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Abstract Cardiovascular (CV) disease (CVD) remains the leading cause of major morbidity and CVD- and all-cause mortality
in most of the world. It is now clear that regular physical activity (PA) and exercise training (ET) induces a wide
range of direct and indirect physiologic adaptations and pleiotropic benefits for human general and CV health.
Generally, higher levels of PA, ET, and cardiorespiratory fitness (CRF) are correlated with reduced risk of CVD,
including myocardial infarction, CVD-related death, and all-cause mortality. Although exact details regarding the
ideal doses of ET, including resistance and, especially, aerobic ET, as well as the potential adverse effects of extreme
levels of ET, continue to be investigated, there is no question that most of the world’s population have insufficient
levels of PA/ET, and many also have lower than ideal levels of CRF. Therefore, assessment and promotion of PA,
ET, and efforts to improve levels of CRF should be integrated into all health professionals’ practices worldwide. In
this state-of-the-art review, we discuss the exercise effects on many areas related to CVD, from basic aspects to
clinical practice.
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1. Introduction

Cardiovascular (CV) disease (CVD) appears, at least in part, to be due to
inappropriate or poor dietary and other lifestyle habits, which can be
summarized as maladaptive diet and lifestyle factors. A critical constitu-
ent element of lifestyle is physical activity (PA) and exercise training (ET).
Discreet modifications in common CVD risk factors, mainly those re-
lated to inflammation, haemostasis, and blood pressure (BP), include
countless significant benefits of PA on CVD, with important consequen-
ces on primary prevention of CVD.1 In effect, regular ET and a high level
of physical fitness are correlated with decreased risks of myocardial in-
farction (MI) and stroke, CVD–related death, and all-cause mortality.2,3

Exercise is likely protective against coronary heart disease (CHD)
events by reducing several physiological risk factors (i.e. elevated BP,

obesity, hyperlipidaemia, and insulin resistance) and providing positive
remodelling effects directly to the myocardium.2 Since it is recognized
and well-known for centuries that being active is beneficial for the CV
system in all populations, and in order to not reiterate the evident,
we do not discuss here the history of ET in CV medicine, but provide a
comprehensive review of the potential benefits of PA and/or ET by
encompassing both basic molecular and clinical aspects. Isometric ET, i.e.
muscle contractions with no change in the muscle length and no joint
movement, scarcely affects volume load, stroke volume, or cardiac out-
put, and minimally improve aerobic capacity or CV efficiency; therefore,
the CV adaptations to isometric ET are different from those observed
with dynamic ET (i.e. concentric and eccentric contractions in which the
muscle shortens, generates force and the joints move). Although we are
aware that practicing resistance training and maintaining an acceptable
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level of muscular strength is important to maintain a high cardiorespira-
tory fitness (CRF) and prevent CVD, we particularly focus on
one type of ET or PA, aerobic exercise, which is often referred to as
cardio training. Although there is a clear difference between the terms
PA (any movement requiring energy) and physical exercise or ET
(movement intended to maintain or increase physical health and/or
performance), in this manuscript, we will use interchangeably the terms
PA, physical exercise, aerobic ET, or simply ET since numerous studies
use these terms synonymously.

1.1 Conceptual framework of ET
In brief, a load of physical exercise or ET is essentially classified by
its type, frequency, duration, and intensity. ET can be performed
consistently (endurance), dynamically (e.g. cycling or running), or
statically.4,5 It can also be considered as exhaustive (aerobic or
anaerobic)6 or non-exhaustive.4,5 Depending on the athlete’s fitness, ET
intensity and physiological demands will provoke certain physiological
stress levels and responses.

1.2 PA and ET: a treatment polypill and a
multisystemic-prevention CVD vaccine
The beneficial effects of regular PA/ET in promoting health and prevent-
ing CVD have been extensively documented.7 Physical exercise confers
salutary systemic effects in humans. Indeed, ET reduces the prevalence
of the most critical CVD-related risk factors, such as type 2 diabetes
mellitus (T2DM), hyperlipidaemia, obesity, and hypertension (HTN).8,9

In effect, low levels of PA are associated with higher prevalence of all the
aforementioned CVD risk factors.10 A constellation of data supports the
routine prescription of exercise for all patients, and particularly for
patients with CVD, such as CHD and heart failure (HF).10 According to
up-to-date data, and from our point of view, physical exercise may rep-
resent a useful and practical prescription ‘drug,’ or even a ‘polypill,’ within
the armamentarium to treat CVD as well as a highly recommended ‘vac-
cine’ in CVD prevention, due to its cardioprotective effects (Figure 1).4,11

Finally, it should also be underlined that, while there is overwhelming
data on the association between exercise and lower CVD risk, there is
no large-scale randomized data to support actively prescribing high-
intensity endurance exercise (i.e. exercising at 70–85% of VO2max).
Finally, we must also keep in mind that high-intensity endurance exercise
can be counterproductive to certain individuals.

2. Physiological CV adaptations in
response to physical exercise

2.1 Cardiac function and structure: the
athlete’s heart
The athlete’s heart, induced by the practice of long-term physical
exercise, is characterized by physiological adaptations, such as enlarged
left ventricle (LV) and increased LV muscle mass [LV hypertrophy
(LVH)], with normal or supra-normal LV systolic/diastolic function.12–15

Greater ventricular diastolic chamber compliance and distensibility is
also commonly observed.16 This adaptations tend to disappear with ET
interruption. However, in pathological LVH, the septal wall thickness
decreases after only 3 months of detraining.17 The LV cavity dimension
returns to pre-training values after 1–13 years of ET cessation.18

Although LV end-diastolic diameter can be persistently elevated for up
to 5 years of detraining, it is not accompanied by impaired LV function,

nor does it lead to adverse CVD events.19 Likewise, LV mass augmenta-
tion is usually associated with normal resting ejection fraction (EF),
whereas systolic volume is normal or augmented.13,20–23 In some individ-
uals, extreme endurance training and chronic participation in events,
such as marathons, ultra-marathons, long-distance bicycle races, and full
distance triathlons, has been associated with myocardial fibrosis, particu-
larly in the right ventricle and interventricular septum.24

2.2 CRF and CVD
CRF is closely linked to ET levels, and its relationship with CVD warrants
particular attention. CRF is a very useful prognostic tool,25 and indeed,
poor CRF is one of the most important CVD risk factors (Figure 2).26

High CRF itself is a robust indicator of low morbidity, low risk of death,
and good metabolic health.25 Cabanas-Sánchez et al.27 have recently
demonstrated that changes in the estimated CRF may predict the inci-
dence of biological CVD risk factors, particularly in patients with HTN
and T2DM. ET practiced regularly is the most effective strategy to im-
prove CRF, by increasing the mitochondrial content and desaturation of
myoglobin in skeletal muscle tissue, which ultimately improves skeletal
muscle oxidative capacity.28,29 An increase in CRF of only one metabolic
equivalent (MET) decreases the risk of CVD by 15%.30 CRF declines
with age, physical inactivity (PI), and sedentarism,30 while sitting time is
associated with CVD mortality.31 However, reaching moderate-to-high
CRF levels is associated with a reduced risk of CVD events.30

2.3 Modulation of autonomic function:
electrophysiological effects
Resting bradycardia is one of the most recognized adaptations to ET,32

resulting from a combination of (i) increased parasympathetic tone, (ii)
decreased response to adrenergic stimulation, and (iii) decreased intrin-
sic heart rate (HR).33 An increased parasympathetic tone also provokes
increased HR variability (HRV), then potentially lowering CVD morbidity
and mortality.32 HRV is a marker for the degree of activation of the effer-
ent vagal nerve to the heart.34 Regular ET augments cardiac parasympa-
thetic tone and improves HRV, including in patients with HF or T2DM,
restores normal b-adrenergic receptor equilibrium and protects against
ventricular fibrillation.35,36 ET also shortens cardiac action potentials by
activating adenosine triphosphate (ATP)-sensitive potassium channels,
which ultimately preserves myocardial energy.37 Low HRV has been as-
sociated with impaired CV health and poor outcomes, such as increased
mortality in patients with MI or HF,38 or first CVD events in individuals
without apparent CVD.39 ET improves vagal tone by augmenting
the compliance of the blood vessels in barosensitive areas of the carotid
arteries, which makes them more distensible in response to BP incre-
ments,40 as well as increasing afferent signalling to the brainstem, activat-
ing the vagal nerve and inhibiting sympathetic activity to the heart.41

Finally, the autonomic nervous system, particularly increased vagal tone
induced by regular ET, is involved in protecting against life-threatening
arrhythmias, which will be further discussed below.

3. Molecular mechanisms involved
in CVD-ET benefits

As it has been shown above, a wide array of effects on CVD and its risk
factors can be attributed to different manifestations of long-term aerobic
physical exercise. The exact mechanisms through which these changes
take place at the molecular level are yet to be fully elucidated.42
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However, an extensive body of research on this topic in recent years has
led to the identification of different proteins, signalling molecules, and
transcription factors involved in the exercise-induced CV function
improvements.

3.1 Cardiac remodelling
Exercise has been found to stimulate the cardiac secretion of insulin-like
growth factor 1 (IGF-1), which is closely related to ventricular hypertro-
phy.43,44 Rodents with elevated levels of IGF-1 presented with heavier
hearts, with an increase in both the size and number of cardiomyo-
cytes,45,46 whereas mice with a genetically induced deficiency of the IGF-1
receptor were unable to obtain these benefits following aerobic training.47

IGF-1, along with neuregulin 1, which is also up-regulated by exer-
cise,48 activates the phosphoinositide-3 kinase (PI3K)/serine-threonine
kinase (AKT1) pathway. PI3K is a particularly interesting marker, since it
plays a role in physiological cardiac hypertrophy, but is absent from
pathological remodelling, thus differentiating both phenomena.49

Downstream of this metabolic cascade is AKT1, which is also critical
for cardiomyocyte growth.48 More specifically, AKT1 knockout mice
did not experience adaptations when physically trained or treated
with IGF-1.50

Additionally, AKT1 down-regulates the expression in the nucleus of
the transcriptional factor CCAAT-enhancer-binding protein b, which in
turn stimulates cardiac myocyte hypertrophy and proliferation.51 This
relation seems to be mediated by CBP/p300-interacting transactivator
with ED-rich carboxy-terminal domain 4, a transcription factor that has
recently been linked with inhibition of adverse cardiac remodelling.52

3.2 Metabolic optimization
It has been extensively demonstrated in experimental models that ET
has the potential to improve cardiac metabolic disturbances induced by
T2DM and obesity.53,54

Figure 1 Endurance exercise-related pivotal mechanisms, physiological adaptations, and clinical improvements.

Figure 2 Attributable percentage for all-cause deaths in the
Aerobics Center Longitudinal Study. The percentage is adjusted for age
and each other item in the figure. CRF was determined by a maximal
exercise test on a treadmill. CRF, cardiorespiratory fitness; HTN, hy-
pertension. Extracted from Blair (2009)239 with permission.

Exercise and cardiovascular disease 3
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As exercise demands an increase in the ATP requirements not only in

the skeletal muscle but also in the myocardium, it becomes necessary to
enhance the energy generation capability of the cardiomyocytes. The
main mechanism to achieve this is mediated by the peroxisome
proliferator-activated receptor-gamma coactivator (PGC-1a), a tran-
scription factor that is also present in homeostatic thermoregulation.55,56

Its imbalance has been linked with different disorders, such as obesity, di-
abetes, and cardiomyopathy.57 Exercise increases the concentration of
PGC-1a in the heart,58 where it promotes mitochondrial biogenesis and
the expression of genes related to fatty acid oxidation, oxidative phos-
phorylation, and ATP synthesis,59 which is key in exercise-mediated car-
dioprotective effects. In addition, the transcriptional activity of PGC-1a
can be directly increased by AMP-activated protein kinase (AMPK), a
protein that is key for the equilibrium between anabolic and catabolic
pathways regulating the energy availability in the cardiac tissue.60 Sirtuin
(Sirt) 1 and Sirt3, proteins linked to oxidative stress response and fibrosis
resistance, also activate both AMPK PGC-1a.61

At the mitochondrial level, proline dehydrogenase (PRODH) has re-
cently been identified as an important regulator of normal mitochondrial
function in hypoxic environments.62 In murine models, the deficiency of
PRODH is present in HF and was linked to increased levels of CVD
markers.62 Importantly, ET re-establishes its levels in an animal model of
HF, representing a target of exercise in failing hearts.

3.3 Angiogenesis
The catecholamines epinephrine and norepinephrine that are released
into the blood flow and into the heart directly after aerobic exercise,
couple with the b3-adrenergic receptors of the cardiac tissue, resulting
in the phosphorylation of the endothelial nitric oxide (NO) synthase
(eNOS).63 The phosphorylated eNOS is active, and it liberates NO lo-
cally and back into the bloodstream, stimulating angiogenesis and reduc-
ing myocardial fibrosis.63 Likewise, vascular endothelial growth factor
(VEGF) and hypoxia-inducible factor-1 a (HIF-1a), both angiogenic fac-
tors induced by ET, play a central role in inducing endothelial cell mitosis
and stimulating capillarization.

3.4 Protection against ischaemia-
reperfusion injuries
Exercise-induced adaptations of the cardiac tissue have also been shown
to act as a protective agent following acute ischaemic events, with a re-
duction in the infarcted area, cardiomyocyte apoptosis, and fibrosis.
Exercise may mitigate cardiomyocyte death due to myocardial ischae-
mia-reperfusion (IR) and simulate the positive, cardioprotective effects
of ischaemic preconditioning by reducing myocardial damage.2

Some of the mechanisms previously described also play a part in the
protection of the heart. In addition, the oxidative stress induced by exer-
cise promotes the expression of heat shock protein 72, which shields
the cardiac tissue from contractile dysfunction and infarction.64

Moreover, the HIF-1a is a transcription factor that is strongly activated
after acute or chronic exercise that exerts an ischaemic/hypoxic precon-
ditioning in the heart, by means of a complex mechanism involving the
regulation of mitochondrial function, of reactive oxygen species (ROS)
and vascular remodelling.65

In mice after suffering a large MI, exercise attenuates global LV remod-
elling and dysfunction by normalizing MI-induced increase in myofilament
Ca2þ-sensitivity and thus improving myofilament function. These effects
were PKA-mediated and related to improvements in b1-adrenergic sig-
nalling. Exercise reduced diastolic Ca22þ-concentrations had no effect

on Ca22þ-transient amplitude, which indicates that the improved LV and
cardiomyocyte shortening were mainly due to myofilament function
improvements.66 Moreover, these exercise-related effects on LV
remodelling and dysfunction depend critically on endogenous eNOS ex-
pression.67 de Waard and Duncker68 also observed in an acute MI mice
model that ET before MI decreases post-MI mortality. Likewise, the
infarct area was thicker, whereas interstitial fibrosis and apoptosis in LV
myocardium were blunted.

It is important to highlight that the processes described thus far do
not take place independently, since these metabolic pathways are inter-
twined, resulting in an integrated response to exercise. For instance,
PI3K coordinates hypertrophic and metabolic adaptations,69 and both
AMPK and AKT-1 are able to perform eNOS phosphorylation70,71 and
the latter also presents cardioprotective functions, inhibiting cardiomyo-
cyte apoptosis and preserving cardiac function.72,73 Additionally, the bal-
ance of NO plasma levels is crucial to ensure that the exercise-induced
protective mechanisms against IR damage are operative.63 Likewise, the
cardiac response to exercise in the context of IR injury is also affected by
circulating levels of myokines (e.g. irisin and myonectin).42 This issue will
be further discussed in a separate section.

3.5 Oxidative stress, antioxidant defence,
and inflammation
The capacity of physical exercise to reduce ROS and inflammatory
cytokines might be of particular relevance, given that different conditions
associated with an increase in CVD risk, such as dyslipidaemia or insulin
resistance, have a concomitant increase in oxidative stress and inflamma-
tion status.74

It is well-known that mitochondrial dysfunction provokes increases in
oxidative stress levels, which in turn cause systemic damage.25 As such,
the increase in ROS that causes oxidative stress is associated with differ-
ent manifestations of CVD75 and plays an important role in endothelial
dysfunction.76,77 Although exercise acutely raises the mitochondrial
ROS production, the exercise-related increase in the efficiency of antiox-
idant systems buffers this initial rise, resulting in a net loss of oxidative
load.78 However, after about 50–60 min of continuous strenuous exer-
cise, the ongoing generation of ROS outstrips the buffering capacity,
resulting in systemic oxidative stress. Yet, when facing an episode of
IR, which is characterized by an increase in the oxidative stress and in-
flammatory levels resulting from the absence of oxygen in the heart,79

the cardiomyocyte of a trained subject is more resistant to injury due to
the improved mitochondrial antioxidant capability.80

Inflammation is a controversial topic in cardioprotection. It is sup-
posed that inflammation increases during IR and provokes cardiomyo-
cyte damage, while PA decreases inflammation and protects the heart.81

For instance, both interleukin (IL)-6 and IL-10 increase with exercise and
might be implicated in cardioprotection. Exercise-induced up-regulation
of IL-6 and circulating levels of IL-6 receptors and the phosphorylated
forms of p44/42 MAPK (Thr202/Tyr204) and p38 MAPK (Thr180/
Tyr182) have been associated with an attenuation of IR-induced necrosis
and arrhythmias, which suggest that these may also be mechanisms
for cardioprotection.82 Administering IL-10 exogenously reduced
myocardial infarct size and reduce neutrophil adhesion to vascular endo-
thelium,83 while incrementing its circulating levels may prevent LV
remodelling.84,85
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3.6 Calcium handling and cardiomyocyte
contractility and relaxation
In animal models ET re-establishes both the abundance and activity
of sarcoplasmic reticulum Ca2þ ATPase2a (SERCA2a) and its regulatory
proteins (i.e. Ca2þ/calmodulin-dependent protein kinase II)86 that con-
trol excitation–contraction coupling. Restoring SERCA2a levels
improves myocardium contractility in older rats.87 In aged rodents, ET
also restores the levels and activity of SERCA2a, calcium handling, and
cardiomyocyte contractility and relaxation.88,89

3.7 Emerging concepts and active areas of
research in exercise science
3.7.1microRNA
All the previous adaptations are based on a series of changes in the
genetic regulation and transcriptomics that initiate a cascade of genetic
regulatory mechanisms. Additionally, small, non-coding fragments of
RNA, denoted as microRNA (miR), have the potential to modulate the
expression levels of up to 60% of all human genes.90 miR can circulate in
urine, blood, or plasma and, therefore, they are capable of fulfilling an en-
docrine function.91

The exact relationship between miR and different manifestations of
exercise in humans is still unknown, but initial trials seem to point
towards a potential dose–response relationship between these factors.92

Additionally, the efforts to catalogue the existence and function of all hu-
man miR are still ongoing. Stimulation of miR-17-3p by means of PA
results in increments of hypertrophy in the cardiomyocytes and
improves ischaemic protection, indirectly acting upon the PI3K-AKT1
cascade.93 On the other hand, exercise decreases the levels of miR-233,
which has been shown to inhibit cardiac hypertrophy, although, unlike
PI3K or AKT, it does not allow the discrimination between physiological
or pathological hypertrophy.94

3.7.2Myokines
Muscle was traditionally regarded as a merely mechanical organ.
However, more than 600 signalling molecules secreted by myocytes
during muscular contraction have been unveiled throughout the present
century. These cytokines, known as myokines, are associated with
muscular contraction and serve autocrine, paracrine, and endocrine
purposes.95 Three myokines have recently been associated with a car-
diac response: irisin, myonectin, and follistatin-like 1 protein (Fstl1). Irisin
acts as a protective agent of cardiac tissue against IR injuries by means of
a scavenging mechanism of the ROS,96 although its excess can trigger an
increase in oxidative stress and apoptosis.97 Mice with an intact expres-
sion of myonectin showed a reduction in the infarcted area following an
ischaemic procedure compared to their knockout counterparts.98

Importantly, myonectin is up-regulated by ET, protecting the heart from
IR injury.98 Fstl1 has been proposed as a potential mediator of exercise-
induced cardioprotection.99 This molecule is secreted by both the skele-
tal and cardiac muscle cells, so it can also be considered as a
cardiomyokine.100

Other myokines have also been suggested to be involved in exercise-
induced cardioprotection, such as meteorin-like protein, an exercise-
related myokine that improves glucose tolerance and stimulates thermo-
genesis,101 fibroblast growth factor 21, a factor induced by the PI3K–
AKT pathway that acts protecting muscle tissue against insulin resistance
and increases brown fat thermogenesis,102 and musclin or osteocrin, a
myokine that may improve CRF by activating mitochondrial
biogenesis.103

Exercise-induced benefits through sestrins (SESN) pathway are also
relevant at the cardiac level,104 especially in the elderly.105 Loss of SESNs
activity has been related to fat accumulation, mitochondrial dysfunction,
and cardiac arrhythmias, which is why inactivity provokes accumulation
of visceral fat, inflammation, insulin resistance, atherosclerosis, neurode-
generation, and tumour growth.106 SESNs are involved in p53 and per-
oxiredoxins (PRX) signalling pathways.107 In effect, the stress-inducible
SESNs protein family is crucial in PRX regeneration. Exercise reduces
age-related changes in p53 activity and raises its circulating levels, which
ultimately induces protective effects in cardiac muscle. Likewise, exercise
up-regulates PRX isoforms in cardiac muscle cells. Since the use of cer-
tain types of exercise is not a viable option for many patients with cardiac
diseases, further research of molecules targeting cardiac SESNs is highly
encouraged to reverse certain cardiac conditions.

3.7.3 Atrial and B-type/ventricular natriuretic peptides:

exercise ‘Sacubitril-Like effect’
Important cardiokines involved in CV health are both the atrial and B-
type/ventricular natriuretic peptides (ANP and BNP, respectively). Both
cardiokines are released under atrial and ventricle stress, which activate
downstream receptors leading to vasodilation, natriuresis, and diuresis.
ANP and BNP are cleaved and inactivated by a ubiquitous membrane-
bound endopeptidase, neprilysin. Inhibition of neprilysin leads to
reduced breakdown and increased concentration of ANP and BNP.
Interestingly, the drug sacubitril is a prodrug neprilysin inhibitor used in
combination with valsartan to reduce the risk of CVD events in patients
with chronic HF (NYHA Class II-IV) and reduced EF. Acute exercise
increases cardiac output and ANP secretion.108 It has been reported
that ANP and BNP secretion increases during exercise.109,110 Hamasaki
et al.111 also reported that circulating BNP levels were positively associ-
ated with PA levels. As a holistic view of the potential effects of exercise
on the CV system further than the classic ones, these cardiokines should
not be overlooked since they represent an important contributor in im-
proving CV health. In effect, we can here suggest an exercise-induced
‘sacubitril-like effect’, which ultimately leads to reduced clearance of bio-
logically active natriuretic peptides.

3.7.4 Cardiac regeneration capacity
Exercise can play an adjuvant role as regenerative medicine therapy by
stimulating certain stem cells named circulating angiogenic cells
(CAnCs), which are inversely associated with the risk of CVD.112

Likewise, endurance ET increases telomerase activity and telomere
length, which are directly involved in cellular senescence and regenera-
tive capacity.113 From 17 to 90 years of age, we progressively lose�30%
of cardiomyocytes.114 The rate of cardiomyocyte turnover is very low
(between 0.3% and 1% per year).115 Cardiomyocyte regeneration can
be stimulated through different techniques.116 Exercise increased the
formation of new cardiomyocytes in adult mice, which indicates that ET
can activate the adult mammalian heart’s endogenous regeneration ca-
pacity.117 Although it remains controversial, ET stimulates the prolifera-
tion of CAnCs in subjects with CVD, with high-intensity ET being the
most potent stimulus.118 From a mechanistic point of view, HIF-1a,
VEGF, IL-6, and NO are among the factors mainly involved in CAnCs
overstimulation.119

Finally, regular PA may overexpress ‘cardioregenerative’ myokines,
such as Fstl1, and that is why patients with CVD should be highly encour-
aged to stay fit and active.120 Telomerase activation or NRG1-
dependent activation of receptor tyrosine-protein kinase ERBB2 and

Exercise and cardiovascular disease 5
D

ow
nloaded from

 https://academ
ic.oup.com

/cardiovascres/advance-article/doi/10.1093/cvr/cvab272/6363794 by U
niversidad de Zaragoza user on 12 N

ovem
ber 2021



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
ERBB4 signalling are among other mechanisms implicated in exercise-
induced myocardial repair after MI.121,122 Although this is still an evolving
concept, it may represent a promising approach to prevent cardiac dam-
age by means of ET-activated mechanisms.

4. Exercise effects on CVD risk
factors

Aside from the effects on the molecular mechanisms directly involving
CV structure and function, PA also attenuates different CVD risk factors,
thus playing a crucial role in both primary and secondary prevention of
CVD.

4.1 Plasma lipids and atherosclerosis
Higher plasma concentrations of atherogenic lipids expressed as total
cholesterol, low-density lipoproteins (LDL), or the ratio of total choles-
terol to high-density lipoproteins (HDL), are associated with increases in
adverse CVD events.123 Moreover, a decrease in LDL levels results in a
reduction of CVD risk, independently of the baseline level.124

The effects of PA on the lipid profile are not consistent since they ap-
pear to depend on the type, intensity, and duration of the ET, with diet
as a potential confounding factor.125 Recent meta-analyses focused on
different activity modalities have found disparate results, with benefits
arising from aerobic training,126 particularly when performed at a high in-
tensity,127 whereas no differences or minor improvement were noted in
the lipid profile of either overweight or normal weight population
following high-intensity resistance interval training.128 These effects,
however, can be small even with high training volumes.126,129

Additionally, the inclusion of an exercise routine in dyslipidaemic sub-
jects does not confer further LDL benefits than those achieved with
statin administration.130

The degree to which the changes in the lipid profile contribute the
ET-related reduction in CVD remains unclear.7 However, recent re-
search suggests that the relationship between PA and atherogenic risk
may not be merely limited to the modulation of plasma concentrations.
HDL particle size affects cholesterol efflux capacity.131 In vitro cholesterol
efflux capacity correlates with CVD prevalence, independently of HDL
concentration.131 Therefore, the increase in HDL size observed after
training can play a role in CVD prevention.132 Additionally, PA could also
reduce atherosclerotic progression by altering the homeostasis of the
arterial wall.7

The exact mechanism through which exercise affects the plasma lipids
and the atherogenic risk is yet to be fully elucidated.133 Some proposed
pathways involve the stimulation of lipoprotein lipase activity or an in-
crease in the expression of ATP-binding cassette transporter A1 and
liver X receptor-alpha.134,135

4.2 Insulin sensitivity
Insulin resistance is a strong mediator in the previously mentioned asso-
ciation between the lipid profile and CVD risk. An inadequate sensitivity
to insulin of fat tissue causes it to release free fatty acids that trigger an in-
crease of triglyceride and very-LDL production in the liver, resulting in a
lipid imbalance which, in turn, provokes an increase in CVD risk.136 A re-
duction in HDL levels is an inherent component of insulin resistance and
contributes to the formation and progression of atherosclerotic pla-
ques.137 The compensatory hyperinsulinaemia, together with the in-
creased sympathetic activity present in T2DM patients, can also elicit

vascular smooth muscle proliferation and vasoconstriction of arterioles,
contributing to the development of HTN and peripheral artery
disease.138,139

Previous meta-analyses have shown that PA is able to improve glycae-
mic control and insulin sensitivity.140,141 Aerobic exercise has shown to
be more efficient than resistance exercise or a combined training for im-
proving glycaemic control.142

4.3 BP and vessels
Elevated BP or HTN is a highly-prevalent condition (with nearly a third
of the population affected)143,144 that poses a significant risk for various
CVD events, such as HF, MI, and stroke.133 ET reduces arterial stiffness,
measured as pulse wave velocity, in adults with HTN.145 Higher intensity
levels of ET provoke greater diminutions in resting BP than does lower
intensity exercise.8

Acutely, PA elicits an increase in both HR and cardiac stroke volume,
resulting in an augmented cardiac output which, in combination with the
elevated peripheral vascular resistance produced by muscular contrac-
tions, causes an increase in mean BP.146 In contrast, the chronic adapta-
tions to aerobic training include a decrease in resting and ambulatory BP
of �3 mmHg, as shown in previous meta-analyses.147,148 Even though
this effect might seem clinically irrelevant, a recent multicentric study
with over 15 000 participants showed that reductions in this parameter
as small as 1 mmHg are associated with a significant decrease in the
incidence of HF.149 In fact, this exercise-mediated reduction in BP has
been proposed to be potentially higher than that of single antihyperten-
sive drugs and similar to those of their most common treatment
combinations.133

Different mechanisms contribute to the reduction of BP observed
after long-term exercise, such as variations in artery diameter,150 preven-
tion of arterial stiffness,151 inhibition of inflammatory status,152 reduc-
tions in sympathetic nervous activity,153 and restoration of the
baroreflex sensitivity.154 However, the main factor associated with the
anti-HTN properties of exercise seems to be a chronic reduction in pe-
ripheral resistance,155 resulting from an improved expression and activa-
tion of eNOS.156 The subsequent increase in NO generates a reduction
in the tone of the vascular smooth muscle.157

5. Clinical evidence of ET-associated
positive effects on CVD

5.1 Coronary artery disease (CAD)/CHD
Currently, it seems obvious that ET represents a key element of primary
and secondary prevention in CHD. The connection between PI and
CHD is well documented.158 The current burden of PI-related deaths
caused by ischaemic heart disease is �10% (5.46 out of 55.14 million
deaths).159 ET increases coronary blood flow and myocardial oxygen de-
livery, reducing angina and MI. Coronary artery disease (CAD) patients
who participated in exercise-based cardiac rehabilitation programmes
have a 27% reduction in total mortality compared to those who received
usual care.160 Moreover, ET improves the patient’s ability to conduct
daily living activities and their quality of life (QoL).160 A meta-analysis
from 48 studies with a total of 8940 patients who had MI, angina, CAD
documented by angiography, or undergone percutaneous coronary in-
tervention (PCI), showed a decrease of 20% in total mortality and of
26% in CVD mortality as a result of ET intervention.161 Similarly,
Hambrecht et al.162 demonstrated that regular ET significantly increases
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.
both peak oxygen uptake and event-free survival rate at 12 months
follow-up in CAD patients who underwent PCI in comparison with
those receiving medical therapy. In patients who enrolled in a PA pro-
gramme after a PCI vs. those who remained inactive, the Exercise
Training Intervention After Coronary Angioplasty trial reported
increases in peak oxygen uptake of 26%, improvements in QoL of 27%,
and reductions in CVD events of 20%, i.e. reductions in MI and hospital
admissions.163

5.2 Stroke
Since ET has beneficial effects on many risk factors for stroke, such as
HTN, dyslipidaemia, T2DM, obesity, excessive alcohol consumption,
and tobacco use, physically active individuals have lower stroke risk than
those with a low level of PA.164 A greater CRF is inversely associated
with stroke mortality. Lee and Blair165 showed a 68% lower risk of
stroke and death among individuals with higher CRF than those with
lower CRF, remaining after adjusting for confounding variables, such as
smoking, alcohol consumption, BMI, HTN, T2DM, and CAD history,
while it was also demonstrated that the risk of stroke immediately after
practicing moderate-to-vigorous exercise is significantly lower among
physically active individuals than those physically inactive.166

5.3 Heart failure
The benefits of aerobic ET in HF have been extensively demonstrated,
implicating both central and peripheral modifications. These benefits are
clinically translated to increased exercise capacity, anti-remodelling
effects, and reduced morbidity and mortality.167,168 ET has been proven
to be safe and with no adverse effects on LV remodelling in HF patients.
Although a Cochrane meta-analysis did not find significant differences in
total mortality at 1-year follow-up in patients who underwent ET vs.
those who did not,169 the authors found a reduction in both overall and
HF-related hospitalizations. The ExTraMATCH II meta-analysis also
reported important benefits regarding CRF and QoL.170,171 The HF-
ACTION trial concluded that ET was associated with an 11% lower ad-
justed risk for all-cause mortality or all-cause hospitalization and a 15%
lower adjusted risk for CVD mortality or HF hospitalization in 2331
patients with HF with reduced EF.172

ET should be recommended to patients with HF regardless of their
NYHA class.173 The beneficial effects of ET are also present in patients
with impaired LV EF and are directly associated with patient compliance
and ET intensity.173 Since the beneficial effects of ET are lost within few
weeks after stopping ET, adherence is crucial.173 Finally, it is now well-
known that certain HF patients do not respond to exercise. Accordingly,
ET programmes should be specifically tailored to those individuals, possi-
bly with higher intensity ET.174

5.4 Hypertension
HTN is the most prevalent, modifiable, and costly CVD risk factor. ET
reduces both resting and ambulatory BP.175–177 For this reason, PA/ET is
a cornerstone lifestyle and non-pharmacologic therapy for HTN.178 One
bout of aerobic exercise consistently lowers both office and ambulatory
BP of hypertensive adults for up to 2 h during the post-exercise pe-
riod.179 However, this effect is variable in magnitude and duration, sug-
gesting that individual and exercise characteristics might contribute to
the variability of the aerobic post-exercise hypotension response.179

This wide range in the BP reduction magnitude associated with ET may
in part be due to a paucity of studies on the effects of ET on HTN.180

Also, many studies performed on anti-HTN effects of ET are conducted
in small samples and in individuals without HTN.

Regarding regular aerobic ET practice, it has been found to signifi-
cantly reduce both the office and ambulatory BP of hypertensive individ-
uals.175,181 Thus, the final consensus is to practice 30 min/d or more of
moderate-intensity aerobic exercise (i.e. exercising at 60–70% of
VO2max) to a total of 150 min/wk or more for adults with pre- to estab-
lished HTN.180

5.5 Cardiac arrhythmias
The risk of atrial fibrillation (AF) and ventricular arrhythmias is lower
among physically active individuals.182–184 Exercising according to the
guideline’s recommendations, i.e. >500 MET-min/wk, is associated with a
reduced risk of AF probably due to increased risk factor control,
preserved cardiac function, and lower exposure to the potential arrhyth-
mogenic effects of inflammation and oxidative stress.185

The repeated exposure to extreme endurance exercise has potential
arrhythmogenic effects, thereby increasing the risk of AF.186–188 Several
studies indicated that long-term practice of very high doses of endurance
exercise (i.e. those athletes who exercised a large part of their lives) is as-
sociated with a higher risk of AF.189,190 The association might be particu-
larly strong in competitive athletes. Although more mechanistic studies
are needed, potential factors by virtue of which long-term endurance
exercise might trigger AF in previously ‘normal’ hearts include left-atrial
enlargement, LVH or dilatation, and an increase in parasympathetic
tone.191 The association of AF with strenuous exercise remains a topic
of concern that should be clarified in future studies.

An 11–22% risk reduction of ventricular arrhythmias among physically
active individuals (range: 500–2500 MET-min/wk) has been reported,
most likely as a consequence of the stabilization and regression of ath-
erosclerosis and a more favourable autonomic balance.185 Interestingly,
in an experimental model of dogs that were susceptible to ischaemia-in-
duced ventricular fibrillation after suffering a MI, the animals showed a
restoration of ryanodine receptor (RyR) channel activity mediated by
the exercise-induced reduction in calcium/calmodulin-dependent pro-
tein kinase type II-mediated hyperphosphorylation of RyR at Ser2814,
which limited the spread of unstable cardiac electrical signals and thus
preventing malignant arrhythmias.192 The association between PA and
the incidence of bradyarrhythmias was also evaluated, concluding that
bradyarrhythmias were not more common with higher volumes of total
PA.185 They found that vigorous PA (500–2500 MET-min/wk) was asso-
ciated with a 9–18% lower risk of bradyarrhythmias in women. Thus,
higher PA may be associated with a preservation of sinus node function
and AV nodal conduction.

5.6 Gut microbiota-related CVD
Gut microbiota plays an important role in CVD, since it has been previ-
ously associated with certain microbial metabolites and gut micro-
biomes.193 Recent studies implicate the gut microbiota in BP regulation,
atherosclerosis and thrombosis development, HF, and cardiomyopa-
thy.194 In effect, it has been recently demonstrated that gut microbiota
changes are associated with the development of HF, which supports
restoring gut microbiota to prevent HF.195 Increased production of the
microbial metabolite trimethylamine N-oxide, endotoxaemia, and/or
bacterial translocation may increase the risk of CVD.196–198 Habitual PA,
aerobic ET, and high CRF can increase microbiota diversity and/or mod-
ulate the gut microbiota;193,199–201 in effect, its composition may also in-
fluence ET adaptation and athletic performance.202 The alterations in the
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..composition and functional capacity of the gut microbiota induced by ex-
ercise are independent of diet.203 Future studies are needed to elucidate
which metabolites produced by the gut microbiota are more affected by
physical exercise and how exercise-induced modifications in the gut
microbiota are connected to CVD risk.

5.7 PA and mortality
Exercise-based cardiac rehabilitation reduces exercise-associated total
mortality. For instance, moderate-intensity PA frequently practiced
(�60–75 min per day) counteract the augmented risk of death associated
with long periods of sitting time.204 Likewise, higher PA levels at whichever
intensity plus less sedentary time reduce the risk for premature mortal-
ity.205 A recent meta-analysis concluded that achieving the recommended
PA levels reduces the CVD events by 17%, CVD mortality by 23%, and the
incidence of suffering T2DM by 26%.206 These results were also confirmed
by Kivimäki et al.,207 concluding that PI was associated with 24% higher risk
of CHD, 16% enhanced risk of stroke, and 42% higher risk of T2DM.

6. Long-term potential deleterious
effects of high-intensity ET

Sports-related sudden cardiac death (SCD) is a rare but alarming
event.188 While some genetic disorders (cardiomyopathies/channelopa-
thies) are the underlying disorder responsible for the fatal event in some
young subjects (<35 years), unnoticed and asymptomatic coronary ath-
erosclerosis—also referred to as subclinical CAD—is one of the most
frequent causes of sudden cardiac arrest (SCA)/SCD in apparently
healthy subjects aged >_35 years.208,209 In effect, several SCA/SCD cases
associated with subclinical CAD have been reported in competitive and
recreational athletes.210

Although PI is a large concern for the majority of the general popula-
tion,211 little attention has been paid to the coronary atherosclerosis
origination/progression in response to high-intensity ET over prolonged
time periods and accompanied strenuous exercise events, such as endur-
ance and/or ultra-endurance races (i.e. marathons, ultra-marathons, tri-
athlons, or iron man). This fact is particularly relevant given the growing
number of people taking part in these competitions; it is estimated that
there are 50 million runners across Europe.212 In this regard, ET-induced
inflammation has been connected with atherothrombotic disease.213,214

In effect, the most active amateur endurance athletes (i.e. individuals
who engage in ET on a regular basis and take part in competitions) have
an increased risk for myocardial fibrosis215,216 and coronary calcifica-
tion.217–219 Laddu et al.220 evaluated whether 25 years of practicing PA
was associated with coronary artery calcification, concluding that the
most active individuals has an increased probability of developing subclin-
ical coronary atherosclerosis in older ages. Two other studies have
reported that between 42% and 53% of veteran endurance athletes had
calcific CAD.218,221 To be emphasized, the plaques in athletes were calci-
fied rather than mixed, i.e. more benign and stable, less likely to rupture
and cause an acute CHD event. Nevertheless, concerns about the safety
of ET at the highest level for certain populations have emerged.210,222,223

Notably, the European Association of Preventive Cardiology recom-
mends that individuals with CAD must be discouraged from sports com-
petitions only when there is a considerable risk of adverse CVD events
or disease progression exists (i.e. asymptomatic patients with CAD and
inducible ischaemia or arrhythmia on functional tests, among others).224

Patients at low risk of CVD events may be individually advised to

participate in sports competitions.224 However, to the best of our
knowledge, the effect of an increase in the intensity of exercise (e.g.
preparation for an endurance competition) on subclinical atherosclerosis
(generation, progression, extent, and/or vulnerability) has not been lon-
gitudinally studied. Similarly, the impact of endurance training on myocar-
dial phenotype, eventually predisposing to adverse CVD events (i.e. LV
trabeculation) in this population, has been barely evaluated. Thus, the
effects of high-intensity endurance ET might represent a stress for the CV
system (vessel wall and myocardium) that may result in an adverse event
where the subclinical atherosclerotic disease is involved. Importantly, vig-
orous physical exercise has been recently associated with a higher preva-
lence of CV magnetic resonance imaging-detected LV non-compaction
phenotype in a recent community-based study, independently of LV vol-
umes. Thus, vigorous exercise should be considered as a possible cause
of LV hypertrabeculation in asymptomatic subjects.225

7. ET, CV system, and viral
infections, such as coronavirus
disease 2019 (COVID-19): the
importance of being fit to be
protected against environmental
threats

A higher COVID-19 severity is, at least in part, due to the presence of
CVD risk factors, such as HTN, T2DM, obesity, or CAD, among others,
which is associated with a less favourable prognosis and worse outcomes
in COVID-19 patients.226 In effect, there is increased mortality in
COVID-19 patients with CVD,227 which indicates that there is a connec-
tion between myocardial injury and COVID-19 severity, with a higher
frequency of myocardial injury in critically ill patients and non-survi-
vors.228 In addition, it has been recently reported that COVID-19
patients with ST-segment elevation MI (STEMI) show more HF on hospi-
tal arrival than non-COVID-19 patients (31.9% vs. 18.4%, P = 0.002).229

These authors also observed a substantial increase in in-hospital stent
thrombosis and cardiogenic shock development after PCI in COVID-19
patients with STEMI.229 Importantly, it has been reported that maximal
exercise capacity is independently and inversely correlated with the
probability of hospitalization of COVID-19 patients, which supports the
crucial connection between CRF and health outcomes.230

Detrimental effects have also been described after acute PA interrup-
tion, which may occur in sudden quarantine. It has been associated with
insulin resistance, muscle atrophy, decreases in venous return, and
reductions in coronary perfusion.231,232 Positive metabolic and CV adap-
tations in response to ET can be lost in <2weeks of PI, impairing CRF
and/or increasing BP. The production of atherogenic lipoproteins may
rise, which promotes the accumulation of circulating lipids and obesity,
accelerating atherosclerosis.231 The resting HR also increases after the
acute cessation of ET/PA, rapidly amplifying the risk of CVD events and
mortality. During quarantines, staying physically active and regularly per-
forming ET is essential to preserve CV health.233,234 Overall, it is impor-
tant to be aware that exercise and increased CRF may protect against a
wide range of environmental threats,235 including but not limited to viral
(e.g. COVID-19) and bacterial infections.
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8. Recommendations, future
perspectives, and concluding
remarks

It is now clear that regular ET/PA induces a wide range of direct and indi-
rect physiological adaptations and pleiotropic benefits for human CV
health. PA, exercise, and CRF evaluations and interventions should be in-
corporated into all health professionals’ practice.236 ET/PA is a mainstay
to prevent and control the global problem of CVD. To this end, health
care professionals must interact with individuals in our long-term efforts
to reduce sedentarism and PI and increase ET/PA to reduce CVD.
Although hypothetically, there is no universal exercise prescription,237

general guidelines can be developed for all levels of CRF. An individual-
ized approach in terms of a patient’s CRF and health/disease status, on
one side, and exercise type and dosage, on the other side, needs to be
considered.238

Despite the extensive history of research into exercise and cardiopro-
tection, many questions remain unanswered. The duration and intensity
of ET needed to optimize cardioprotection remain uncertain, and the
underlying mechanisms are still unclear. Elucidating exercise-associated
positive mechanisms may generate promising therapeutic targets for
cardioprotection.

In addition to improving traditional CVD risk factors (i.e. blood lipid
and glucose levels, obesity, and HTN), exercise confers benefits through
other mechanisms, such as myokines. Importantly, exercise is safe and
with no adverse effects, and its benefits are, in some measure, dose–
dependent. It is time to view exercise as medicine for the management
of CVD.

Additionally, the molecular intermediaries involved in exercise effects
may open new possibilities to enhance exercise’s effects using more ef-
fective or targeted strategies. The exercise-based concept for cardiac
drug target discovery has great potential to positively affect society and
public-health systems by alleviating CVD’s burden. Although this aim
may appear futuristic, its positive benefits should be a robust motivation
for further research in the field. Meanwhile, the evidence of benefits that
are already obvious should be applied and adopted as critical
priorities.238

In the COVID-19 era, in which we are relying on an effective vaccine
to protects the community against severe acute respiratory syndrome
coronavirus 2, ET/PA represents a potential co-adjuvant ‘vaccine’ or a
non-pharmacological treatment that should be recommended and
spread to prevent and/or treat one of the deadliest diseases in the
world, CVD.

Data availability

No new data were generated or analysed in support of this
manuscript.

Funding
None.

Conflict of interest: none declared.

References
1. Mora S, Cook N, Buring JE, Ridker PM, Lee IM. Physical activity and reduced risk of

cardiovascular events: potential mediating mechanisms. Circulation 2007;116:
2110–2118.

2. Chowdhury MA, Sholl HK, Sharrett MS, Haller ST, Cooper CC, Gupta R, Liu LC.
Exercise and cardioprotection: a natural defense against lethal myocardial ischemia-

reperfusion injury and potential guide to cardiovascular prophylaxis. J Cardiovasc
Pharmacol Ther 2019;24:18–30.

3. Gielen S, Laughlin MH, O’Conner C, Duncker DJ. Exercise training in patients with
heart disease: review of beneficial effects and clinical recommendations. Prog
Cardiovasc Dis 2015;57:347–355.

4. Vina J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera MC. Exercise acts as a
drug; the pharmacological benefits of exercise. Br J Pharmacol 2012;167:1–12.

5. Sanchis-Gomar F, Lippi G. Physical activity - an important preanalytical variable.
Biochem Med (Zagreb) 2014;24:68–79.

6. Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC
Musculoskelet Disord 2012;13:218.

7. Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front
Cardiovasc Med 2018;5:135.

8. Perez-Quilis C, Kingsley JD, Malkani K, Cervellin G, Lippi G, Sanchis-Gomar F.
Modulation of heart rate by acute or chronic aerobic exercise. Potential effects on
blood pressure control. Curr Pharm Des 2017;23:4650–4657.

9. Platt C, Houstis N, Rosenzweig A. Using exercise to measure and modify cardiac
function. Cell Metab 2015;21:227–236.

10. Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC, Earnest CP, Church TS,
O’Keefe JH, Milani RV, Blair SN. Exercise and the cardiovascular system: clinical sci-
ence and cardiovascular outcomes. Circ Res 2015;117:207–219.

11. Quindry JC, Franklin BA. Cardioprotective exercise and pharmacologic interven-
tions as complementary antidotes to cardiovascular disease. Exerc Sport Sci Rev
2018;46:5–17.

12. Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The upper limit of physio-
logic cardiac hypertrophy in highly trained elite athletes. N Engl J Med 1991;324:
295–301.

13. Fagard R, Van den Broeke C, Amery A. Left ventricular dynamics during exercise in
elite marathon runners. J Am Coll Cardiol 1989;14:112–118.

14. Fagard RH. Impact of different sports and training on cardiac structure and function.
Cardiol Clin 1997;15:397–412.

15. Levine BD. Can intensive exercise harm the heart? The benefits of competitive en-
durance training for cardiovascular structure and function. Circulation 2014;130:
987–991.

16. Levine BD, Lane LD, Buckey JC, Friedman DB, Blomqvist CG. Left ventricular
pressure-volume and Frank-Starling relations in endurance athletes. Implications for
orthostatic tolerance and exercise performance. Circulation 1991;84:1016–1023.

17. Maron BJ, Pelliccia A, Spataro A, Granata M. Reduction in left ventricular wall thick-
ness after deconditioning in highly trained Olympic athletes. Br Heart J 1993;69:
125–128.

18. Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remodeling of
left ventricular hypertrophy in elite athletes after long-term deconditioning.
Circulation 2002;105:944–949.

19. Urhausen A, Albers T, Kindermann W. Are the cardiac effects of anabolic steroid
abuse in strength athletes reversible? Heart 2004;90:496–501.

20. Pelliccia A, Culasso F, Di Paolo FM, Maron BJ. Physiologic left ventricular cavity dila-
tation in elite athletes. Ann Intern Med 1999;130:23–31.

21. Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimen-
sions in trained athletes. Ann Intern Med 1975;82:521–524.

22. D’Andrea A, Limongelli G, Caso P, Sarubbi B, Della Pietra A, Brancaccio P, Cice G,
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