000118141 001__ 118141
000118141 005__ 20230519145525.0
000118141 0247_ $$2doi$$a10.3390/catal11111288
000118141 0248_ $$2sideral$$a126831
000118141 037__ $$aART-2021-126831
000118141 041__ $$aeng
000118141 100__ $$0(orcid)0000-0003-3144-5320$$aIglesias M.
000118141 245__ $$aAdvances in nonprecious metal homogeneously catalyzed formic acid dehydrogenation
000118141 260__ $$c2021
000118141 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118141 5203_ $$aFormic acid (FA) possesses a high volumetric concentration of H2 (53 g L-1 ). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands out as a potential liquid organic hydrogen carrier (LOHC), which allows storage and transportation of hydrogen in a safe way. The dehydrogenation to produce H2 and CO2 competes with its dehydration to give CO and H2 O. For this reason, research on selective catalytic FA dehydrogenation has gained attention in recent years. Several examples of highly active homogenous catalysts based on precious metals effective for the selective dehydrogenation of FA have been reported. Among them are the binuclear iridium-bipyridine catalysts described by Fujita and Himeda et al. (TOF = 228, 000 h-1 ) and the cationic species [IrClCp*(2, 2'-bi-2-imidazoline)]Cl (TOF = 487, 500 h-1 ). However, examples of catalytic systems effective for the solventless dehydrogenation of FA, which is of great interest since it allows to reduce the reaction volume and avoids the use of organic solvents that could damage the fuel cell, are scarce. In this context, the development of transition metal catalysts based on cheap and easily available nonprecious metals is a subject of great interest. This work contains a summary on the state of the art of catalytic dehydrogenation of FA in homogeneous phase, together with an account of the catalytic systems based on non-precious metals so far reported. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
000118141 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118141 592__ $$a0.728$$b2021
000118141 590__ $$a4.501$$b2021
000118141 593__ $$aPhysical and Theoretical Chemistry$$c2021$$dQ2
000118141 591__ $$aCHEMISTRY, PHYSICAL$$b71 / 165 = 0.43$$c2021$$dQ2$$eT2
000118141 593__ $$aCatalysis$$c2021$$dQ2
000118141 594__ $$a5.5$$b2021
000118141 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118141 700__ $$0(orcid)0000-0002-0497-1969$$aFernández-Alvarez F.J.$$uUniversidad de Zaragoza
000118141 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000118141 773__ $$g11, 11 (2021), 1288 [19 pp]$$pCatalysts$$tCatalysts$$x2073-4344
000118141 8564_ $$s3997844$$uhttps://zaguan.unizar.es/record/118141/files/texto_completo.pdf$$yVersión publicada
000118141 8564_ $$s2731158$$uhttps://zaguan.unizar.es/record/118141/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118141 909CO $$ooai:zaguan.unizar.es:118141$$particulos$$pdriver
000118141 951__ $$a2023-05-18-15:25:57
000118141 980__ $$aARTICLE