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A B S T R A C T

Negative Bias Temperature Instability (NBTI) and Hot Carrier Injection (HCI) are two of the main reliability
threats in current technology nodes. These aging phenomena degrade the transistor’s threshold voltage (𝑉𝑡ℎ)
over the lifetime of a digital circuit, resulting in slower transistors that eventually lead to a faulty operation
when the critical paths become longer than the processor cycle time. Among all the transistors on a chip,
the most vulnerable transistors to such wearout effects are those used to implement SRAM storage, since
memory cells are continuously degrading. In particular, NBTI ages PMOS cell transistors when a given logic
value is stored for a long period (i.e., a long duty cycle), whereas HCI ages NMOS cell transistors not only
when the stored value flips but also when it is accessed. This work focuses on mitigating aging in the on-chip
SRAM memories of Convolutional Neural Network (CNN) accelerators storing activations. This paper makes
two main contributions. At the software level, we quantify the aging induced by current CNN benchmarks
with a characterization study of duty cycle, flip, and access patterns in every activation memory cell. Based
on the insights from this study, this work proposes a novel microarchitectural technique, Gated-CNN, that
ensures a uniform aging degradation of every memory cell. To do so, Gated-CNN exploits power-gating and
address rotation techniques tailored to the memory demands and temporal/spatial localities exhibited by CNN
applications, as well as the memory organization and management of CNN accelerators. Experimental results
show that, compared to a conventional design, the average 𝑉𝑡ℎ degradation savings are at least as much as
49% depending on the type of transistor.
1. Introduction

The end of the Dennard scaling and the Moore’s Law era is the major
driver of the computer architecture community toward domain-specific
accelerator chips. Unlike general-purpose processors, accelerators are
optimized to handle a specific application domain, while delivering a
higher performance-to-power ratio under a limited chip budget. These
domains include computer vision, speech recognition, natural language
processing, or autonomous driving, among others, whose applications
are efficiently run with machine learning algorithms like Deep Neural
Networks (DNNs).

DNN accelerators have consolidated as a commodity device that
complements computing platforms from high-performance to embed-
ded systems. Since the emergence of the DianNao accelerator [1],
both the academia and the industry have proposed many architectural
organizations to cope with the massive convolution computation in
the inference process of Convolutional Neural Networks (CNNs) [2–
12]. However, like general-purpose processors, CNN accelerators are
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implemented using CMOS transistors and they usually demand high
on-chip Static Random-Access Memory (SRAM) storage requirements to
cache CNN parameters consisting of weights (synapses) and activations
(neurons) of the different neural network layers.

Two of the main deleterious effects that speed up the CMOS tran-
sistor wearout are known as Negative Bias Temperature Instability
(NBTI) and Hot Carrier Injection (HCI) [13]. These effects degrade
the transistor’s threshold voltage (𝑉𝑡ℎ) over the lifetime of a digital
circuit. Such a degradation causes an increase in the transistor’s 𝑉𝑡ℎ,
and therefore in the transistor’s switching delay, resulting in permanent
faults when the critical paths become longer than the processor cycle
time.

By design, SRAM cells are particularly sensitive to both NBTI and
HCI failure effects since they are continuously aging. NBTI degrades
PMOS transistors when a given logic value is stored for a long period
(i.e., a long duty cycle or on/off ratio), whereas HCI deteriorates not
only NMOS loop inverter transistors when the stored logic value flips
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Fig. 1. Normalized accuracy after injecting permanent faults in either weights or
activations with respect to the original accuracy without faults. The number of faulty
bits is calculated as a percentage of the largest CNN layer and it is the same for both
weights and activations. The plotted results refer to the average accuracy after 100
trials.

but also NMOS pass transistors when contents are accessed (i.e., on/off
switching frequency). In addition, HCI may also degrade the drain cur-
rent of both NMOS and PMOS transistors [14]. Overall, these situations
are strongly related to each other, meaning that combating solely NBTI
might aggravate HCI as a side effect, and vice versa.

CNN parameters are usually represented with fixed-point data types,
as opposite to floating-point, with the aim to reduce the computing and
energy consumption requirements of CNN inference accelerators [1–4,
7,9,12]. Recent studies focusing on weights have shown that fixed-point
data types are inherently more resilient to faults than floating-point
counterparts [15]. Unlike weights, activations usually comprise a larger
range of values, which can severely compromise the CNN accuracy even
using fixed-point data types.

To check the previous claim, we conducted an experiment in which
permanent bit faults are randomly injected at different rates in either
weights or activations represented with 16-bit fixed-point data. Fig. 1
plots the normalized accuracy of three different CNNs under faults
with respect to the fault-free original accuracy. Activations are more
vulnerable to faults than weights, even for a percentage of faulty bits
as low as 0.001%. In contrast, under faulty weights, accuracy does not
degrade in ZFNet and SqueezeNet regardless of the studied fault rate.

The state-of-the-art approach for aging mitigation in on-chip SRAM
storage of CNN accelerators solely focuses on NBTI in memories storing
weights [16]. In contrast, our work addresses not only NBTI but also
HCI in on-chip memories of CNN accelerators storing activations. To do
so, this paper makes two main contributions:

• We present a comprehensive characterization study of the duty
cycle, flip, and access patterns that current CNN applications
induce to every activation memory cell.

• Based on the previous study, we propose a novel aging-aware mi-
croarchitectural mechanism, Gated-CNN, exploiting power-gating
and address rotation techniques tailored to the specific memory
requirements and temporal/spatial localities of CNN applications,
in addition to the memory organization and management of
current CNN accelerators.

Experimental results show that, compared to a conventional design,
ated-CNN combats both NBTI and HCI aging effects with an average

eduction of the ‘0’ duty cycle, flip, and access patterns for all the
ells by 71%, 88%, and 96%, respectively. This ensures average 𝑉𝑡ℎ
egradation savings in all the cell transistors at least as high as 49%
epending on the type of transistor.

The rest of this paper is organized as follows. Section 2 provides
background for this work. Section 3 describes the modeled frame-
ork. Section 4 introduces the aging characterization study. Section 5
resents the proposed Gated-CNN design. Section 6 refers to the exper-
mental evaluation. Section 7 comments on related work, and finally,
ection 8 summarizes this paper.
2

i

Fig. 2. Implementation of a 6T SRAM cell, distinguishing between inverter loop PMOS
(𝑇𝑃 𝑖) and NMOS (𝑇𝑁𝑖) transistors, as well as NMOS (𝑇𝑊 𝑖) pass transistors.

2. Background

This section discusses how NBTI and HCI affect the transistors
used to implement SRAM memory cells. Then, it introduces the state-
of-the-art aging-aware mechanism for CNN accelerators. The section
concludes with a description of the power-gating technique as a mean
to mitigate aging.

2.1. Aging effects

NBTI and HCI are two of the main detrimental effects that gradually
increase the transistor’s threshold voltage (𝑉𝑡ℎ) over the lifetime of
a circuit. Fig. 2 depicts the implementation of a typical SRAM cell
consisting of 6 transistors (6T cell). The four transistors labeled as either
𝑇𝑃 𝑖 or 𝑇𝑁𝑖 form an inverter loop storing the logic value, whereas the
remaining two 𝑇𝑊 𝑖 transistors act as pass transistors, controlled by the
wordline (WL) signal, to access the cell contents through the bitline
(BL) and its complementary (BL).

The NBTI phenomenon mainly affects PMOS transistors when a
logic ‘0’ is applied to their gates. In a 6T cell, this takes place in
two ways. When the cell is under a ‘0’ duty cycle, that is, when the
cell is stable and stores a logic ‘0’, the transistor 𝑇𝑃 0 is under stress
and is affected by NBTI. On the contrary, under a ‘1’ duty cycle, the
counterpart transistor 𝑇𝑃1 suffers from NBTI. The degradation caused
y each type of duty cycle is complementary, meaning that, for a given
uty cycle, the PMOS transistor not under stress is partially under
ecovery from the NBTI effect. In other words, under a ‘0’ (‘1’) duty
ycle, 𝑇𝑃1 (𝑇𝑃 0) is under a partial recovery phase. Thus, if every bit
ell of a memory array experiences a balanced duty cycle ratio (50%
or each logic value), the wearout effect is evenly balanced between
he two PMOS transistors and minimized compared to other cells with
higher duty cycle distribution. However, a balanced duty cycle ratio

s unusual in a conventional design.

𝑉𝑡ℎ𝑁𝐵𝑇𝐼
= 𝐴𝑁𝐵𝑇𝐼 × 𝑡𝑜𝑥 ×

√

𝐶𝑜𝑥 × (𝑉𝑑𝑑 − 𝑉𝑡0 )×

(1 −
𝑉𝑑𝑠

𝛼𝑁𝐵𝑇𝐼 × (𝑉𝑑𝑑 − 𝑉𝑡0 )
) × 𝑒

𝑉𝑑𝑑
𝑡𝑜𝑥×𝐸𝑁𝐵𝑇𝐼

− 𝐸𝑎
𝑘×𝑇 ×

𝑡𝑠𝑡𝑟𝑒𝑠𝑠
0.25 × (1 −

√

𝑒𝑡ℎ𝑎 ×
𝑡𝑟𝑒𝑐

𝑡𝑠𝑡𝑟𝑒𝑠𝑠 + 𝑡𝑟𝑒𝑐
)

(1)

Eq. (1) shows the standard formula to compute the 𝑉𝑡ℎ degradation
(𝑑𝑉𝑡ℎ) of a PMOS transistor due to the NBTI phenomenon [17]. Pa-
rameters 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 and 𝑡𝑟𝑒𝑐 denote the amount of time (in seconds) that
he transistor is under stress and recovery modes, respectively. In a 6T
ell, 𝑇𝑃0 and 𝑇𝑃 1 accumulate 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 time when the cell stores a logic ‘0’
nd ‘1’, respectively. Refer to Section 6.1 for further details about the
emaining parameters.

On the other hand, HCI mainly affects NMOS transistors when there
s a logic value transition at their gates. In a 6T cell, 𝑇 and 𝑇
𝑁0 𝑁1
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Table 1
Overview of the studied CNN benchmarks. Labels Conv, FC, and DWConv stand for convolution, fully-connected, and depth-wise convolution layers, respectively. DWConv layers
process a different weight filter on each channel of an input image.

Benchmark Task Depth Smallest Largest Average Activation
layer size layer size layer size representation

AlexNet [19] Image 5 × Conv, 3 × FC, 18 kB 0.58 MB 153 kB 4 integer bits &
classification 3 × MaxPooling (MaxPooling3) (Conv 1) 4 fraction bits

ZFNet [20] Image 5 × Conv, 3 × FC, 18 kB 2.28 MB 324 kB 4 integer bits &
classification 3 × MaxPooling (MaxPooling3) (Conv 1) 6 fraction bits

VGG16 [21] Image 13 × Conv, 3 × FC, 49 kB 6.4 MB 1.32 MB 3 integer bits &
classification 5 × MaxPooling (MaxPooling 5) (Conv 1) 8 fraction bits

SqueezeNet [22] Image 26 × Conv, 3 × MaxPooling, 3 kB 2.4 MB 431 kB 6 integer bits &
classification 1 × GblAvgPooling (Conv 26) (Conv 1) 4 fraction bits

MobileNet [23] Image 15 × Conv, 13 × DWConv, 49 kB 1.55 MB 340 kB 4 integer bits &
classification 1 × GblAvgPooling (DWConv 12) (DWConv 1) 9 fraction bits

DenseNet [24] Image 120 × Conv, 1 × MaxPooling, 12 kB 1.6 MB 3 integer bits &
classification 3 × AvgPooling, 1 × FC, (Conv 120) (Conv 1) 254 kB 5 fraction bits

1 × GblAvgPooling

SentimentalNet [25] Text 1 × Conv, 1 × MaxPooling, 15 kB 30 kB 15 kB 0 integer bits &
classification 2 × FC (MaxPooling 1) (Conv 1) 5 fraction bits

PilotNet [26] Turning 5 × Conv, 5 × FC 2 kB 0.13 MB 26 kB 0 integer bits &
angle regression (Conv 5) (Conv 1) 7 fraction bits
u
a
h
c
N
t

transistors are affected if the stored logic value flips as a consequence of
a write operation. On the other hand, every cell access (read/write op-
eration) induces HCI wearout to the 𝑇𝑊 0 and 𝑇𝑊 1 transistors. Note that
he impact of HCI is proportional to the on/off switching frequency,
nd, contrary to NBTI, there is no recovery phase. Therefore, HCI is
inimized when the number of accesses to a cell is reduced and writes
o not change the stored value.

𝑉𝑡ℎ𝐻𝐶𝐼
= 𝐴𝐻𝐶𝐼 × 𝛼𝐻𝐶𝐼 × 𝑓 × 𝑒

𝑉𝑑𝑑−𝑉𝑡0
𝑡𝑜𝑥×𝐸𝐻𝐶𝐼 ×

√

𝑡 (2)

The contribution of the HCI effect to the 𝑑𝑉𝑡ℎ of an NMOS transistor
is computed using the standard Eq. (2) [18]. Parameter 𝑡 refers to the
amount of time (in seconds) that the gate transitions from ‘0’ to ‘1’
and vice versa. In a 6T cell, transistors 𝑇𝑁0 and 𝑇𝑁1 accumulate 𝑡 time
when the stored value flips, whereas transistors 𝑇𝑊 0 and 𝑇𝑊 1 do the
ame when the wordline is driven from high to low and vice versa. See
ection 6.1 for further details about the remaining parameters.

.2. State-of-the-art aging-aware mechanism for CNN accelerators: DNN-
ife

The state-of-the-art DNN-Life technique has faced the NBTI effect in
he on-chip SRAM buffer of CNN accelerators storing weights of neural
etworks [16]. DNN-Life proposes to periodically invert the weight
uffer contents to balance the duty cycle distribution. In particular,
he technique encodes weights in such a way that bits to be written
n this buffer are randomized. After a read operation, weights are
ecoded back to the original value before feeding the processing ele-
ents. However, by periodically bit-flipping the cell contents, DNN-Life

xacerbates the HCI effect.

.3. Power-gating opportunity

Power-gating is a well known technique to drastically reduce the
ower consumption of memory structures [27]. This technique can be
lso leveraged to mitigate aging effects.

An aging-aware power-gating configuration consists of an NMOS
igh-𝑉𝑡ℎ sleep transistor connecting the 6T cell to ground. In this way,
he cell ground terminal is connected to a virtual ground. When the
leep transistor drives current (active state), the cell operates as usual,
et with a ground voltage equal to the virtual ground. On the contrary,
hen the sleep transistor is off (switch-off state), the cell is disconnected

rom the ground and both 𝑇 and 𝑇 transistors remain partially
3

𝑃 0 𝑃1
nder recovery from NBTI at the same time, since both cell nodes hold
logic ‘1’ [28]. Of course, as long as the cell remains off, not only

igh duty cycle distributions are reduced to combat NBTI, but also
ell contents are neither accessed nor flipped, preventing HCI wearout.
otice too that, contrary to NMOS cell transistors, the NMOS sleep

ransistor is resilient to HCI since it is implemented using a high-𝑉𝑡ℎ
device [29,30].

3. Framework overview

This section introduces the framework for our proposed aging-aware
mechanism, which consists of a description of the subset of studied CNN
benchmarks, and an overview of the CNN inference accelerator model
used in this work as a baseline.

3.1. Benchmarks

We selected a variety of widely used CNNs focusing on classification
and regression tasks. Table 1 summarizes the main characteristics
of these benchmarks. We used colorectal histology [31] and Ima-
geNet [32] as datasets for the image classification tasks, whereas IMDB
reviews and Udacity’s self-driving car simulator have been used as
datasets for the text classification and regression tasks, respectively.

The number of layers of the studied benchmarks largely differ
among each other, from the narrowest CNN consisting of 4 layers
(SentimentalNet) to the deepest CNN including 126 layers (DenseNet).
Benchmarks also present disparate memory storage requirements. The
smallest activation layer of every CNN consists of a few tens of kB
at most and refers to either a pooling or a later convolutional layer
(shown in parentheses). On the other hand, for all the CNNs except
SentimentalNet, the size of the largest activation layer is in the order
of MB and corresponds to the first convolutional layer. Overall, the
average layer size ranges from 15 kB (SentimentalNet) to 1.32 MB
(VGG16).

Finally, this work assumes 16-bit fixed-point words to represent
both activations and weights, which is a common choice for most
inference accelerators [1,2,4–6,9]. The rightmost column in the table
shows the required number of integer and fraction activation bits for
each benchmark to avoid accuracy losses with respect to the top-1
accuracy assuming a 32-bit floating-point (IEEE-754) data type. Remark
that the bit over-provisioning with 16-bit words is extended to the
fraction part. Otherwise, devoting more than necessary bits for the
integer part would translate into integer most significant bits with a

100% ‘0’ duty cycle, thereby exacerbating NBTI in those bit cells. Notice
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Fig. 3. Overview of the baseline CNN accelerator.

too that, similarly to previous works [3,8,10], this implies our modeled
baseline accelerator to dynamically adjust the number of integer and
fraction bits required by each benchmark.

3.2. Baseline CNN accelerator architecture

Our modeled baseline CNN architecture is based on state-of-the-art
accelerator models from both the academia and the industry to speed
up the inference process in CNNs, such as DaDianNao [2], Google’s
TPU [5], Eyeriss [6], or Bit-Tactical [9]. Fig. 3 depicts the hardware
organization of the baseline accelerator consisting of an 8 × 8 Process-
ing Element (PE) array, a couple of 2 MB Input/Output (I/O) buffers for
activation storage, a 2 MB weight buffer, dispatchers for every buffer,
and a control unit. The computational and storage resources have been
sized according to the domain of embedded systems [33].

The PE array is a systolic array processor conformed by 64 PEs
interconnected through a two-dimensional mesh. Each PE indepen-
dently computes 16-bit fixed-point dot-products through partial sums
with an input activation from one I/O buffer, acting as input buffer,
and a weight from the weight buffer. The dataflow in the PE array
corresponds to the output stationary approach described in Eyeriss [6]
and SCALE-Sim [34].

The memory buffers provide intermediate storage for both activa-
tions and weights to reduce costly off-chip memory accesses. Since
faulty weights have a much less impact on the network accuracy than
faulty activations (see Fig. 1), this work focuses on aging mitigation in
the I/O buffers.

In the same way as EIE [4] and Alcolea et al. [11] inference
accelerators, the I/O buffers swap their roles on every inference step.
We define an inference step as the processing of the output activations
of a neural network layer given a set of input activations of the previous
layer and weights. In this way, a given I/O buffer stores even layers and
the counterpart buffer stores odd layers. On the contrary, the weight
buffer caches weights to be issued in the proper order by the dispatcher
to the PE array. Subsequent inference steps replace old weights with
those required by the current step.

The relatively small I/O buffer size implies to spill activations to off-
chip memory when a layer does not fit in 2 MB. According to Table 1,
this issue only affects ZFNet, VGG16, and SqueezeNet. More precisely,
a single layer of ZFNet and SqueezeNet exceed the I/O buffer size,
whereas 4 out of 21 layers from VGG16 exceed this size.

Unlike CPU and GPU caches arranged in sets and ways, the I/O
buffers are arranged as scratchpad memories split into banks and sub-
banks to provide enough bandwidth to the parallel processing in the
4

PE array. In particular, each buffer consists of eight 256 kB banks. In
turn, each bank is composed of eight 32 kB sub-banks. Activations are
sub-bank interleaved and sequentially arranged bank after bank [3,12].
This implies that the first 256 kB activations of a layer are always stored
in 𝑏𝑎𝑛𝑘0. Notice too that the three most significant bits of an I/O buffer
address denote the bank where the requested activation is to be found.

Finally, all the dispatchers are capable to transmit up to eight 16-bit
activations or weights per cycle. Dispatchers are driven by the control
unit, which exploits control information of the currently computed
layer.

4. Characterization study

Characterizing the duty cycle, bit flip, and access patterns provides
insights on the impact of both NBTI and HCI aging effects in the cell
transistors of the I/O buffers. The presented results are restricted to
one of the two I/O buffers. However, they are very similar for the two
buffers. This study refers to the baseline approach, where neither NBTI
nor HCI mitigation mechanisms are employed.

4.1. Duty cycle distribution

Fig. 4 depicts the ‘0’ duty cycle distributions (i.e., percentage of time
storing a logic ‘0’ over the total execution time) experienced in every
16-bit activation word, represented in little-endian. The complementary
distributions refer to the ‘1’ duty cycle. The distributions include the ‘0’
duty cycles for every active cell storing useful bits. That is, the figure
does not include the effect of duty cycles (either 100% ‘0’ or ‘1’ duty
cycles) causing the maximum NBTI degradation in idle memory cells.1

Apart from AlexNet and ZFNet, a biased ‘0’ duty cycle can be seen
in the sign bit (15th bit) for every benchmark. In fact, for VGG16,
SqueezeNet, and MobileNet, no negative activations are written in the
I/O buffers, exacerbating NBTI in the sign bit. Recall that the integer
part varies in number of bits depending on the benchmark, occupying
until the 9th bit at most in SqueezeNet (see the rightmost column of
Table 1). The ‘0’ duty cycle is also biased in most of these bits, and
particularly the most significant ones, highlighting that the majority of
activations are close to zero. On the other hand, a high ‘1’ duty cycle
in a few bits can be seen in benchmarks like MobileNet and DenseNet.

In contrast to sign and integer bits, fraction bits show a broaden
duty cycle distribution, pushing the median toward the ideal 50%
duty cycle. However, in benchmarks like VGG16 and SqueezeNet, the
median ‘0’ duty cycle exceeds 90% for all the bit positions. Moreover,
long ‘0’ and ‘1’ duty cycles can be seen in many bit positions for
applications such as AlexNet, SqueezeNet, and SentimentalNet.

Overall, NBTI wearout, caused by either ‘0’ or ‘1’ duty cycles, is
appreciated not only in the sign and integer bit cells, but also in many
cells storing fraction bits. That is, prior aging-aware techniques for
CPU architectures working at a word granularity like [35–37] would
be ineffective in CNN accelerators.

4.2. Flip and access distributions

Fig. 5 illustrates the normalized number of flips on every active bit
cell with respect to the worst-case cell accumulating the highest flip
peak for each benchmark. As expected from the previous analysis, the
sign and integer bits, where the duty cycle is generally highly biased,
show a lower number of flips compared to the fraction bits, where the
duty cycle is generally less biased and a higher amount of flips are
observed.

1 For every box-and-whisker distribution plotted in this work, top and
bottom box edges specify the 75th and 25th percentiles, lines within the
boxes represent the median, and whiskers denote the maximum and minimum
values.
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Fig. 4. ‘0’ duty cycle distributions on each bit position of the 16-bit active words.
Fig. 5. Normalized bit flips on each bit position of the 16-bit active words with respect to the worst-case bit cell with the highest flip peak.
The flip pattern shows that few cells suffer from a high number of
flips close to the highest flip peak, since all the boxes stay below 50%
of the flip distribution. However, those cells are spread across all the
fraction bits for all the studied benchmarks.

Note that unpredictable CNN workload input values may cause
different duty cycle and flip patterns. However, since the proposed
approach combats wearout in all the cell transistors (see the next
section), unpredictable workloads would benefit from the proposed
technique in the same way as predictable workloads.

Fig. 6 plots the normalized number of read/write accesses to ev-
ery byte of an I/O buffer with respect to the byte with the highest
access peak. Results are restricted to DenseNet. The remaining CNNs
show similar access patterns. X axis is shown in logarithmic scale for
illustrative purposes.

Most accesses are skewed toward low-order words, since every
layer of a network is stored from address 0×0 onward. In addition,
considering all the studied benchmarks, the average number of read
operations is 201× higher than writes due to the activation reuse
exhibited by convolutions. Therefore, 𝑇𝑊 𝑖 pass transistors are far more
exposed to HCI degradation than 𝑇𝑁𝑖 inverter loop transistors.

5. Proposed approach: Gated-CNN

This section introduces the proposed Gated-CNN design. First, we
show a general overview of the approach, which consists of four main
modules. Then, these modules are described in detail. Finally, timing,
power, energy, and area overheads are also discussed.

5.1. General overview

Based on the previous characterization study, Gated-CNN is aimed
at minimizing both NBTI and HCI aging effects in every cell transistor
of the I/O buffers of CNN accelerators. To do so, the key idea of
Gated-CNN is to combine a bank address rotation scheme with a bank
power-gating mechanism to spread out not only flip and access patterns
5

Fig. 6. Normalized number of accesses (reads and writes) of DenseNet across the
entire addressing space with respect to the memory address with the highest number
of accesses.

but also switch-off cycles to balance duty cycle distributions across all
the banks.

Gated-CNN leverages the following properties of CNN applications
and specific-domain accelerators:

• The memory size of activation layers largely differs not only
among different CNN applications but also among layers of a
given CNN (see Table 1), leading to a dynamic under-utilization
of the I/O buffers.

• CNN applications expose both temporal and spatial localities in
a predictable manner. Once the activations of a layer have been
read in order to compute the activations of the next layer, the
former activations are not reused anymore.

• Some CNN accelerators include two I/O buffers that alternatively
exchange input and output roles forcing a given buffer to store
even or odd layers (see Section 3.2).

Consequently, the dynamic under-utilization is exploited to propose
a cyclic storage of activation layers in successive banks, ensuring an
homogeneous bank usage. Moreover, after using an activation layer to
compute the next one, those banks storing the former stale layer are
powered off. Notice too that exchanging buffer roles maximizes the
period of time in which these banks are powered off.
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a
f

Fig. 7. Proposed Gated-CNN design consisting of four main modules: effective bank, inter-bank rotation, power-gating bitmap generation, and bitmap update.
m

The Gated-CNN component is coupled to one I/O buffer. That is, two
Gated-CNN components are required for the baseline CNN accelerator.
In addition, the proposed approach is designed for an I/O buffer with 8
banks. However, it could be redesigned to support a different number
of banks with minor changes.

Fig. 7 depicts the architecture of the four main modules of Gated-
CNN. The effective bank module calculates the effective bank id where

requested activation is to be found in the I/O buffer. In addition, it
orwards the starting bank id of the currently stored layer to the inter-
bank rotation module. This module identifies the starting and ending
banks required by the next inference step (next layer to be stored in
the buffer), and forwards this information to the power-gating bitmap
generator module. According to such banks, the power-gating bitmap
generator computes a bitmap array that states which banks should be
powered on/off in the next inference step. This bitmap is forwarded
to the bitmap update module. This module updates the on/off state of
the bank power-gating sleep transistors at runtime, masking the bank
wake-up latency penalty.

5.2. Effective bank module

To request a given activation to the I/O buffer, the control logic
of the accelerator refers to a logical address computed as an offset
(in bytes) from the first activation of the currently stored layer in
the buffer (𝑖th layer). Such a first activation is stored at address 0×0
(physical base 𝑏𝑎𝑛𝑘0) by default. The input reqBnkLyr_i refers to the
three most significant bits of the logical address, identifying the logical
bank storing the requested activation (see Section 3.2).

The effective bank module translates from a logical to an effective
physical bank. To do so, the 3-bit register labeled as sBnk contains the
physical base bank id (from 𝑏𝑎𝑛𝑘0 to 𝑏𝑎𝑛𝑘7) where the first activation
of the 𝑖th layer can be found in the buffer. This register is implemented
with resilient 8T cells to address aging at the cost of a slight area
increase [38,39]. The adder outputs the current physical bank of the
requested activation with the addition of the sBnk and reqBnkLyr_i bits.

Note that a layer might wrap around the I/O buffer (adder overflow
or carry out bit set to ‘1’). That is, a layer occupying high-order and
low-order banks, leaving free banks in the middle. Notice too that the
adder output is concatenated with the 18 least significant bits of the
logical address to properly index the 2 MB buffer with a 21-bit address
(not shown in the figure).

Finally, the write enable (en) of the sBnk register is driven by the
cmd_useNxtBnks signal. This signal is set when the physical base bank
changes as a consequence of the next inference step storing activations
of the new incoming layer. The subsequent section describes how the
sBnk contents are updated.
6
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5.3. Inter-bank rotation module

The inter-bank rotation module cyclically changes the value in sBnk
in a round-robin fashion throughout the banks. The next incoming
layer, that is, the (𝑖+2)th layer,2 starts occupying the successive avail-
able bank with respect to the last bank used by the previous 𝑖th layer.
To do so, the upper adder outputs that successive bank id (st bits) with
the addition of sBnk, the bnksLyr_i input, and the carry in bit set to
logic ‘1’. The bnksLyr_i input stands for the number of banks used by the
𝑖th layer, which is computed as 𝑖th layer size % bank size. The 𝑖th layer
size parameter is derived from the software profiling of the CNN. Note
that bnksLyr_i ranges from 0 (a single bank) to 7 (all the banks). The st
bits will be stored in the sBnk register when 𝑐𝑚𝑑_𝑢𝑠𝑒𝑁𝑥𝑡𝐵𝑛𝑘𝑠 =‘1’ to
properly compute an effective bank of the (𝑖+2)th layer.

The bottom adder outputs the last bank that will occupy the (𝑖+2)th
layer (end bits). In contrast to the upper adder, this adder includes
a carry out (Cout) bit, which flags a bank-wrapping situation for
the (𝑖+2)th layer. The st, end, and Cout bits act as inputs for the
power-gating bitmap generation module described in the next section.

5.4. Power-gating bitmap generation module

The power-gating bitmap generator module dynamically distin-
guishes between active and idle banks of the incoming (𝑖+2)th layer on
every inference step. To do so, two binary-to-thermometer 3:8 encoders
are required to generate a power-gating 8-bit map.

To help understand how this module works, Fig. 8 shows a driving
example including the state of the inputs, registers, and intermediate
signals at specific cycles. At cycle t0, the 𝑖th layer occupies 𝑏𝑎𝑛𝑘0, 𝑏𝑎𝑛𝑘1,
and 𝑏𝑎𝑛𝑘2 (𝑠𝐵𝑛𝑘 = 0 and 𝑏𝑛𝑘𝑠𝐿𝑦𝑟_𝑖 = 2), whereas the (𝑖+2)th layer will
occupy 𝑏𝑎𝑛𝑘3 and 𝑏𝑎𝑛𝑘4 (𝑏𝑛𝑘𝑠𝐿𝑦𝑟_𝑖 + 2 = 1). The upper inverse encoder,
referred to as 𝐸𝑛𝑐1, is fed with the st bits and outputs an 8-bit map in
which bits are set to ‘0’ except those from the st th bit up to the most
significant bit. In the example, 𝑠𝑡 = 3 generates the output outEn𝑐1 =
‘11111000’.

On the other hand, the bottom encoder, namely 𝐸𝑛𝑐2, is fed with
the end bits. In contrast to 𝐸𝑛𝑐1, all the output bits of this encoder are
set to ‘0’ except those from the endth bit down to the least significant
bit. In the example, 𝑒𝑛𝑑 = 4 generates the output outEn𝑐2 = ‘00011111’.

In order to generate a future power-gating bitmap for the (𝑖+2)th
layer (ftMap), both encoding outputs are merged as follows. When
𝐶𝑜𝑢𝑡 = ‘0’, i.e., when 𝑠𝑡 ≤ 𝑒𝑛𝑑, the encoder outputs are bit-wise
ANDed. In the example, outM𝑋1 = ‘00011000’, meaning that 𝑏𝑎𝑛𝑘3
and 𝑏𝑎𝑛𝑘4 will remain powered on and the rest powered off in the next
inference step at cycle t3. Otherwise, 𝑠𝑡 > 𝑒𝑛𝑑, the required banks wrap

2 Remember that the I/O buffers exchange roles in every inference step,
eaning that one buffer stores even layers and the other stores odd layers

see Section 3.2).
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c

Fig. 8. Driving example of the CNN-Gated component, including the state of the inputs, registers, and intermediate signals at specific cycles of the inference process. Signals not
appearing in a given cycle means that the state is preserved with respect to the previous cycle on the left.
t

Table 2
Timing, energy, power, and area values for the proposed Gated-CNN approach and an
I/O buffer using a 32 nm technology node.

Gated-CNN I/O buffer Overhead (%)

Access time (ns) 0.19 1.88 10.11
Dyn. energy (pJ) 0.29 162.19 0.18
Leak. power (mW) 1.39 178.14 0.78
Area (mm2) 0.003 3.378 0.09

around the I/O buffer. In such a case, the encoder outputs are bit-wise
ORed. This is the case of the example at cycle t3, where 𝐶𝑜𝑢𝑡 = ‘1’
(𝑠𝑡 = 5 > 𝑒𝑛𝑑 = 0). Finally, note that Cout determines the appropriate
bit-wise operation by driving the 𝑀𝑋1 multiplexer.

5.5. Bitmap update module

The purpose of the bitmap update module is to establish the ap-
propriate bitmap to the power-gating mechanism cycle by cycle. This
module takes as inputs ftMap from the previous module, and two
ommand signals, cmd_pwrOnNxtBnks and cmd_useNxtBnks, specifying,

respectively, when the banks required by the (𝑖+2)th layer should be
powered on and when the next inference step starts.

The 8-bit currBitmap register, implemented with 8T cells, stores the
current power-gating bitmap applied to the banks, that is, it refers to
the 𝑖th layer. Using the example in Fig. 8, this register stores the bitmap
‘00000111’ at cycle t0. At cycle t1, those banks required by the (𝑖+2)th
layer start to be woken up in advance. To do so, cmd_pwrOnNxtBnks and
cmd_useNxtBnks are set to ‘1’ and ‘0’, respectively. This allows ftMap
and currBitmap to be bitwise ORed, resulting in a new currBitmap =
‘00011111’ (𝑀𝑋1 selection bit = ‘0’ and en = ‘1’), specifying not only
the required banks of the 𝑖th layer but also those of the (𝑖+2)th layer
set to ON. Like previous works [40,41], we assume the wake up latency
of a bank to be 10 cycles. That is, the requested banks are powered on
10 cycles ahead of starting the next inference step, which ensures the
wake-up latency to be out of the critical path.

At cycle t2, cmd_pwrOnNxtBnks and cmd_useNxtBnks are set to ‘0’ and
‘1’, respectively, establishing the proper bitmap for the next inference
step (currBitmap = ftMap = ‘00011000’). That is, at this cycle, those
banks no longer required are powered off. Notice too that, at the same
time, the sBnk contents are updated accordingly. Finally, at cycle t3, a
new ftMap is obtained according to the size of the subsequent (𝑖+2)th
layer.

5.6. Timing, energy, power, and area estimations

To measure timing, energy, power, and area numbers, the proposed
Gated-CNN design has been synthesized with Synopsys Design Compiler
and simulated with Mentor Graphics Modelsim. The technology library
7

a

corresponds to a low-power 32 nm technology available to European
universities. Table 2 summarizes the results. For comparison purposes,
results include the estimations for an I/O buffer and the overheads of
Gated-CNN with respect to the buffer. The I/O buffer has been modeled
with the CACTI-P simulation framework [42].

The access time of Gated-CNN refers to its longest path delay from
sBnk to currBitmap registers, which is out of the critical path. The
dynamic energy of Gated-CNN refers to obtaining a new power-gating
bitmap given a set of inputs, whereas these expenses for the I/O buffer
are related to accessing the memory. Compared to the numbers of the
I/O buffer, the overheads of Gated-CNN are minimal. In addition, both
energy and power overheads are largely compensated with the benefits
brought by power gating idle buffer banks.

Finally, CACTI-P has been also used to model the bank power-gating
in the I/O buffers, including all the sleep transistors and interconnects.
The area overhead of the power-gating technique is by 1.39% with
respect to the I/O buffer, which is a similar overhead as those reported
in other power-gating designs from the industry [43,44].

6. Experimental evaluation

This section introduces the simulation framework and aging model
used to obtain the experimental results. Then, these results are quanti-
fied and discussed, including the duty cycle, bit flips, and accesses for
the worst-case memory cell of the I/O buffers under both the baseline
and the proposed Gated-CNN approach. Finally, a distribution of the
𝑉𝑡ℎ degradation for every transistor is also analyzed.

6.1. Evaluation setup

We have extended the TensorFlow 2.5.0 simulation framework [45]
to model the dataflow of the baseline CNN accelerator and on-chip
memories, including the proposed Gated-CNN design, and collect pro-
cessor statistics required to estimate the duty cycle, bit flip, and ac-
cess distributions. The dataflow modeling establishes a cycle-accurate
simulation, where the latency of the on-chip memories and Gated-
CNN approach is obtained with CACTI-P and Synopsys Design Com-
piler, respectively (see Section 5.6). The latency of a partial sum and
accumulation in a PE is assumed to be one cycle.

The aging model presented in Section 2.1 is integrated in Tensor-
Flow to quantify the 𝑉𝑡ℎ degradation in every transistor according to
the experienced 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 and 𝑡𝑟𝑒𝑐 times (duty cycle patterns) and 𝑡 time (bit
flip/access patterns) induced by each CNN application. Table 3 shows
a description and value of the main parameters of the aging model for
a 32 nm technology node.3

3 Interested readers may refer to the following URL containing a reposi-
ory of the extended TensorFlow simulation framework with the Gated-CNN
pproach and aging model: https://github.com/NicolasLanderos/Gated-CNN.

https://github.com/NicolasLanderos/Gated-CNN
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Table 3
Main parameters of the NBTI and HCI aging model for a 32 nm technology node.
Values of all these parameters and remaining ones from Eqs. (1) and (2) can be found
in [17,18,46].

Parameter Description Value

𝑡𝑜𝑥 Oxide thickness 1.65 nm
𝐶𝑜𝑥 Gate capacitance per unit area 4.6 × 10−20 F/nm2

𝑉𝑑𝑑 Supply voltage 0.9 V
𝑉𝑡0 Initial threshold voltage 0.2 V
𝑉𝑑𝑠 Drain–source voltage 0.7 V
𝐸𝑁𝐵𝑇𝐼 Technological constant 0.2 V/nm
𝐸𝑎 Activation energy 0.13 eV
𝑘 Boltzmann constant 8.6174 × 10−5 eV/K
𝑇 Temperature 353.15 K
𝛼𝐻𝐶𝐼 Activity factor 1
𝑓 Clock frequency 1 GHz
𝐸𝐻𝐶𝐼 Technological constant 0.8 V/nm

Fig. 9. Longest duty cycle distributions across all the studied benchmarks. The cross
symbol represents the average duty cycles for all the cells. BL and GC refer to the
baseline and Gated-CNN designs.

Similarly to [16], experimental results have been obtained after
the inference of 150 images for every benchmark. Such a number of
inferences is enough to stabilize all the studied aging patterns.

6.2. Duty cycle analysis

Fig. 9(a) plots, for all the studied benchmarks, the ‘0’ duty cycle
distribution for the worst-case cell, that is, the longest ‘0’ duty cycle.
Gated-CNN incorporates a switch-off state to reflect the amount of time
that the worst-case cell is powered off. The cross symbol in every bar
refers to the average ‘0’ duty cycle for all the cells. BL and GC stand
for baseline and Gated-CNN. Like the previous characterization study in
Section 4, we conservatively assume that the baseline results only refer
to active cells storing useful contents. On the contrary, Gated-CNN uses
all the cells, and consequently all of them are included in the results.

As expected, the maximum ‘0’ duty cycle distribution for the base-
line approach is 100% in every benchmark. In addition, the average
‘0’ duty cycle is also highly biased, as mentioned above. On the other
hand, by powering off idle banks and uniformly distributing switch-off
cycles across them, Gated-CNN largely reduces the longest ‘0’ duty cycle
beyond 50% in all the benchmarks apart from AlexNet.

The differences among benchmarks largely depend on the power-
off opportunities provided by the CNN layer dimensions. In this sense,
8

Fig. 10. Normalized highest bit flip and access peaks of Gated-CNN with respect to
the baseline design. The cross symbol refers to the normalized average bit flips and
accesses for all the cells.

the highest ‘0’ duty cycle reductions are seen in SentimentalNet and
PilotNet due to these benchmarks have the lowest average layer size
requirements (15 kB and 26 kB, respectively, see Table 1). Another
factor that contributes to obtain large reductions is the fact that some
layers do not fit in the I/O buffer and they are spilled to off-chip
memory. Meanwhile, all the I/O buffer banks are powered off. Such a
number of switch-off cycles mainly depends on the required processing
time of the layer. The high ‘0’ duty cycle reductions observed in ZFNet
and SqueezeNet are mainly due to both a relatively small average layer
size and a larger than 2 MB layer.

On the other hand, AlexNet does not reduce the ‘0’ duty cycle as
much as expected from the workload characteristics. This is due to
the combination of the sizes of both banks and layers leading to some
banks being more exercised than others (less switch-off cycles than
expected), since these banks recurrently store compute-intensive layers.
Nevertheless, the obtained reduction for the worst-case cell is as high
as 44% in this CNN, whereas the average duty cycle reduction reaches
a 90%.

Overall, Gated-CNN reduces the average highest ‘0’ duty cycle by
71%. Taking into account all the cells, the average ‘0’ duty cycle
reduction is by 85%.

The counterpart, longest ‘1’ duty cycle distribution, should be also
considered for a complete analysis of the NBTI effect. Fig. 9(b) shows
the results. Unlike the worst-case cells of the baseline with a 100% ‘0’
duty cycle (Fig. 9(a)), the longest ‘1’ duty cycle distribution for the
baseline does not reach 100% in all the benchmarks. In addition, the
average ‘1’ duty cycle greatly reduces in the baseline scheme. These
observations confirm the presence of more zeros than ones in the
activations. For the Gated-CNN design, the percentage of the switch-
off state in the distribution is the same as in the previous analysis. Like
the baseline, the maximum ‘1’ duty cycle is further reduced with the
presence of zeros. This can be clearly seen in VGG16, MobileNet, and
DenseNet.

In summary, Gated-CNN reduces the average longest ‘1’ duty cycle
by 79%. Taking into account all the cells, the average ‘1’ duty cycle
reduction is by 93%. Comparing the results of both duty cycle dis-
tributions, transistors 𝑇𝑃0 are more exposed to the NBTI effect than
transistors 𝑇𝑃 1 (see Section 2.1).

6.3. Bit flip and access analysis

Fig. 10 shows the normalized highest number of bit flips and
accesses of the worst-case cells in the Gated-CNN design with respect to
those cells of the baseline. These results only refer to active cells storing
useful bits in both approaches. Otherwise, the normalized average
numbers (cross symbols) would be skewed toward zero.

By rotating data across banks, Gated-CNN substantially reduces both
the maximum flip and access peaks compared to the baseline. The
largest peak reduction is seen in SentimentalNet. This is mostly due
to every layer fits in a single bank, preventing flips in the remaining
banks. The other benchmarks obtain higher peaks mostly due to larger
layers occupying multiple banks. However, both the highest flip and
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Fig. 11. Longest duty cycle distributions for Gated-CNN. Results differentiate between
a fixed 2 MB I/O buffer size (Fix) and a buffer size adjusted to the largest layer (Adj).

access peaks are reduced at least as much as 49% (VGG16 and ZFNet).
In addition, the average peaks do not exceed a 27% (VGG16) in any
benchmark.

Overall, the highest flip and access peaks are reduced on average
by 74%. Taking into account all the cells, the average reductions are
as much as 88% and 96% for flips and accesses, respectively.

6.4. Sensitivity study to the I/O buffer size

The power-off and rotation capabilities of Gated-CNN not only
depend on the workload characteristics but also on the size of the I/O
buffer. In this work, we have assumed a generic accelerator with a total
on-chip activation storage of 4 MB (2 MB × 2 I/O buffers) capable
to speed up the inference of diverse CNNs with disparate activation
storage requirements. Such an overall activation storage coincides with
the assumed activation storage for the DNN-Life’s baseline accelera-
tor [16], and it is much less than the storage capacity of other inference
accelerators like the Google’s TPU with 24 MB for activations [5].

This section evaluates the sensitivity of Gated-CNN to the I/O buffer
size in terms of power-off and rotation capabilities. More precisely, the
size of the I/O buffer is adjusted to the largest layer size of each CNN
application to quantify the Gated-CNN benefits only from the workload
characteristics (see Table 1). Like the proposed original approach, a
number of eight same-sized banks is assumed regardless of the buffer
size.

Plots in Fig. 11 illustrate the previous duty cycle distributions (Fix)
shown in Fig. 9 and the new distributions adjusting the I/O buffers to
the largest layer size (Adj). Results only refer to the Gated-CNN design.
For an adjusted size of the I/O buffer, the opportunity to switch-off
banks significantly decreases in benchmarks with less than a 2 MB
buffer size like SentimentalNet and PilotNet, but the longest duty cycle
reductions are still at least as high as 44%. On the contrary, other
benchmarks also with a smaller buffer size, like AlexNet and MobileNet,
further reduce the longest duty cycle with respect to the previous
results. This is mainly due to layers occupying a greater number of
banks, which in turn changes the round-robin bank assignment to every
layer, preventing compute-intensive layers to always remain in the
same banks.

On the other hand, CNNs with more than a 2 MB buffer size increase
the longest duty cycle due to huge layers are not spilled to off-chip
memory anymore, reducing the number of switch-off cycles. This is the
9

Fig. 12. Normalized highest bit flip and access peaks of the Gated-CNN approach with
respect to the baseline design. Results differentiate between a fixed I/O buffer size (Fix)
and a buffer size adjusted to the largest layer (Adj).

case of ZFNet and SqueezeNet. For VGG16, the reason for a duty cycle
reduction is the same as explained above for AlexNet and MobileNet.

Notice too that, similarly to the longest duty cycle, the limitations of
Adj in number of switch-off cycles due to either a buffer size reduction
or spilling prevention translate into a higher average duty cycle over
Fix in most benchmarks.

To sum up, despite adjusting the I/O buffer size to the largest
layer storage requirements, the average longest ‘0’ and ‘1’ duty cycle
reductions are as much as 63% and 76%, respectively.

Fig. 12 depicts the normalized highest flip and access peaks for fixed
(Fig. 10) and adjusted buffer sizes. Small CNNs like SentimentalNet
and PilotNet substantially increase the normalized peaks, especially flip
peaks. This is mainly due to, with an adjusted buffer, layers of small
CNNs occupy a larger number of banks, increasing the likelihood of a
higher number of flips/accesses in a given cell. In spite of this, peak
reductions are at least by 50% with respect to the baseline scheme.

The remaining CNNs show minor peak increases due to the same
reason as stated above. On the contrary, AlexNet, VGG16, and
SqueezeNet show peak reductions. This is due to the adjusted buffer
size changes the bank rotation assignment in such a way that reduces
the flip and access peaks with respect to the fixed 2 MB buffer size.

Overall, the average maximum flip and access peak reductions are
by 62% and 79%, respectively, compared to the baseline design.

6.5. Threshold voltage degradation

This section analyzes the threshold voltage degradation (𝑑𝑉𝑡ℎ)
caused by the studied aging phenomena in all the transistors. The
voltage degradation has been obtained for a 3-year lifetime [47]. The
inference of the chosen subset of images is repeated over and over
until the established lifetime is reached [18]. Results differentiate
between the two types of aging effects: NBTI-induced wearout in
PMOS transistors (𝑇𝑃 𝑖) is derived from Eq. (1), whereas HCI-induced
egradation in NMOS transistors is computed from Eq. (2). In turn,
MOS transistors are distinguished between inverter loop (𝑇𝑁𝑖) and
ass transistors (𝑇𝑊 𝑖). Results have been obtained assuming a fixed 2
B size for the I/O buffer.

Fig. 13(a) shows the normalized 𝑑𝑉𝑡ℎ distribution of the baseline
nd Gated-CNN with respect to the maximum 𝑑𝑉𝑡ℎ after 3 years. The
lotted results refer to the NBTI degradation affecting the 𝑇𝑃 𝑖 transis-
ors. As observed, the proposed approach reduces the NBTI stress in all
he transistors, since boxes and whiskers are located below those of the
aseline in all the benchmarks. In addition, the heights of the boxes
eferring to Gated-CNN are shorter than those of the baseline in most
enchmarks. That is, a more homogeneous NBTI degradation across all
he transistors is achieved by the proposed Gated-CNN approach in at
east a 50% of the cells.

The NBTI-induced 𝑑𝑉𝑡ℎ savings for the worst-case 𝑇𝑃 𝑖 transistors
ange from 20% (AlexNet) to 51% (SentimentalNet). The average 𝑑𝑉𝑡ℎ
reduction for all these transistors is by 49%.
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Fig. 13. Normalized 𝑑𝑉𝑡ℎ for every cell transistor with respect to the maximum 𝑑𝑉𝑡ℎ
after a 3-year lifetime, distinguishing among different types of transistors (aging effects).

Fig. 13(b) plots the normalized 𝑑𝑉𝑡ℎ distribution caused by the HCI
effect in the 𝑇𝑁𝑖 transistors. Unlike the NBTI effect, some boxes of
Gated-CNN stay above those of the baseline approach as a consequence
of spreading out flips across NMOS transistors. In other words, HCI
is more uniformly distributed across transistors, which might imply
distribution percentiles above those of the baseline. Nevertheless, like
the NBTI effect, the HCI distribution helps Gated-CNN to obtain thinner
boxes and largely reduce the 𝑑𝑉𝑡ℎ in the worst-case transistors.

The HCI-induced 𝑑𝑉𝑡ℎ reduction for the worst-case 𝑇𝑁𝑖 transistors
ranges from 28% (VGG) to 67% (SentimentalNet). The average 𝑑𝑉𝑡ℎ
savings for all these transistors is by 68%.

Finally, Fig. 13(c) focuses on the HCI effect in the 𝑇𝑊 𝑖 transistors.
Similarly to the previous results, Gated-CNN obtains thinner boxes with
respect to the baseline in most benchmarks, whereas the worst-case
𝑑𝑉𝑡ℎ of the transistors is substantially reduced.

The HCI-induced 𝑑𝑉𝑡ℎ savings for the worst-case 𝑇𝑊 𝑖 transistors vary
between 29% (ZFNet) and 64% (PilotNet), whereas the average 𝑑𝑉𝑡ℎ
avings for all these transistors is by 85%.

. Related work

Prior related work focusing on aging-aware mechanisms for on-
hip memories can be classified into bit-flipping techniques, modifying
he design of 6T SRAM cells, data rotation schemes, and power-gating
pproaches.

.1. Bit-flipping approaches

A significant amount of work has addressed the NBTI wearout by
eriodically inverting the memory contents. The Penelope processor
10
complements the contents of idle CPU cache blocks and registers [48].
Gebregiorgis et al. attack the same memory structures by identifying
bit positions with an optimal NBTI signal probability and inverting
the remaining bits according to such signals [49]. The iRMW mech-
anism flips the CPU cache contents depending on the type of write
operation [50]. Similarly, recent FPGA designs have also relied on
bit-flipping techniques to address aging effects in both the combina-
tional and memory CMOS-based circuits [51]. In CNN accelerators, the
state-of-the-art DNN-Life approach periodically flips the weight buffer
contents using a random function. See Section 2.2 for more details.

Bit-flipping techniques effectively balance the cell duty cycles. How-
ever, these mechanisms come at the cost of aggravating the HCI effect.

7.2. SRAM cell circuit

Recovery Boosting focuses on NBTI mitigation in CPU memories by
modifying the memory cells in such a way that both the ground voltage
and the bitlines are raised to 𝑉𝑑𝑑 when cell contents are invalid [52].

othawade et al. implement CPU register files combining normally-
ized transistors with NBTI-resilient up-sized transistors in a manner
hat the latter store the output of aging-inducing instructions [53].
icketts et al. investigate the usage of robust 8T SRAM cells together
ith power saving techniques to minimize the impact of NBTI [38].
ong et al. employ 8T cells to implement the most significant bits of
PU integer registers, since they present highly biased ‘0’ duty cycles,
hereas 6T cells are used for the remaining bits [39]. Dounavi et al.

ake advantage of a cell aging prediction mechanism along with a
epairing technique using spare cells [54].

Unfortunately, either spare cells, up-sizing, or adding more tran-
istors to the 6T SRAM cell design imply high area and power over-
eads, preventing the adoption of these techniques in area and power-
onstrained designs like CNN accelerators.

.3. Rotation schemes

Dynamic Indexing identifies idle cache blocks where 𝑉𝑑𝑑 can be
educed to alleviate NBTI degradation, and uniformly spread out such
dle blocks across the cache with different index update functions [55].
olt attacks both the HCI and NBTI effects in CPU caches [56]. The for-
er effect is minimized by applying a cache set rotation using an LFSR,
hereas the latter effect is combated by periodically complementing

he memory contents. Proactive Recovery establishes a suspended NBTI
earout mode on a rotating basis thanks to including spare cache
emory arrays in the CPU design [57]. Other works focus on NBTI
itigation in CPU registers, where both inter and intra-register bit

otation mechanisms are performed, either splitting the register in two
alves [35], introducing a barrel-shifter between the address decoder
nd the memory cells [36], or proposing alternative physical-to-logical
egister mappings [58].

These techniques cannot be directly applied to domain-specific
NN accelerators since: (i) the memory organization and manage-
ent in general-purpose processors is different, and (ii) the mem-

ry demands and the temporal/spatial localities of general-purpose
pplications largely differ with respect to those of CNN applications.

.4. Power-gating

Power-gating has been previously exploited in CPU and GPU archi-
ectures to alleviate transistor aging. Valero et al. focus on CPU caches
y power gating zero data bytes and rearranging the bytes of the
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cache blocks to uniformly distribute power-off cycles among all the
bytes [37]. Such a rotation scheme is ineffective in CNN accelerators
according to the characterization study shown in Section 4. In addi-
tion, the percentage of null bytes in CNN activations can be rather
low (e.g., 13% in AlexNet). Finally, fine-grain power-gating schemes
impose a large area overhead, making such approaches impractical for
area-constrained embedded systems.

The ARGO approach exploits the observation that some GPU regis-
ters are never used, and consequently power gates such registers [40].
The RC+RAR technique also exploits this observation, and increases the
power-gating opportunities by compressing entire GPU registers using
a variation of the base-delta-immediate compression algorithm [59].
In addition, both ARGO and RC+RAR approaches modify the wave-
front register allocation to distribute switch-off cycles among all the
registers. The under-utilization of GPU register files is caused by badly
programmed applications where the underlying GPU hardware is not
taken into account. Contrary to such general-purpose applications, the
memory under-utilization of CNN applications dynamically changes
at runtime and is caused by the unique memory demands of these
applications, requiring specific solutions for CNN accelerators.

8. Conclusions

Negative Bias Temperature Instability (NBTI) and Hot Carrier Injec-
tion (HCI) are two of the main aging phenomena that compromise the
system’s lifetime reliability. Both effects degrade the transistor’s thresh-
old voltage (𝑉𝑡ℎ) over time, making transistors slower and eventually
resulting in timing violations. These effects are especially critical in
those transistors used to implement SRAM memories because they are
permanently aging. In this sense, NBTI affects transistors when a cell
stores a given logic value for a long period (i.e., a long duty cycle),
whereas HCI manifests when the cell content is accessed and flipped.

On the other hand, the slowdown of the transistor scaling has
become one of the major drivers toward domain-specific accelerators,
which deliver a higher performance-to-power ratio with respect to
general-purpose processors. Convolutional Neural Network (CNN) ac-
celerators have consolidated as commodity devices that speed up the
inference process required on classification and regression tasks. These
accelerators usually implement large on-chip SRAM memories to cache
the neural network parameters consisting of weights and activations,
thereby minimizing costly off-chip memory accesses.

This paper has identified those cell transistors of on-chip SRAM
activation memories of CNN accelerators that age the most from the
perspective of both NBTI and HCI effects. Based on this information,
this work has presented Gated-CNN, a novel microarchitectural tech-
nique that reduces the largest duty cycles by power gating specific
memory cells, and evenly distributes the access and flip patterns across
all the cells with an address rotation mechanism.

Experimental results have shown that Gated-CNN extends the life-
time of the cell transistors with average 𝑉𝑡ℎ degradation savings at least
as much as 49% depending on the type of transistor.

As for future work, we plan to characterize other aging phenom-
ena in CNN accelerators, like time dependent dielectric breakdown
and electromigration effects, and explore new microarchitectural tech-
niques contributing to the device lifetime extension.
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