000118139 001__ 118139 000118139 005__ 20220908140459.0 000118139 0247_ $$2doi$$a10.1134/S1995423921020014 000118139 0248_ $$2sideral$$a126646 000118139 037__ $$aART-2021-126646 000118139 041__ $$aeng 000118139 100__ $$aJha S. 000118139 245__ $$aGeneralized bivariate hermite fractal interpolation function 000118139 260__ $$c2021 000118139 5060_ $$aAccess copy available to the general public$$fUnrestricted 000118139 5203_ $$aAbstract: Fractal interpolation provides an efficient way to describe a smooth or non-smooth structure associated with nature and scientific data. The aim of this paper is to introduce a bivariate Hermite fractal interpolation formula that generalizes the classical Hermite interpolation formula for two variables. It is shown here that the proposed Hermite fractal interpolation function and its derivatives of all orders are good approximations of original function even if the partial derivatives of original function are non-smooth in nature. © 2021, Pleiades Publishing, Ltd. 000118139 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000118139 592__ $$a0.402$$b2021 000118139 593__ $$aNumerical Analysis$$c2021$$dQ3 000118139 594__ $$a1.3$$b2021 000118139 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000118139 700__ $$aChand A.K.B. 000118139 700__ $$0(orcid)0000-0003-4847-0493$$aNavascues M.A.$$uUniversidad de Zaragoza 000118139 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000118139 773__ $$g14, 2 (2021), 103-114$$tNumerical Analysis and Applications$$x1995-4239 000118139 8564_ $$s2940639$$uhttps://zaguan.unizar.es/record/118139/files/texto_completo.pdf$$yPostprint 000118139 8564_ $$s1798588$$uhttps://zaguan.unizar.es/record/118139/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000118139 909CO $$ooai:zaguan.unizar.es:118139$$particulos$$pdriver 000118139 951__ $$a2022-09-08-11:33:29 000118139 980__ $$aARTICLE