels, eNK cells in combination with IL-
2 significantly and similarly delayed tumour growth in both cell
lines. Furthermore, we did not find better outcomes when
A B

D

C

FIGURE 6 | Combination of activated NK cells and PD-1 and TIM-3 checkpoint blockers against CRC cell lines. (A–C) In vitro cytotoxicity of activated NK cells in
the presence of anti-PD-1 (A), anti-TIM-3 (B), or both antibodies (C). Cell death of CRC cells was analysed after 4 h co-culture (2D) with activated NK cells alone,
with 20 µg/ml of pembrolizumab and/or anti-TIM-3, or 5 µg/ml of IgG isotype, at 0.5:1 (e:t) for DLD-1 or 1:1 (e:t) for HCT-116 or HT-29, by flow cytometry using
Annexin-V/PS staining in the e-Fluor670-negative population. Data are presented as mean ± SEM from at least 3 donors after subtraction of respective controls
without effector NK cells. Cell viability without NK cells was always >85%. Statistical analyses were performed by one-way ANOVA test with Bonferroni’s post-test.
(D) Efficacy of eNK cells, alone or in combination with pembrolizumab, against HCT-116 or DLD-1 xenograft tumours after an early treatment. On day 0, NSG mice
were inoculated with 2 × 106 HCT-116 or DLD-1 cells. After 5 (early treatment), mice were i.p. inoculated with vehicle (RPMI and 10 µg/mouse IL-2), NK cells alone
(107 NK cells and 10 µg/mouse IL-2), or NK cells with 300 µg/mouse pembrolizumab. Data are presented as mean ± SEM of 6 mice in 1 experiment. Statistical
analyses to compare tumour volume curves were performed by two-way ANOVA test with Bonferroni’s post-test. Survival curves were analysed with Log-rank
(Mantel-Cox) test. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. NS, Not Statistically Significant. CRC, colorectal cancer; RPMI, Roswell Park Memorial Institute.
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pembrolizumab was administered together with the eNK cells
(Figure 6D). Strikingly, pembrolizumab reduced the efficacy of
adoptive eNK cells, which suggests that pembrolizumab
dampens NK cell activity or promotes tumour cell growth.

DISCUSSION

Reactivating patient immunity with antibodies targeting T cell-
related ICs is a revolutionary approach that has changed the
treatment paradigm and survival, reaching durable responses (1).
However, only a small proportion of tumours are sensitive to
ICIs, and other alternatives need to be considered. Here we have
analysed adoptive NK cell transfer as an alternative for CRC
tumours harbouring mutations that confer a bad prognosis. As a
basis, our study suggests that NK cells control CRC development
as HLA-I downregulation correlates with higher NK cell
infiltration and better prognosis in stage II MSI CRC patients,
including reduced recurrence and metastasis. In contrast, in
advanced stage III CRC patients as well as in stage II MSS
patients, this correlation is most likely due to the reduced NK cell
infiltration found in these tumours. Our in vitro and in vivo
results show that large-scale allogeneic eNK cells eliminate MSI
and MSS CRC tumours as well as bad prognosis CRC cells that
do not respond to chemotherapy or antibody-mediated
immunotherapy treatments, irrespective of the presence of
some T cell-related ICIs. Thus, altogether, these findings
strongly support the use of allogeneic adoptive NK cell transfer
to treat CRC tumours, especially those tumours in which tumour
cells might have immune-escaped from host NK cells. In
addition, allogeneic NK cells might be a good option as
adjuvant therapy to prevent recurrence and metastasis in stage
II CRC patients after surgery.

CRC is a solid tumour characterised by a high degree of
heterogeneity associated with the accumulation of a variety of
mutations that determine response to treatments and survival
(24). This heterogeneity also affects the TME and the
Immunoscore used to classify CRC tumours (35). Even if HLA
molecules are key components in triggering an anti-tumour T-cell
response, the prognostic value of HLA is unclear (7). HLA-I
downmodulation has been described as a common immune
evasion mechanism, especially relevant for resistance to
conventional T cell-related ICIs resistance, in MSI but not MSS
tumours (36). In contrast, there is evidence that some patients with
HLA-I downmodulation have a better prognosis (7, 37). This
discrepancy could be explained by the lack of data on CMS or
MSI/MSS classification. Here we demonstrate that HLA-A
downmodulation correlates a with better prognosis in MSI stage
II tumours, but this effect is lost in MSS tumours. Furthermore, this
phenotype was exclusive to CMS1 tumours and was associated with
non-metastatic disease. This finding is supported by previous results
in mouse models indicating that NK cells are involved in the control
of tumour metastasis (38). Indeed, our results show that no tumour
that lost HLA-A in its membrane experienced a relapse. Menon
et al. also described that HLA-A but not HLA-B/C
downmodulation correlates with longer DFS in patients with low-
stage CRC, suggesting an anti-tumour role of NK cells or attenuated
Frontiers in Immunology | www.frontiersin.org 12
aggressiveness of MSI tumours (37). We found that HLA-A
downmodulation in stage III MSI tumours does not correlate
with better prognosis, suggesting the development of immune
escape mechanisms. Indeed, stage III MSI CRC exhibited lower
NK cell infiltration, which could explain the lack of correlation
between HLA-A and prognosis.

In this context, our analysis of immune infiltration in CRC
showed a higher increase in the NK activation marker NKP46, the
most specific marker to detect NK cells, in MSI stage II tumours
with reduced HLA-A. Of note, the use of IHC in the study to
assess the expression of membrane HLA-A provided more reliable
results than those obtained by mRNA techniques, as RNA
extraction can also capture the molecules derived from the
stroma and infiltrated immune cells (39). Albeit more MSI/
CMS1 patients who relapse are needed to obtain a more
significant prognostic value of HLA-A, it could be concluded
that the lack of expression of membrane-associated HLA-A on the
tumour is a good prognostic factor in CMS1 stage II CRC patients.
Together with previous observations showing a correlation
between NK cell infiltration and CRC prognosis (40, 41), these
results support the implication of NK cells in controlling tumour
development and the use of adoptive NK cell transfer in those
cases where tumour cells have avoided the host NK cell response.

Thus, we developed an NK cell-based therapy that could
overcome the mechanisms of tumour immune escape and poor
prognosis based on a protocol previously established in our lab
employing the LCL-EBV+ R69 feeder cell line (33), which
generates activated NK cells able to efficiently eliminate drug-
resistant haematological cancer cells (34) as well as to migrate
and destroy conventional and 3D CRC cell cultures (14, 32).
Remarkably, PD1 was almost absent from these activated NK
cells, which supports our findings showing that anti-PD-1
antibodies do not improve the response of adoptive NK cell
transfer in vitro or in vivo using eNK cells from HDs, suggesting
that eNK cells might overcome the expression of PD-1 ligands in
the TME. This result contrasts with the high levels of PD-1
observed in NK cells from cancer patients, which may explain the
contribution of PD1 to the regulation of the anti-tumoural NK
cell activity in cancer patients (42, 43).

Remarkably we have demonstrated that the acquisition of a
3D conformation can alter the sensitivity of cell lines to NK cells,
because of both phenotypic alterations, as observed for some NK
cell ligands, and the degree of compaction as described elsewhere
(44). In addition, the finding that the anti-tumour effect of
activated NK cells is restricted by HLA-ABC and HLA-G only
in the 3D model proves its biological relevance. This result agrees
with the observation that NK cell infiltration correlates with a
good prognosis only in patients with low expression of HLA-A.
Supporting our results, some studies have found HLA-G
overexpression in CRC patients with poor prognosis (45).
Nevertheless, irrespective of HLA-I expression, activated NK
cells could still eliminate CRC spheroids at a high e:t ratio,
opening the chance to implement NK cell adoptive therapy
against CRC. Whether this effect is due to HLA-KIR mismatch
as seen in haematological malignancies will require further
experimental work.
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The relevance of the results in the in vitro model was evaluated
in a xenograft model using NSG mice. Although the use of this
model limits the study of the TME, it still allowed us to analyse NK
cell migration, the infiltration into the extracellular matrix, and the
interaction of the NK cells with the tumour and some populations
of the TME, such as fibroblasts and endothelial cells, including
potential immunosuppressive factors. Adoptive NK cell transfer
retarded tumour growth and improved survival when administered
early after tumour development. However, late treatment failed to
control tumour growth, probably due to a direct impact of the
tumour size or alterations in TME during tumour development. In
contrast to the in vitro models, eNK cells similarly delayed tumour
growth HLA-I positive (HCT-116) and negative (DLD-1) cell lines
in vivo. This could be explained by a higher growth rate of DLD-1
cells in vivo as previously described (46). As indicated above, the in
vivo efficacy of early administration of eNK cells was not improved
by the anti-PD-1 mAb pembrolizumab irrespective of HLA-I
expression. Strikingly, pembrolizumab reduced the efficacy of
eNK cells, which somehow indicates that pembrolizumab either
reduces NK cell activity or promotes tumour cell growth. Lenaro
et al. found that the engagement of the anti-PD-1 antibody
nivolumab to PD-1 protected CRC cells from chemotherapy-
induced cell death. However, as we did not find an accelerated
development of control HCT-116 tumours in the presence
(Figure 6D) or absence (Figure 5B) of pembrolizumab, our
results suggest that pembrolizumab somehow affects NK cell
activity in vivo. Further studies will be required to confirm if PD-
1 blocking has any potential negative effect on adoptive NK cell
therapy success and the potential mechanism(s) involved.

Our findings indicate that activated NK cells eliminate CRC cells
in vitro and in vivo irrespectively of the mutational status of
pathways involved in treatment resistance, and the results in
human samples suggest that NK cells play a key role in the
control of early-stage MSI CRC tumours, leading to fewer
metastases and better prognosis; the latter further supported by
the finding that loss of HLA is a good prognosis biomarker in stage
II MSI tumours. Thus, our results present potential implications for
both patient stratification and therapy. On the one hand, we
conclude that tumours in the early stages of the disease losing
HLA as a mechanism of immune escape are likely more prone to
NK cell attack and subsequently exhibit a better prognosis. On the
other hand, tumours that have managed to avoid NK cell-mediated
immunosurveillance presenting low NK cell infiltration are
candidates for NK cell adoptive therapy, as activated allogeneic
NK cells, albeit restricted by HLA-I expression, are still able to
eliminate HLA-I-positive tumours including those presenting bad
prognosis status and independently of the presence of T cell-related
inhibitory IC ligands. Thus, this study, combining results from CRC
patients with functional in vitro and in vivo studies with eNK cells,
provides the molecular basis to support the development of clinical
trials to treat CRC using expanded allogeneic NK cells.
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