
Linear Algebra and its Applications 647 (2022) 31–46
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Accurate computations with Wronskian matrices of 
Bessel and Laguerre polynomials ✩

E. Mainar, J.M. Peña, B. Rubio ∗

Departamento de Matemática Aplicada/IUMA, Universidad de Zaragoza, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 October 2021
Accepted 11 April 2022
Available online 13 April 2022
Submitted by Y. Nakatsukasa

MSC:
15A23
65F05
15A18
15A06
15A09
33C10
33C50
65G50

Keywords:
Totally positive matrices
Wronskian matrices
Bidiagonal decompositions
High relative accuracy
Bessel polynomials
Laguerre polynomials

This paper provides an accurate method to obtain the 
bidiagonal factorization of Wronskian matrices of Bessel 
polynomials and of Laguerre polynomials. This method can 
be used to compute with high relative accuracy their singular 
values, the inverse of these matrices, as well as the solution of 
some related systems of linear equations. Numerical examples 
illustrating the theoretical results are included.

© 2022 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

✩ This work was partially supported through the Spanish research grant PGC2018-096321-B-I00 
(MCIU/AEI), by Gobierno de Aragón (E41_20R).
* Corresponding author.

E-mail address: brubio@unizar.es (B. Rubio).
https://doi.org/10.1016/j.laa.2022.04.004
0024-3795/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.laa.2022.04.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2022.04.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:brubio@unizar.es
https://doi.org/10.1016/j.laa.2022.04.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 E. Mainar et al. / Linear Algebra and its Applications 647 (2022) 31–46
1. Introduction

Finding algorithms with high relative accuracy (HRA) for matrix calculations such as 
obtaining their singular values or inverses is a desirable goal that has been achieved only 
for a few classes of matrices. Among them, we can mention some subclasses of totally 
positive matrices for which the bidiagonal factorization can be calculated with HRA. 
After an adequate parametrization of the matrices, this goal has been achieved for the 
collocation matrices of some important systems of functions. This was obtained for the 
collocation matrices of Bessel polynomials (see applications in [5], [11] and references in 
there) and for the collocation matrices of generalized Laguerre polynomials (see [4]). In 
both cases, the collocation matrices are totally positive (see Section 2) and a bidiagonal 
factorization with HRA was obtained for them. This bidiagonal factorization is the start 
step to apply the algorithms with HRA of [13–15].

It is well known that many fundamental problems in interpolation and approximation 
require linear algebra computations related to collocation matrices. Wronskian matrices 
arise when solving Hermite interpolation problems, in particular Taylor interpolation 
problems. In CAGD, the solution of systems of equations with Wronskian matrices is 
also important for the definition of bases with good properties in interactive curve design 
(cf. [3]). Furthermore, in other applications of matrix theory, for example in spectral 
theory, Wronskian matrices of fundamental solution sets to linear differential equations 
play a relevant role (cf. [12]).

In [16], the bidiagonal decomposition of the Wronskian matrix of the monomial basis 
of the space of polynomials of a given degree and the bidiagonal factorization of the 
Wronskian matrix of the basis of exponential polynomials were obtained. Furthermore, 
in [17] a procedure to accurately compute the bidiagonal decomposition of collocation and 
Wronskian matrices of the wide family of Jacobi polynomials is proposed. The obtained 
results are used to get accurate computations using collocation and Wronskian matrices 
of well-known types of Jacobi polynomials.

In this paper, we obtain the bidiagonal factorization with HRA for the Wronskian 
matrices of Bessel polynomials as well as for the Wronskian matrices of generalized 
Laguerre polynomials, which can be used to calculate with HRA their singular values or 
inverses.

The layout of the paper is as follows. Section 2 presents basic concepts and results. 
Section 3 proves the total positivity of the Wronskian matrices of Bessel polynomials 
defined on positive real numbers and shows that the mentioned algebraic calculations 
can be performed with HRA. Section 4 deals with the corresponding results for the 
Wronskian matrices of generalized Laguerre polynomials. Section 5 includes numerical 
examples illustrating the great accuracy of the presented methods for the computation 
of all singular values, the inverses of the matrices and the solution of some linear sys-
tems.
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2. Notations and previous results

In this paper we shall use the following notations. Given an n-times continuously 
differentiable real function f and x ∈ R in its domain, f ′(x) denotes the first derivative 
of f at x. For any i ≤ n, f (i)(x) denotes the i-th derivative of f at x. Given a basis 
(u0, . . . , un) of a space of n-times continuously differentiable functions, defined on a real 
interval I and x ∈ I, the Wronskian matrix at x is

W (u0, . . . , un)(x) := (u(i−1)
j−1 (x))i,j=1,...,n+1.

A matrix is totally positive (TP) if all its minors are nonnegative. Some books with 
many applications of TP matrices are [1,7,19].

Neville elimination is an alternative procedure to Gaussian elimination and has been 
used to characterize TP matrices. More details on this elimination method can be found 
in [8–10].

By Theorem 4.2 and the arguments of p. 116 of [10], a nonsingular TP matrix A =
(ai,j)1≤i,j≤n+1 admits a factorization of the form

A = FnFn−1 · · ·F1DG1 · · ·Gn−1Gn, (1)

where Fi and Gi are the TP, lower and upper triangular bidiagonal matrices given by

Fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
mi+1,1 1

. . . . . .
mn+1,n+1−i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

GT
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
m̃i+1,1 1

. . . . . .
m̃n+1,n+1−i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

and D = diag (p1,1, p2,2, . . . , pn+1,n+1) has positive diagonal entries. If, in addition, the 
entries mi,j , m̃i,j satisfy

mi,j = 0 ⇒ mh,j = 0, ∀h > i, and m̃i,j = 0 ⇒ m̃i,k = 0, ∀ k > j, (3)
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then the decomposition (1) is unique. The diagonal entries pi,i of D are the diagonal 
pivots of the Neville elimination of A and the elements mi,j , m̃i,j are positive and coincide 
with the multipliers of the Neville elimination of A and AT , respectively.

In [13], the bidiagonal factorization (1) of an (n + 1) × (n + 1) nonsingular and TP 
matrix A is represented by defining a matrix BD(A) = (BD(A)i,j)1≤i,j≤n+1 such that

BD(A)i,j :=

⎧⎪⎪⎨
⎪⎪⎩
mi,j , if i > j,

pi,i, if i = j,

m̃j,i, if i < j.

(4)

The bidiagonal factorization (1) can be used to represent more classes of matrices. 
In fact, if we consider the factorization given by (1), (2) and (3) without any further 
requirement than the nonsingularity of D then, by Proposition 2.2 of [2], the uniqueness 
of (1) holds. From now on, BD(A) will denote the bidiagonal decomposition of a matrix 
that satisfies these hypotheses.

Let us observe that if a matrix A is nonsingular and TP, then AT is also a nonsingular 
and TP matrix. Moreover, the bidiagonal decomposition of AT can be computed as

AT = GT
nG

T
n−1 · · ·GT

1 DFT
1 · · ·FT

n−1F
T
n , (5)

where Fi and Gi, i = 1, . . . , n, are the lower and upper triangular bidiagonal matrices in 
(1). In fact, BD(AT ) = (BD(A))T (see Section 4 of [13]).

We say that a real x is computed with high relative accuracy (HRA) whenever the 
computed value x̂ satisfies

‖x− x̂‖
‖x‖ < Ku,

where u is the unit round-off and K > 0 is a constant independent of the arithmetic 
precision. Clearly, HRA implies that the relative errors in the computations have the 
same order as the machine precision. It is well known that a sufficient condition to assure 
that an algorithm can be computed with HRA is the non inaccurate cancellation (NIC) 
condition and it is satisfied if it only evaluates products, quotients, sums of numbers of 
the same sign, subtractions of numbers of opposite sign or subtraction of initial data 
(cf. [6], [13]).

If the bidiagonal factorization (1) of a nonsingular TP matrix A is computed with HRA 
then, using the algorithms in [14], we can also compute with HRA its singular values, the 
matrix A−1 and even the solution of Ax = b for vectors b with alternating signs. In the 
following sections we shall obtain the bidiagonal factorization (1) of Wronskian matrices 
associated to Bessel and Laguerre polynomials, analyzing whether it can be computed 
with HRA.
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3. Total positivity and factorization of Wronskian matrices of Bessel polynomials

Let us denote by Pn the space of polynomials of degree less than or equal to n and 
(p0, . . . , pn) the monomial basis of Pn such that

pi(x) := xi, i = 0, . . . , n. (6)

The following result restates Corollary 1 of [16] providing the bidiagonal factorization 
(1) of the Wronskian matrix W (p0, . . . , pn)(x), x ∈ R.

Proposition 1. Let (p0, . . . , pn) be the monomial basis given in (6). For any x ∈ R, the 
Wronskian matrix W (p0, . . . , pn)(x) is nonsingular and can be factorized as follows,

W (p0, . . . , pn)(x) = DG1,n · · ·Gn−1,nGn,n, (7)

where D = diag{0!, 1!, . . . , n!} and Gi,n, i = 1, . . . , n, are the upper triangular bidiagonal 
matrices in (2) with

m̃k,k−i = x, i + 1 ≤ k ≤ n + 1. (8)

Moreover, if x > 0 then W (p0, . . . , pn)(x) is nonsingular and TP, its bidiagonal decom-
position (1) is given by (7) and (8) and it can be computed with HRA.

Let us recall that the Bessel basis of Pn is the polynomial system (B0, . . . , Bn) with

Bi(x) :=
i∑

k=0

(i + k)!
2k(i− k)!k!x

k, i = 0, . . . , n. (9)

In [5], the total positivity of the matrix of change of basis between the Bessel polynomial 
basis (B0, . . . , Bn) and the monomials (p0, . . . , pn) is proved. As a consequence, accurate 
computations when considering collocation matrices (Bj−1(xi−1))1≤i,j≤n+1 with (0 <
)x0 < x1 < · · · < xn are derived.

Now, let W (B0, . . . , Bn)(x) be the Wronskian matrix at x ∈ R of the basis (9) of 
Bessel polynomials. The following result extends the results in [5] to W (B0, . . . , Bn)(x)
at x > 0 and establishes the total positivity of this Wronskian matrix.

Theorem 2. Let (B0, . . . , Bn) be the Bessel polynomial basis defined in (9). For any x > 0, 
the Wronskian matrix W := W (B0, . . . , Bn)(x) is nonsingular TP and its bidiagonal de-
composition (1) can be computed with HRA. Furthermore, the computation of its singular 
values, the inverse of W , as well as the solution of the linear systems Wx = b, where 
b = (b0, . . . , bn)T has alternating signs, can be performed with HRA.



36 E. Mainar et al. / Linear Algebra and its Applications 647 (2022) 31–46
Proof. It can be checked that

(B0, . . . , Bn)T = A(p0, . . . , pn)T , (10)

where (p0, . . . , pn) is the monomial basis given in (6) and the change of basis matrix 
A = (aij)1≤i,j≤n+1 is lower triangular and satisfies

ai,j := (i + j − 2)!
2j−1(i− j)!(j − 1)! , i ≥ j. (11)

Using formula (10), it can be checked that

W (B0, . . . , Bn)(x) = W (p0, . . . , pn)(x)AT , (12)

where W (p0, . . . , pn)(x) is the Wronskian matrix of the monomial basis (p0, . . . , pn) and 
A is the lower triangular matrix described by (11).

By Proposition 1, W (p0, . . . , pn)(x), x > 0, is nonsingular and TP and its bidiagonal 
factorization (1) can be computed with HRA. Furthermore, by Theorem 3 of [5], A is a 
nonsingular TP matrix and admits a factorization of the form

A = FnFn−1 · · ·F1D, (13)

where Fi, i = 1, . . . , n, are the lower triangular bidiagonal matrices described in (2) and 
D = diag (p1,1, . . . , pn+1,n+1). The entries mi,j , 1 ≤ j < i ≤ n +1, and pi,i, 1 ≤ i ≤ n +1, 
are given by

mi,j = (2i− 2)(2i− 3)
(2i− j − 1)(2i− j − 2) , pi,i = (2i− 3)!!, (14)

with the following double factorial notation for a positive integer k,

k!! :=
�(k−1)/2�∏

j=0
(k − 2j),

where �(k − 1)/2	 is the greatest integer less than or equal to (k − 1)/2. Clearly, mi,j , 
and pi,i are positive and can be obtained with HRA. The bidiagonal factorization (1) of 
AT is given by AT = DFT

1 · · ·FT
n−1F

T
n .

On the other hand, W (B0, . . . , Bn)(x), x > 0, is nonsingular and TP since, by (12), 
it can be expressed as the product of two nonsingular TP matrices (see Theorem 3.1 of 
[1]).

Using Algorithm 5.1 of [14], if the bidiagonal decomposition (1) of two nonsingular 
TP matrices is provided with HRA, then the corresponding bidiagonal decomposition 
(1) of the product is computed with HRA. Consequently, the bidiagonal decomposition 
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(1) of W = W (B0, . . . , Bn)(x), x > 0, can be computed with HRA. This fact guarantees 
that algebraic problems such as the computation of all the singular values, the inverse 
matrix of W , and the solution of the linear systems Wx = b, where b = (b0, . . . , bn)T has 
alternating signs, can be performed with HRA (see Section 3 of [6]). �

Let us recall that the basis of reverse Bessel polynomials in Pn is (R0, . . . , Rn) with

Ri(x) :=
i∑

k=0

(i + k)!
2k(i− k)!k!x

i−k, i = 0, . . . , n. (15)

Let us observe that this basis is obtained when reversing the order of the coefficients of 
the Bessel polynomials Bi(x), i = 0, . . . , n, in (9).

In [5] it is proved that the matrix of change of basis between the reverse Bessel 
polynomials (R0, . . . , Rn) and the monomials (p0, . . . , pn) is TP. Therefore, accurate 
computations with collocation matrices (Rj−1(xi−1))1≤i,j≤n+1 where (0 <)x0 < x1 <

· · · < xn are provided.
Given x ∈ R, W (R0, . . . , Rn)(x) denotes the Wronskian matrix at x of the basis 

(15) of reverse Bessel polynomials. The following result extends the results in [5] to 
W (R0, . . . , Rn)(x) at x > 0 and establishes the total positivity of this Wronskian matrix.

Theorem 3. Let (R0, . . . , Rn) be the reverse Bessel polynomials basis given in (15). For 
any x > 0, the Wronskian matrix WR := W (R0, . . . , Rn)(x) is nonsingular TP and its 
bidiagonal decomposition (1) can be computed with HRA. Furthermore, the computation 
of its singular values, the inverse of WR, as well as the solution of the linear systems 
WRx = b, where b = (b0, . . . , bn)T has alternating signs, can be performed with HRA.

Proof. It can be checked that

(R0, . . . , Rn)T = C(p0, . . . , pn)T , (16)

where (p0, . . . , pn) is the monomial basis given in (6) and C = (cij)1≤i,j≤n+1 is the lower 
triangular change of basis matrix such that

ci,j = (2i− j − 1)!
2i−j(j − 1)!(i− j)! , i ≥ j. (17)

By formula (16) we can write

W (R0, . . . , Rn)(x) = W (p0, . . . , pn)(x)CT , (18)

where W (p0, . . . , pn)(x) is the Wronskian matrix of (p0, . . . , pn) at x and C is the lower 
triangular matrix described by (17).
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Let us recall that, by Proposition 1, W (p0, . . . , pn)(x), x > 0, is nonsingular and TP 
and its bidiagonal factorization (1) can be computed with HRA. On the other hand, by 
Theorem 5 of [5], the matrix C is nonsingular and TP and admits a factorization

C = FnFn−1 · · ·F1D, (19)

where Fi, i = 1, . . . , n, are the lower triangular bidiagonal matrices described in (2) and 
D = diag (p1,1, . . . , pn+1,n+1). The entries mi,j and pi,i are given by

mi,j = 2i− 2j − 1, 1 ≤ j < i ≤ n + 1, pi,i = 1, 1 ≤ i ≤ n + 1, (20)

and, clearly, can be obtained with HRA. The bidiagonal factorization (1) of CT is given 
by CT = DFT

1 · · ·FT
n−1F

T
n .

Since W (R0, . . . , Rn)(x), x > 0, is the product of two nonsingular TP matrices, by 
(18), we deduce that it is nonsingular and TP (see Theorem 3.1 of [1]).

Using Algorithm 5.1 of [14], if the bidiagonal decomposition (1) of two nonsingular 
TP matrices is provided with HRA, then the corresponding bidiagonal decomposition 
(1) of the product is computed with HRA. Consequently, the bidiagonal decomposition 
(1) of W (R0, . . . , Rn)(x), x > 0, can be computed with HRA and so, its inverse matrix, 
its singular values and the solutions of the mentioned linear systems (see Section 3 of 
[6]). �

Section 5 shows accurate results obtained when solving the above algebraic problems 
using the bidiagonal factorization (1) and the algorithms presented in [14] and [15].

4. Total positivity and factorization of Wronskian matrices of Laguerre polynomials

Given α > −1, the generalized Laguerre basis of Pn is the polynomial system 
(L(α)

0 , . . . , L(α)
n ) described by

L
(α)
i (x) :=

i∑
k=0

(−1)k
(
i + α

i− k

)
xk

k! , i = 0, . . . , n. (21)

It is well known that this polynomial basis is orthogonal on the interval [0, ∞) with 
respect to the weight function xαe−x.

In [4] accurate computations when considering collocation matrices of Laguerre poly-
nomials 

(
L

(α)
j−1(xi−1)

)
1≤i,j≤n+1

, with (0 >)x0 > x1 > · · · > xn are provided.
The following result analyzes the total positivity of Laguerre Wronskian matrices and 

provides a factorization that allows to solve with HRA some algebraic problems.

Theorem 4. Let (L(α)
0 , . . . , L(α)

n ) be the Laguerre basis defined in (21) and J the diagonal 
matrix J := diag((−1)i−1)1≤i≤n+1. Then, for any x < 0, the matrix
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WJ := JW (L(α)
0 , . . . , L(α)

n )(x) (22)

is a nonsingular TP matrix and its bidiagonal decomposition (1) can be computed with 
HRA. Furthermore, the computation of all the singular values, the inverse of WJ , as well 
as the solution of the linear systems WJx = b, where b = (b0, . . . , bn)T has alternating 
signs, can be performed with HRA.

Proof. In Theorem 2 of [4] it is shown that the matrix A of the change of basis between 
the generalized Laguerre basis (21) and the monomial basis (6) such that

(L(α)
0 , . . . , L(α)

n ) = (p0, . . . , pn)A, (23)

satisfies

A = JS−1
α PUS

−1
0 Sα, (24)

where Sα := diag((α + i − 1)i−1))1≤i≤n+1 and PU ∈ Rn is an upper triangular Pascal 
matrix, that is, the (n + 1) × (n + 1) upper triangular matrix with 

(
j−1
i−1

)
as (i, j)-entry 

for j ≥ i.
Let (�0, . . . , �n) such that �i(x) = (−x)i, i = 0, . . . , n. Since (p0, . . . , pn) =

(�0, . . . , �n)J , taking into account identities (23) and (24), we can write

(L(α)
0 , . . . , L(α)

n ) = (�0, . . . , �n)S−1
α PUS

−1
0 Sα. (25)

Let us observe that the upper triangular Pascal matrix PU is nonsingular and TP (see 
[7]) and so are the positive diagonal matrices S−1

α , S−1
0 and Sα. Then, we can deduce 

that S−1
α PUS

−1
0 Sα is also nonsingular and TP since it is a product of nonsingular and 

TP matrices.
On the other hand, since �(i)j (x) = (−1)ip(i)

j (−x), 0 ≤ i ≤ j ≤ n, the following matrix 
equality can be easily deduced

JW (�0, . . . , �n)(x) = W (p0, . . . , pn)(−x), x ∈ R. (26)

Then, using equality (26), we can deduce that the scaled Wronskian matrix JW (L(α)
0 ,

. . . , L
(α)
n )(x), x ∈ R, satisfies

JW (L(α)
0 , . . . , L(α)

n )(x) = JW (�0, . . . , �n)(x)S−1
α PUS

−1
0 Sα

= W (p0, . . . , pn)(−x)S−1
α PUS

−1
0 Sα.

Moreover, from Proposition 1, W (p0, . . . , pn)(−x), x < 0, is nonsingular TP and so is 
the matrix JW (L(α)

0 , . . . , L(α)
n )(x), since it is the product of nonsingular TP matrices.

The bidiagonal factorization (1) of JW (�0, . . . , �n)(x) = W (p0, . . . , pn)(−x), x < 0, is 
described by (7) and (8). Clearly, it can be computed with HRA. On the other hand, 
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in Theorem 2 of [4] it is shown that the bidiagonal factorization (1) of the matrix 
S−1
α PUS

−1
0 Sα is

S−1
α PUS

−1
0 Sα = S−1

0 G1 · · ·Gn,

where Gk, k = 1, . . . , n, is the bidiagonal upper triangular matrix with unit diagonal 
whose (i, i + 1) entry is

m̃i,i−k = i + α

i
, k < i.

Again, this factorization can be computed with HRA. Finally, following Section 5.2 of 
[14], the bidiagonal factorization (1) of JW (L(α)

0 , . . . , L(α)
n )(x), x < 0, can be computed 

with HRA using the subtraction-free Algorithm 5.1 in [14], and the bidiagonal factoriza-
tions (1) of JW (�0, . . . , �n)(x) and S−1

α PUS
−1
0 Sα, which can be provided with HRA.

This fact guarantees that algebraic problems such that the computation of all the 
singular values, the inverse matrix of WJ , and the solution of the linear systems WJx = b, 
where b = (b0, . . . , bn)T has alternating signs, can be performed with HRA (see Section 
3 of the [6]). �

Let us observe that by, Theorem 4, we can clearly see that the Wronskian matrix 
W of the Laguerre basis (L(α)

0 , . . . , L(α)
n ) is not TP at any x < 0. Consequently, for the 

accurate solution of algebraic problems with W , such as the computation of W−1, the 
algorithms of [13–15] can not be used directly, using a bidiagonal decomposition of W . 
Nevertheless, as it is shown in the next result, the solution of some algebraic problems 
related with W is closely related to that corresponding to the TP matrix WJ = JW , 
whose bidiagonal decomposition can be computed with HRA. Then, using the algorithms 
of [13–15] with the bidiagonal decomposition (1) of WJ , the solution with HRA of the 
considered algebraic problems can be achieved and then, from the computed results, the 
solutions corresponding to the matrix W can also be obtained with HRA.

Corollary 5. Let W := W (L(α)
0 , . . . , L(α)

n )(x) be the Wronskian matrix of the Laguerre 
basis (L(α)

0 , . . . , L(α)
n ) defined in (21). Then, for any x < 0, the bidiagonal factorization 

(1) of W can be computed with HRA. Moreover, the computation of all its singular 
values, the inverse of W , as well as the solution of the linear systems Wx = b, where 
the elements of b = (b0 . . . , bn)T have the same sign, can be performed with HRA.

Proof. Let J := diag((−1)i−1)1≤i≤n+1. By Theorem 4, the bidiagonal decomposition 
(1) of WJ := JW can be computed with HRA. By multiplying this factorization by 
J = J−1, we can derive with HRA the corresponding bidiagonal factorization of W .

On the other hand, let us observe that, since J is a unitary matrix, the singular values 
of W coincide with those of WJ and then, from Theorem 4, their computation for x < 0
can be performed with HRA. Similarly, taking into account that
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W−1 = W−1
J J,

Theorem 4 also guarantees the accurate computation of W−1. Finally, if we have a linear 
system of equations Wx = b, where the elements of b = (bi . . . , bn)T have the same sign, 
from Theorem 4, we will be able to solve with HRA the equivalent system JWx = Jb, 
since Jb has alternating signs. �

Let us now consider the polynomial basis (L̄(α)
0 , . . . , L̄(α)

n ) obtained by changing the 
variable in the Laguerre basis as follows:

L̄
(α)
i (x) := L

(α)
i (−x) =

i∑
k=0

(
i + α

i− k

)
xk

k! , i = 0, . . . , n. (27)

As in Theorem 4, using the results in this paper, the analysis of the total positivity 
of the Wronskian matrix W (L̄(α)

0 , . . . , L̄(α)
n )(x), x ∈ R, can also be performed.

Theorem 6. Let (L̄(α)
0 , . . . , L̄(α)

n ) be the polynomial basis defined in (27). Then, for any 
x > 0, the Wronskian matrix W := W (L̄(α)

0 , . . . , L̄(α)
n )(x), x > 0, is nonsingular and 

TP and its bidiagonal decomposition (1) can be computed with HRA. Furthermore, the 
computation of all the singular values, the inverse of W , as well as the solution of the 
linear systems Wx = b, where b = (b0, . . . , bn)T has alternating signs, can be performed 
with HRA.

Proof. It can be easily checked that the matrix A of change of basis between the basis 
(27) and the monomial basis (6), such that (L̄(α)

0 , . . . , L̄(α)
n ) = (p0, . . . , pn)A, satisfies

A = S−1
α PUS

−1
0 Sα,

where Sα := diag((α+ i −1)i−1))1≤i≤n+1 and PU is the (n +1) ×(n +1) upper triangular 
Pascal matrix (see [4]). Consequently, W (L̄(α)

0 , . . . , L̄(α)
n )(x) satisfies

W (L̄(α)
0 , . . . , L̄(α)

n )(x) = W (p0, . . . , pn)(x)S−1
α PUS

−1
0 Sα, x ∈ R,

where S−1
α PUS

−1
0 Sα is nonsingular and TP because it is a product of nonsingular and TP 

matrices. As in the proof of Theorem 4, from Proposition 1 and taking into account that 
the product of nonsingular and TP matrices is nonsingular and TP, it can be deduced 
that W = W (L̄(α)

0 , . . . , L̄(α)
n )(x) is nonsingular TP and its bidiagonal factorization (1)

can be provided with HRA, which guarantees that its inverse matrix, its singular values, 
as well as the solution of the linear systems Wx = b, where b = (b0, . . . , bn)T has 
alternating signs, can be performed with HRA. �

Section 5 shows accurate results obtained when solving the above algebraic problems 
using the bidiagonal factorization (1) and the algorithms presented in [14] and [15].
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5. Numerical experiments

Let us suppose that A is an (n + 1) × (n + 1) nonsingular, TP matrix, whose bidi-
agonal decomposition (1) is represented by means of the matrix BD(A) given in (4). 
If BD(A) can be computed with HRA, then the Matlab functions TNSingularValues, 
TNInverseExpand and TNSolve of the library TNTool in [15] take as input argument 
BD(A) and compute with HRA the singular values of A, its inverse matrix A−1 (using 
the algorithm presented in [18]) and the solution of systems of linear equations Ax = b, 
for vectors b whose entries have alternating signs. The function TNProduct is also avail-
able in the mentioned library. If the bidiagonal decomposition (1) of two nonsingular and 
TP matrices A and B can be computed with HRA, TNProduct computes with HRA the 
bidiagonal decomposition (1) of AB. The computational cost of the functions TNSolve 
and TNInverseExpand is O(n2) elementary operations, whereas the computational cost 
of the other mentioned functions is O(n3).

For the Bessel polynomials basis (B0, . . . , Bn), n ∈ N, using Theorem 2 and func-
tion TNProduct, we have implemented a Matlab function that computes BD(W ) for 
its Wronskian matrix W . Furthermore, for the reverse Bessel polynomials (R0, . . . , Rn), 
n ∈ N, considering Theorem 3 and the function TNProduct we have implemented a 
Matlab function that computes BD(W ) for its Wronskian matrix W .

Given α > −1, for the generalized Laguerre polynomials basis (L(α)
0 , . . . , L(α)

n ), con-
sidering Theorem 4 and the function TNProduct, we have also implemented a Matlab 
function, which computes BD(WJ) for the matrix WJ := JW , obtained from its Wron-
skian matrix W at x < 0 (see (22)). At last, for the polynomial basis (L̄(α)

0 , . . . , L̄(α)
n )

defined in (27), using Theorem 6 and the function TNProduct, we have implemented a 
Matlab function for the computation of BD(W ) for its Wronskian matrix W at x > 0.

In the numerical experimentation, we have considered Wronskian matrices correspond-
ing to different (n + 1)-dimensional bases proposed in this paper. The numerical results 
illustrate the accuracy of the computations for dimensions n + 1 = 10, 15, 20, 25. The 
authors will provide upon request the software with the implementation of the above 
mentioned routines.

The 2-norm condition number of the considered Wronskian matrices has been ob-
tained with the Mathematica command Norm[A,2]· Norm[Inverse[A],2] and is shown 
in Table 1. We can clearly observe that the condition numbers significantly increase with 
the dimension of the matrices. This explains that traditional methods do not obtain 
accurate solutions when solving the aforementioned algebraic problems. In contrast, the 
numerical results will illustrate the high accuracy obtained when using the bidiagonal 
decompositions deduced in this paper with the Matlab functions available in [15].

In our first numerical example we have computed the singular values of the considered 
matrices with the following algorithms:

• Matlab’s function TNSingularValues taking as argument the matrix representation 
(4) of the corresponding deduced bidiagonal decomposition (1).
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Table 1
From left to right, condition number of Wronskian matrices of the Bessel polynomials 
bases at x0 = 2 and x0 = 50, reverse Bessel polynomials bases at x0 = 0.3 and x0 = 50, 
generalized Laguerre polynomials at x0 = −5 (with α = 2) and, finally, polynomial basis 
defined in (27) at x0 = 2 (with α = 0).

n + 1 κ2(W ) κ2(W ) κ2(W ) κ2(W ) κ2(W ) κ2(W )

10 4.2 × 1014 3.4 × 1031 2.5 × 108 2.5 × 1025 7.3 × 108 1.1 × 106

15 3.4 × 1026 3.5 × 1049 1.7 × 1015 1.2 × 1037 1.0 × 1012 9.6 × 108

20 3.5 × 1039 4.7 × 1067 1.1 × 1023 1.6 × 1049 1.1 × 1015 8.7 × 1011

25 2.6 × 1054 6.4 × 1086 2.8 × 1032 8.6 × 1054 1.0 × 1018 8.0 × 1014

Table 2
Relative errors when computing the lowest singular value of Wronskian 
matrices of Bessel polynomials bases at x0 = 2 (left) and reverse Bessel 
polynomials bases at x0 = 0.3 (right).

n + 1 svd(W ) TNSV(BD(W )) svd(W ) TNSV(BD(W ))

10 3.0 × 10−4 2.1 × 10−16 1.4 × 10−9 3.9 × 10−15

15 7.6 × 10−1 5.7 × 10−16 5.3 × 10−3 2.4 × 10−15

20 7.9 3.9 × 10−16 3.7 × 10−1 6.8 × 10−15

25 8.0 1.6 × 10−16 9.6 × 10−1 5.9 × 10−15

• Matlab’s command svd.
• Mathematica’s routine Singularvalues with a 100-digit arithmetic for computing 

the singular values of the considered Wronskian matrices.

The values provided by Mathematica have been considered as the exact solution of 
the algebraic problem and the relative error e of each approximation has been computed 
as e := |a − â|/|a|, where a denotes the singular value computed with Mathematica and 
â the singular value computed with Matlab. Let us observe that, for the computation 
of the singular values of Wronskian matrices W of Laguerre bases, we have considered 
instead the TP matrices WJ = JW whose singular values coincide with those of W (see 
Corollary 5).

In Tables 2 and 3, the relative errors of the approximation to the lowest singular 
value of the considered matrices are shown. We can observe that our methods provide 
very accurate results in contrast to the non accurate results provided by the Matlab 
commands svd.

On the other hand, in our second experiment, we have computed the inverse matrix 
of the considered Wronskian matrices with the following algorithms:

• Matlab’s function TNInverseExpand with the corresponding matrix representation 
(4) of the bidiagonal decomposition (1) as argument.

• Matlab’s routine inv.
• Mathematica’s routine Inverse in 100-digit arithmetic for computing the inverse of 

the considered Wronskian matrices.
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Table 3
Relative errors when computing the lowest singular value of Wronskian 
matrices of generalized Laguerre polynomials at x0 = −5 with α = 2
(left) and Wronskian matrices of the polynomials bases defined in (27)
at x0 = 2 with α = 0 (right).

n + 1 svd(W ) TNSV(BD(WJ )) svd(W ) TNSV(BD(W ))

10 3.6 × 10−11 2.2 × 10−16 1.6 × 10−13 8.3 × 10−16

15 1.6 × 10−9 1.2 × 10−15 5.6 × 10−12 1.3 × 10−17

20 2.4 × 10−9 4.7 × 10−15 1.3 × 10−9 3.0 × 10−15

25 4.8 × 10−6 2.6 × 10−15 1.1 × 10−7 1.4 × 10−15

Table 4
Relative errors when computing the inverse of the Wronskian matrices of 
Bessel polynomials bases at x0 = 50 (left) and reverse Bessel polynomials 
bases at x0 = 50 (right).

n + 1 inv(W ) TNIE(BD(W )) inv(W ) TNIE(BD(W ))

10 2.0 × 10−14 1.8 × 10−16 6.1 × 10−15 5.2 × 10−17

15 3.7 × 10−12 1.1 × 10−16 6.6 × 10−11 1.8 × 10−16

20 3.5 × 10−9 4.8 × 10−17 1.0 × 10−7 4.6 × 10−16

25 2.4 × 10−6 2.4 × 10−16 5.0 × 10−5 3.0 × 10−16

To look over the errors we have compared both Matlab approximations with the 
inverse matrix A−1 computed by Mathematica using 100-digit arithmetic, taking into 
account the formula e = ‖A−1 − Â−1‖2/‖A−1‖2 for the corresponding relative error, 
where A−1 denotes the inverse matrix computed with Mathematica and Â−1 the inverse 
matrix computed with Matlab. For the computation of the inverse of the Wronskian 
matrices W of Laguerre bases, we have considered instead the TP matrices WJ = JW . 
Once W−1

J is computed, the inverse of W can be accurately obtained, taking into account 
that

W−1 = W−1
J J,

by means of a suitable change of sign of the accurate computed entries of W−1
J (see 

Corollary 5).
The obtained relative errors are shown in Tables 4 and 5. Observe that the relative 

errors achieved through the bidiagonal decompositions obtained in this paper are much 
smaller than those obtained with the Matlab command inv.

At last, in our third experiment, given random nonnegative integer values di, i =
1, . . . , n + 1, we have computed the solutions of the linear systems Wc = d where, in the 
case of Bessel polynomials bases, reverse Bessel polynomials bases and the polynomials 
bases defined in (27), d = ((−1)i+1di)T1≤i≤n+1 and, in the case of the generalized Laguerre 
bases, d = (di)T1≤i≤n+1 (see Corollary 5).

We have computed the solution of these systems of linear equations associated to the 
considered Wronskian matrices with the next algorithms:
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Table 5
Relative errors when computing the inverse of the Wronskian matrices of 
generalized Laguerre polynomials at x0 = −5 with α = 2 (left) and polyno-
mials bases defined in (27) at x0 = 2 with α = 0 (right).

n + 1 inv(W ) TNIE(BD(WJ )) inv(W ) TNIE(BD(W ))

10 7.4 × 10−14 1.8 × 10−16 1.9 × 10−14 5.7 × 10−17

15 2.7 × 10−11 2.1 × 10−16 8.8 × 10−13 2.9 × 10−16

20 4.7 × 10−10 4.8 × 10−15 4.3 × 10−11 3.6 × 10−15

25 1.5 × 10−8 1.6 × 10−15 4.1 × 10−10 1.6 × 10−15

Table 6
Relative errors when solving Wc = d with Wronskian matrices of Bessel polynomials bases 
at x0 = 50 (left) and reverse Bessel polynomials bases at x0 = 50 (right).

n + 1 W \ d TNSolve(BD(W ), d) W \ d TNSolve(BD(W ), d)

10 1.4 × 10−13 2.8 × 10−17 3.2 × 10−14 2.8 × 10−16

15 1.4 × 10−11 3.5 × 10−16 2.7 × 10−11 1.3 × 10−16

20 5.1 × 10−9 3.1 × 10−16 6.1 × 10−8 3.7 × 10−16

25 1.4 × 10−6 3.4 × 10−16 2.0 × 10−5 2.5 × 10−16

Table 7
Relative errors when solving Wc = d with Wronskian matrices of generalized Laguerre 
polynomials at x0 = −5 with α = 2 (left) and polynomials bases defined in (27) at x0 = 2
with α = 0 (right).

n + 1 W \ d TNSolve(BD(WJ ), Jd) W \ d TNSolve(BD(W ), d)

10 6.7 × 10−14 7.2 × 10−17 2.4 × 10−14 7.2 × 10−17

15 3.1 × 10−11 1.9 × 10−16 6.5 × 10−13 3.3 × 10−16

20 1.9 × 10−10 3.8 × 10−15 1.6 × 10−11 2.6 × 10−15

25 1.3 × 10−8 1.5 × 10−15 1.8 × 10−10 6.6 × 10−15

• Matlab’s function TNSolve by using the matrix representation (4) of the proposed 
bidiagonal decompositions (1).

• Matlab’s command \.
• Mathematica’s routine LinearSolve in 100-digit arithmetic.

The vector provided by Mathematica has been considered as the exact solution c. 
Then, we have computed in Mathematica the relative error of the computed approxima-
tion with Matlab ĉ, taking into account the formula e = ‖c − ĉ‖2/‖c‖2. When considering 
the Wronskian matrices W of Laguerre bases, we have considered instead the equivalent 
system JWc = Jd (see Corollary 5).

In Tables 6 and 7, the relative errors when solving the aforementioned linear systems 
for different values of n are shown. Notice that the proposed methods preserve the 
accuracy, which does not considerably decrease with the dimension of the system in 
contrast with the results obtained with the Matlab command \.
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