Inversion tectonics and magnetic fabrics in Mesozoic basins of the Western Tethys: a review

C. García-Lasantaa*, B. Oliva-Urciab, A.M. Casas-Sainza, T. Román-Berdiela, E. Izquierdo-Llavallf, R. Sotod, P. Calvíne, B. Moussaidf, H. El Ouardig, J.C. Kullbergh, J.J. Villalaíne

aDepartamento de Ciencias de la Tierra, Instituto de Investigación en Ciencias Ambientales (IUCA), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
bDepartamento de Geología y Geoquímica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
cE2S-UPPA, UPPA-CNRS-Total, Laboratoire des Fluides Complexes et leurs Réservoirs, IPRA, Université de Pau et des Pays de l'Adour, France
dIGME, Instituto Geológico y Minero de España, Unidad de Zaragoza, 50006 Zaragoza
eLaboratorio de Paleomagnetismo, Departamento de Física, Universidad de Burgos, Spain
fÉcole Normale Supérieure Casablanca (ENS), Université Hassan II de Casablanca, Morocco
gDép. de Géologie, Faculté des Sciences, Université Moulay Ismail, BP 11201 Zitoune, Meknès, Morocco
hDpto. Ciências da Terra, CICEGe, Univ. Nova de Lisboa, Qta. Torre, 2829-516 Caparica, Portugal
*Current affiliation: Geology Department. Western Washington University, Bellingham, WA 98225 USA

Abstract

Positive tectonic inversion of sedimentary basins has been recognized as one of the primary mechanisms of mountain building and intraplate deformation. Reconstructing the tectonic history of basins is relatively easy for the inversion stage but becomes more difficult for the basinal stage, especially when strong deformation involving cleavage development is associated with the subsequent compressional tectonics. Since tectonic markers for the extensional episodes are not commonly well developed, Anisotropy of Magnetic Susceptibility (AMS) has provided recently a tool for analyzing early stages in the evolution of sedimentary basins, even in the absence of other outcrop-scale mesostructures. Here, we expose and discuss the applicability of magnetic fabrics (by means of AMS) to different types of intraplate sedimentary basins in the Western Tethys region formed under extensional or transtensional regimes and which underwent different inversion styles (total or partial inversion, with or without cleavage development, forming part of compressional thrust sheets, etc.) owing to specific particular p-T conditions and structural controls. Factors such as lithology, magnetic mineralogy, position within the sedimentary pile and deformation intensity are key to interpret the obtained magnetic fabrics in terms of tectonic evolution. A basin classification is proposed according to inversion styles and magnetic fabrics: Where inversion did not involve cleavage development, magnetic lineation is parallel to the stretching direction corresponding to the extensional stage. The transition between non-cleaved to inversion-related cleaved units is marked by the switch of magnetic lineations from parallel to extension to parallel to the intersection lineation between cleavage and bedding. These relationships are enhanced when extension and compression are roughly coaxial, then favoring the clustering of axes of the magnetic ellipsoid. Even when extreme inversion occurs and the early, extensional fabric is obliterated, magnetic fabrics provide
information about the interaction between preferred deformation directions associated with the main stages in basin evolution.

Keywords: intra-plate sedimentary basins, inversion tectonics, AMS, magnetic mineralogy, Western Tethys

1. Introduction

Intra-plate sedimentary basins can be formed in a variety of tectonic settings, including pure extension, transtension, pure strike-slip or compression. Basin inversion is a common process in basin evolution that allows for their infill to be exposed (and, consequently, studied) at surface (Ziegler, 1982; Van Hoorn, 1987; Koopman et al., 1987). The particular evolution of sedimentary basins within a large plate or a micro-plate is crucial when defining plate kinematics, which can be strongly conditioned by their internal deformation (Cloetingh, 1988; Ziegler, 1989). Since the works by De Graciansky et al. (1989), and Williams et al. (1989), who attempted to systematize structures formed by tectonic inversion processes, their study has become a necessary routine to establish the main stages in basin evolution. In addition, new techniques (including analogue and numerical modeling, physico-chemical techniques, paleomagnetism) can be nowadays used in order to accurately characterize and differentiate processes related to either the basinal or the inversion stages (see Allen and Allen, 2013 and references therein).

The study of Anisotropy of Magnetic Susceptibility (AMS, also called magnetic fabric analysis) has become one of the most extensively used techniques in the last decades, in sedimentary, igneous and metamorphic rocks (e.g. Hrouda and Janak, 1976; Hrouda, 1982; Rochette, 1987; Borradaile, 1988; Rochette et al. 1992; Tarling and Hrouda, 1993; Borradaile and Henry, 1997; Winkler et al., 1997; Borradaile and Jackson, 2004; Parés, 2015; Bilardello, 2016). AMS has targeted, with different degree of success, the characterization of multiple geological problems: emplacement of igneous bodies (e.g. Gleizes et al., 1993; Román-Berdiel et al., 1995; Bouchez, 1997, 2000; Aranguren, 1997; Auréjac et al., 2004; Antolín-Tomás et al., 2009; Kratinová et al., 2010; Izquierdo-Llavall et al., 2012; Cañón-Tapia and Mendoza-Borunda, 2014), deformation of rocks under different P-T conditions (e.g. Parés et al., 1999; Gil-Imaz et al., 2000; Hirt et al., 2000; Robion et al., 2007; Oliva-Urcia et al., 2009; Pueyo Anchuela et al., 2012), basin evolution (Mattei et al., 1997, 1999; Cifelli et al., 2005), fold geometry and internal deformation (e.g. Aubourg et al., 1999), estimation of shallowing effect in sedimentary rocks sampled for paleomagnetic purposes (see Li and Kodama, 2016), fault rocks at shallow crustal levels (Solum and van der Pluijm, 2009; Casas-Sainz et al., 2017, 2018), paleocurrents orientation in sedimentary contexts (e.g. Rees, 1965; Hamilton and Rees, 1970; Tarling and Hrouda, 1993; Piper et al., 1996; Pueyo Anchuela et al., 2013 and references therein), etc. Multiple studies have found empirical relationships between the orientations of the magnetic and strain ellipsoids (e.g. Kneen, 1976; Wood and Gibson, 1976; Kligfield et al., 1977; Rathore, 1979; Kligfield et al., 1982; Rathore and Henry, 1982; Lüneburg et al., 1999) although their magnitudes are more complexly related and empirical relationships for different lithologies has yet to be established (Kligfield et al., 1981; Borradaile, 1987, 1988; Hirt et al., 1988; Borradaile, 1991; Lüneburg et al., 1999; Oliva-Urcia et al., 2010b).
In this sense, a number of studies about the interpretation of magnetic fabrics include correlations with magnetic and non-magnetic analyses that provide information about the minerals and their orientation distribution. Such non-magnetic analyses include crystallographic preferred orientation, CPO, shape preferred orientation, SPO (Richter et al., 1993; Lüneburg et al., 1999; Chadima et al., 2004; Schmidt et al., 2009; Hastie et al., 2011; Izquierdo-Llavall et al., 2012; Oliva-Urcia et al., 2012), distribution anisotropy (Grégoire et al., 1998; Muxworthy and Williams, 2004), or even modeled magnetic fabrics from textural data (Housen et al., 1993; Martín-Hernández et al., 2005; Biedermann et al., 2018). In addition, the magnetic anisotropy of single crystals has been also evaluated at room (Martín-Hernández and Hirt, 2003 and references therein) and low temperatures (Biedermann et al., 2014a). The AMS resulting from a combination of crystals can be also modeled, revealing the importance of the intrinsic susceptibility anisotropy of single crystals in similar rocks with similar histories but different AMS orientation (i.e., Biedermann et al., 2018). Several techniques allow separating magnetic subfabrics using remanence anisotropy (AARM, anisotropy of the anhysteretic remanent magnetization), partial remanence anisotropy, or high-field methods such as the anisotropy of the isothermal remanent magnetization -AIRM- or the high-field torquemeter measurements, including measurements at low temperature (e.g. Jackson et al., 1988; Jackson and Tauxe, 1991; Kelso et al., 2002; Lüneburg et al., 1999; Martín-Hernández and Hirt, 2001; 2004; Schmidt et al., 2007b; Martín Hernández and Ferré, 2007). However, some of these methods require further equipments in addition to the usually available in paleomagnetic and/or magnetic fabric laboratories (e.g. Ferré et al., 2004).

All in all, AMS has become of a high interest due to its broad and reliable applicability to characterize the structural context of a region where structural markers are often punctually located or scarce (e.g. Cifelli et al., 2009; García-Lasanta et al., 2015; Parés, 2015 and references therein). The possibility of characterizing the internal structure of sedimentary basins, determining the different roles of faults (with different orientations) during the inversion process, as well as predicting the orientation or location of subsoil faults from the extension directions and magnetic/deformational features obtained at surface can also promote it as a valuable tool in geological reservoirs evaluation.

In this work, we explore the applicability of AMS to intra-plate basin analysis (namely inverted extensional or transtensional basins), discussing a collection of studies developed in examples from the Western Tethys (Mesozoic-Cenozoic evolution in the Iberian and African plates; Table 1, Fig. 1). Analyzed factors include the variability of magnetic carriers, sedimentary rock types, early diagenetic processes, structures associated with extension and inversion and relationship between the strain and the magnetic anisotropy ellipsoids. We finally propose a classification according to the relationship between magnetic fabrics and major structures related to basin evolution.

2. Types of inverted basins

2.1. Extensional (basinal) stage

Intra-plate basin formation is relatively common in continental areas, especially those in which a weakened or thinned crust undergoes thermal or mechanical processes associated with rifting and,
eventually, oceanic expansion (Allen and Allen, 2013). Depending on the geometry of the previous, inherited fractures and their depth (van Wees et al., 1998), intra-plate rifts may evolve in two ways: (i) along preferred fault directions, in which case subsidence areas are limited by rift shoulders, therefore showing sharp thickness changes in their sedimentary fillings along transects perpendicular to the rift axis; or (ii) rather extending along wide areas showing diffuse borders (Sopeña and Sánchez-Moya, 1997; Liesa et al., 2000). The two stages can be found in the same basins as they evolve from tectonic to thermal subsidence periods (Allen and Allen, 2013). Magmatic processes are common during different stages of rifting evolution. Their extrusive or hypabyssal character depends upon both the volume of magmatic production and the thickness and mechanic stratigraphy of the sedimentary pile. Diapirism is also a non-negligible contribution to deformation during the basinal stages (Vendeville et al., 1995; Alves et al., 2003); salt migration can result both in uplift along major faults related to basin margins (salt walls) and local subsidence in areas surrounding the main diapirs (Fig. 2A). Salt deposition in near coastal environments was common in the western Tethys, because of the latitudinal position near the equator of large regions of Europe and Africa during the Mesozoic (see e.g. Aurell et al., 2007 and references therein). The syn-rift sequences (Permian, Lower Triassic, Upper Triassic, etc.) are characterized by the presence of significant thickness of salt and gypsum (Ziegler, 1982, 1989). Interaction between igneous intrusions and salt diapirism has been also proposed as a mechanism for intra-basinal deformation during the rifting stage (Torres-López et al., 2016). Ductile levels contribute to distribute deformation along larger areas and determine the geometry of the hanging-wall, syn-rift deposits, which can change from roll-over anticlines (reverse drag) to syn-sedimentary synclines (normal drag) at the contact with the basement normal faults bounding the basins or sub-basins (Soto et al., 2007a).

Of particular importance is the relationship between stress axes and the major faults limiting the basin (Fig. 2A), because obliquity between faults and the extension direction can be responsible for transtensional movements thus giving different relationship patterns between faults, the sedimentary infill and the main basin axis (Tron and Brun, 1991). Depocenters location, early deformational structures in syn-rift sediments, overall shape of the basin and (eventually) salt migration can be conditioned by transtension.

Another end-member of intra-plate subsidence is the formation of sedimentary basins associated with fault jogs and bends (Fig. 2A) along strike-slip faults. Although strictly speaking pull-apart and strike-slip-related basins (intra-plate or between different plates) are of relatively small size and linked to very particular conditions of plate movements (Aydin and Nur, 1982; McClay and Dooley, 1995), basin shapes and their sedimentary and magmatic evolution often suggest a certain contribution of this mechanism during, at least, some periods in their tectonic evolution.

The evolution of extensional or transtensional basins can include one or several stages of rifting (Salas and Casas, 1993), characterized by tectonic or thermal subsidence, depending on the processes dominant during the basinal stage, or upon interference with plate or mantle-related processes (Torres-López et al., 2014). The latter can also influence the magnetic properties of rocks (Osete et al., 2011) and hence the magnetic fabrics (Calvín et al., 2018a). As we will discuss later on, AMS can offer a reliable picture of...
early or intermediate stages of basin evolution, depending on the particular features of the tectonic
inversion on each basin that can eventually modify previous, basin-related magnetic fabrics.

2.2. Inversion styles

Inversion of intra-plate basins is linked to changing patterns of plate movements and hence changing
stress fields within continental (or oceanic) crust (Ziegler, 1982, 1989; Cloetingh, 1988). Inversion can be
either related to stress propagation from the plate boundaries to their inner part (Cloetingh et al., 2002),
plate-scale or lithospheric buckling (De Vicente and Vegas, 2009; Fernández-Lozano et al., 2011) or to
deep décollements (Guimerà and Alvaro, 1990 and references therein). Modes of inversion depend on
different factors (Figs. 2B, 3): i) the dip of major faults limiting the basin, which conditions the frontal or
oblique re-activation and inversion, the development of footwall shortcuts and the relative evolution of
each wall of the fault (i.e. buttressing or not in the initially downthrown block); ii) the existence of
significant detachment levels within the pre-rift sequence; iii) the total shortening during inversion, which
can be concentrated on a unique fault or partitioned between different faults with pure reverse or strike-
slip movements (De Vicente et al., 2009) and iv) P-T conditions, depending on both the geothermal
gradient and the thickness of the sedimentary pile (Mata et al., 2001).

The dip of major faults limiting the basin also influences the relative position of the fault walls with
respect to their previous role during extension. That is, the dip of faults defines whether the downthrown
block during the extensional stage will become uplifted or remain downthrown during inversion. Steeply-
dipping faults can be a catalyst for the relative position of the two blocks to remain unchanged and for
folding and thrusting processes to affect the main fault. This one may change its dip sense to finally
become a reverse fault. A related process is the buttressing of the syn-rift sequence against steeply-
dipping master faults (Fig. 3). Depending on P-T conditions, and favored by burial, this buttressing can
lead to cleavage development in the syn-rift sequence. However, pressure-solution cleavage associated
with buttressing can also develop at relatively shallow levels. All in all, the particular mechanism of
cleavage formation will influence the obtained magnetic fabric, because of the possible re-orientation of
phylllosilicates and/or the formation of new mineral phases (Oliva-Urcia et al., 2009).

Finally, the presence of shallow detachment levels is a first-order factor controlling inversion geometry
and kinematics, even when basement structures are involved in tectonic inversion (Fig. 3). The possibility
of channelizing deformation and transferring displacement to areas located far from the basement thrust
fronts makes it easier for extensional basins to form pop-up structures uplifted over the surrounding
basement (where syn-rift deposits are much thinner), with or without syn-compressional sedimentation
that, in turn, also conditions the final geometry.

3. How to determine the magnetic carriers

3.1. Mineralogies contributing to the AMS

Magnetic mineralogy is a key factor when interpreting magnetic fabrics in sedimentary rocks. Each
contributor to the AMS (ferromagnetic, paramagnetic and diamagnetic minerals) must be carefully treated
in order to obtain a reliable picture of the bulk magnetic fabric and its significance with respect to the petrofabric. Moreover, it is important to notice that the carriers of the magnetic bulk properties are not necessarily the same minerals that dominate the AMS. After the initial stages of this kind of studies, when AMS analysis was mainly focused on the ferromagnetic s.l. fraction (e.g. Fuller, 1969; Graham, 1966), phyllosilicate-rich lithologies (and hence pelites and similar rocks) have been used as ideal markers for magnetic fabrics (e.g. Henry, 1983; Rochette and Vialon, 1984; Borradaile et al., 1986). These rocks usually have low diamagnetic content mostly represented by quartz or calcite minerals and variable ferromagnetic s.l. content (i.e., magnetite, hematite, pyrrhotite). In any case, diverse methods for magnetic subfabrics separation allow determining the carriers of the AMS at room temperature (see e.g. Martín Hernández and Ferré, 2007 and references therein). These methods include AMS measurements at low temperature -AMS-LT (e.g. Richter and van der Pluijm, 1994; Lüneburg et al., 1999; Parés and van der Pluijm, 2002a, 2014; Cifelli et al., 2005; Oliva-Urcia et al., 2009; Haerinck et al., 2013; Issachar et al., 2016), measurement of the anisotropy of the anhysteretic remanent magnetization -AARM- (e.g. McCabe et al., 1985; de Wall and Worm, 1993; Borradaile and Jackson, 2004; 2010), the anisotropy of the isothermal remanent magnetization -AIRM- (e.g. de Wall and Worm, 1993; Borradaile and Jackson, 2010) and high field torque measurements -HF-AMS- (e.g. Ferré et al., 2004; Kelso et al., 2002; Martín-Hernández and Hirt, 2001; 2003; 2004; Schmidt et al., 2006; 2007a; 2007b; Haerinck et al., 2013). The applicability of each of these methods is widely discussed below.

It is well established that the orientation distribution of all minerals in a specimen is what almost exclusively controls the AMS (i.e., Borradaile and Jackson, 2004 and references therein). Different minerals have different magnetic susceptibility values and anisotropies (Borradaile and Jackson, 2004; 2010 and references therein). Ferromagnetic s.l., paramagnetic and diamagnetic minerals show, respectively, the strongest (positive), lower (positive) and lowest (negative) values of magnetic susceptibility. Pure examples of quartz, calcite and feldspars may have values around 10^{-6} SI. Clay minerals, chlorites and micas may range from 100 to 1500 10^{-6} SI, and common iron oxides and sulphides (magnetite, titanomagnetite, titanohematite, hematite and pyrrhotite) show magnetic susceptibilities around 10^{-2} and 10^{0} SI (Borradaile and Jackson, 2010). These minerals are the most typical in sedimentary rocks. Other studies dealing with igneous rocks with abundant presence of olivine and amphiboles, among others, may relate to single crystal studies of those minerals (i.e., Biedermann et al., 2014b; Biedermann et al., 2015).

In particular, in single minerals the crystal structure controls the AMS principal axes orientation. In most of the studied inverted basins (except those whose filling consists of red beds), the most common minerals are phyllosilicates (Table 1), which show a highly oblate ellipsoid of the paramagnetic susceptibility, with the minimum susceptibility direction subparallel to the crystallographic c-axes (Martín-Hernández and Hirt, 2003, and references therein). For the hematite crystal, a widespread mineral in the red beds (Table 1), an intrinsic crystallographic magnetic anisotropy has been described, in which the maximum susceptibility axis is parallel to its basal plane and very weak spin-parallel susceptibility parallelizes the c-axis (Pokorný et al., 2004).

In a few sites from the case studies discussed here, magnetite was also identified (Table 1). The magnetic
susceptibility of magnetite can depend on its crystallographic properties (for equidimensional crystals), but most commonly shape and grain size are the main controlling factors. This is because shape anisotropy dominates over the magnetocrystalline one even with low elongation ratios (Winklhofer et al., 1997). Different works (Jackson and Swanson-Hysell, 2012; Calvín et al., 2018b) have shown in remagnetized limestones the dominance of uniaxial magnetite with shape anisotropy. This has some implications since stable single domain (SSD) magnetite with shape anisotropy shows the “inverse fabric” effect (e.g. Potter and Stephenson, 1988) by which the lowest magnetic susceptibility axis is parallel to the long axis of the crystal (the easy direction of magnetization). However, this phenomenon is not so common in sedimentary rocks since SSD grains appear usually together with superparamagnetic (SP) and/or multi-domain (MD) magnetite grains (mainly SP in remagnetized rocks), with higher susceptibility values and lacking the “inverse fabric” effect (e.g. Rochette et al., 1992; Worm and Jackson, 1999; Lanci and Zanella, 2016). Models combining SD –inverse magnetic fabric- and MD –normal magnetic fabric- magnetite reveal intermediate magnetic fabrics, in which its relation with strain is therefore not simple (Ferré et al., 2002). In the studied basins, an interesting application of magnetite-driven fabrics in sedimentary rocks is the contribution of SP magnetite to the AMS, a feature in which remagnetization had a strong influence (Calvín et al., 2018a). In some of the studied basins (Cabañerigas, Cameros, Central High Atlas, Soto et al., 2007b; García-Lasanta et al., 2014, Calvín et al., 2018a), the fabric carried by magnetite indicates the extension direction linked to the basinal stage, and specifically in the Central High Atlas (Imilchil Area), it indicates the stretching at the remagnetization time (Calvín et al., 2018a).

Finally, the presence of pyrrhotite was also observed in some sites (Table 1). Magnetically, pyrrhotite is extremely anisotropic with magnetite-like low-field susceptibility values within the basal plane and values typical of antiferromagnetic material along the crystallographic c-axis perpendicular to the basal plane (Schwarz 1975, Martín-Hernández et al., 2008). The AMS of pyrrhotite depends on texture and grain shape (de Wall and Worm, 1993).

3.2. Cookbook for each mixture of minerals

Magnetic mineralogical analyses are essential in every investigation relating AMS to strain. This part of the research has two complementary lines: i) to analyze the magnetic mineralogy itself, traditionally subjecting a few milligrams of powdered sample to various temperatures and magnetic fields (thermomagnetic curves, hysteresis loops, IRM acquisition and back field curves, Fig. 4A, B, C, D), and ii) to obtain more information about the orientation distribution of the different minerals to complement and properly interpret the AMS results in relation to strain (orientation of the minerals measured on the standard specimens). Different magnetic and non-magnetic analyses are accompanying AMS measurements in order to get information about the minerals and their orientation distribution. Complementary, non-magnetic methods require different instrumentation than the standard devices found in a magnetic fabric laboratory: X-Ray goniometry to determine the crystallographic preferred orientation of phyllosilicates or other minerals in relatively small regions (ca. 1 mm²) (van der Pluijm et al., 1994; de Wall and Worm, 1993; Oliva-Urcia et al., 2009; 2010b; 2012); neutron goniometry to analyze texture by measuring the probable density distribution or pole figure of phyllosilicates (Hansen et al., 2004; Cifelli et al. 2005; 2009); EBSD (electron back scattered diffraction) for measuring the lattice preferred orientation.
(LPO) of selected minerals (Prior et al., 1999; Bascou et al., 2005; Hrouda et al., 2009; Oliva-Urcia et al., 2012), which is difficult to perform in marls and siltstones containing phyllosilicates due to the thin section polishing technique. In addition, SEM-EDX observations, XRD and image analyses of dark minerals in thin section (i.e. biotite) are common techniques also used in investigations of AMS related to strain (see e.g. Kodama and Sun, 1990; Lüneburg et al., 1999; Oliva-Urcia et al., 2009). Furthermore, it is possible to model magnetic fabrics from texture data (e.g. Richter et al., 1993; Housen et al., 1993; Hirt et al., 1995; Lüneburg et al., 1999; Chadima et al., 2004; Martín-Hernández et al., 2005; Schmidt et al., 2009; Hastie et al., 2011), providing universal correlations.

The magnetic method to separate subfabrics most easily performed in a magnetic fabric laboratory is the low temperature measurement of the AMS (LT-AMS, Fig. 4E), which requires liquid nitrogen to cool down the samples in a special recipient and a silicon sheet to isolate the coils of the instrument (in the case of KLY3, 4, 3-S, 4-S or superior models, AGICO Inc.; Parés and van der Pluijm, 2002a; 2014; Issachar et al., 2016). This procedure has been largely used in selected sites in the Tethyan extensional basin studies (discussed more extensively below). Once a sample is cooled down, its measurement takes around 30 min (in a KLY3-S, AGICO Inc.). Other magnetic methods easily performed in a paleomagnetic laboratory are the measurement of the anisotropy of the anhysteretic remanence magnetization (AARM; McCabe et al., 1985; Borradaile and Jackson, 2004; 2010), and in some specialized paleomagnetic laboratories, the measurement of AMS at high fields (HF-AMS) in a torque magnetometer (e.g. Martín-Hernández and Hirt, 2004; Martín Hernández and Ferré, 2007; Haerinck et al., 2013; García-Lasanta et al., 2014, 2015). These analyses allow to separate the magnetic subfabrics: the LT-AMS by enhancing the paramagnetic signal of the samples at low temperatures (reliable results are found when LT-AMS/RT-AMS is above 1.5 (e.g. Oliva-Urcia et al., 2016 and references therein) and particularly above 2 in red beds and above 3 in mudstones (Soto et al., 2012) following the Curie-Weiss law, whereas the AARM and the torque magnetometer separate the ferromagnetic fabric of low magnetic coercivity magnetic minerals and high magnetic coercivity minerals with paramagnetic mixture or diamagnetic with paramagnetic mixture (Borradaile and Jackson, 2004, 2010; Martín-Hernández and Hirt, 2004; Schmidt et al., 2007b).

Instruments to perform the magnetic mineralogy analyses are usually found in magnetic fabrics and paleomagnetic laboratories: i) susceptibility vs. temperature curves (k-T curves) in, e.g., KLY3 or KLY4 coupled to CS3 or CS4 ovens (AGICO Inc.); ii) magnetization vs. temperature M-T curves in a Magnetic Measurements Variable Field Translation Balance (MMAVMFTB, Petersen Instruments), in a Micromag 3900 Vibrating Sample Magnetometer (VSM, Princeton Measurement Corp.) or in a Magnetic Properties Measurement System, (MPMS); iii) hysteresis loops in a variable field translation balance, VSM or MPMS; iv) IRM acquisition and backfield curves, as well as thermal demagnetizations of a composite IRM (Lowrie, 1990) in SQUID (cryogenic), spinner (JR5 or 6), by using pulse magnetometers and zero-field ovens.
3.3. Working procedure in inverted basins

The procedure to reveal the main magnetic fabric carriers in the extensional basins of the Tethys has been essentially the same as the standard explained above for other magnetic fabric studies. However, here we present some particular characteristics of these studies.

The information obtained from thermomagnetic curves (hyperbolic decrease of the magnetic susceptibility as temperature increases, and the decay at Curie or Néel temperatures) and ratios of LT/RT bulk magnetic susceptibility indicate that the main AMS carriers in the sampled sediments in these extensional settings are basically paramagnetic minerals, i.e., phyllosilicates (in marine environments; Table 1, Fig. 4A) and ferromagnetic s.i. minerals, i.e. hematite, and phyllosilicates (in continental settings; Table 1, Fig. 4B). Other ferromagnetic carriers different from hematite (i.e., magnetite, iron sulphides) were found in a few sites (e.g. Oliva-Urcia et al., 2013; García-Lasanta et al., 2016). In general, the relationship between the orientation of these ferromagnetic subfabrics and the main RT-AMS orientation is easily established in each case (e.g. Soto et al., 2007b, 2008a; García-Lasanta et al., 2014; Calvín et al., 2018a, 2018b). These ferromagnetic minerals reveal themselves when applying remanence-related analyses (IRM and backfield curves, Fig. 4D).

The observations and results from SEM-EDX analyses were crucial in the Argana Basin to finally discard 28 sites out of 48 (Table 2) since the interchange of magnetic axes found in the basin was clarified when observing thin sections in the SEM-EDX. There, it was possible to identify hematite platelets probably related to a post-extensional fluid mineralization, therefore revealing that the extensional primary fabric had been transformed by a subsequent event. Previously, thermomagnetic curves and LT/RT ratios allowed to infer that paramagnetic minerals and hematite share the same orientation in the studied rocks (Oliva-Urcia et al., 2016). Observations by SEM-EDX were also very useful to visualize and recognize the shape and contacts among minerals at µm-scale in certain basins. In the Organyà and Cabuérniga Basins this technique provided general information about size and qualitative chemical composition of the minerals contributing to the RT-AMS (Oliva-Urcia et al., 2010a; Oliva-Urcia et al., 2013). In the Mauléon Basin, it allowed to check for post-sedimentary transformations, i.e. replacement of pyrite by magnetite, which was not affecting the magnetic fabric, carried here mainly by paramagnetic minerals (Oliva-Urcia et al., 2010c).

The most used way to separate magnetic subfabrics in the Tethyan basins was LT-AMS, since the sampled lithologies were fine-grained (marls, marly limestones, siltstones…), where phyllosilicates (paramagnetic minerals) are abundant (Fig. 4E). In exceptional cases, only one site was analyzed to test the carrier in an anomalously high bulk susceptibility limestone (Soto et al., 2007b). In other studies, systematic analyses were carried out in several selected sites, usually covering the whole range of lithology types and magnetic susceptibility values (Izquierdo-Llavall et al., 2013; García-Lasanta et al., 2015, 2016; Oliva-Urcia et al., 2016 among others). These LT-AMS analyses and the LT/RT ratio of bulk magnetic susceptibility confirm that paramagnetic minerals are the main carriers of the extensional strain in the analyzed rocks in Cameros, Organyà, Mauléon, Cabuérniga and Maestrat Basins (Soto et al., 2007b; 2008a; García-Lasanta et al., 2014; 2016; Oliva-Urcia et al., 2010a; 2010c; Oliva-Urcia et al.,
In Triassic red beds, phyllosilicates mimic the hematite fabric in the NW Castilian Branch of the Iberian Range (García-Lasanta et al., 2015), the Triassic Pyrenean basins in the Axial Zone (where extension was recorded in the upper thrust sheets of the antiformal stack: Nogueres Zone; Izquierdo-Llavall et al., 2013) and in some sites of the Argana Basin in the High Atlas (Fig. 4E, Oliva-Urcia et al., 2016).

Analyses to separate the ferromagnetic fabric (generally AARM but also HF-AMS analysis) focused on certain selected sites and allowed to compare the ferromagnetic fabric with the RT-AMS and the LT-AMS; the three of them can be parallel or not. According to the scarce HF-AMS results in the Cameros Basin (García-Lasanta et al., 2014), the ferromagnetic fabric coincides with the RT-AMS (which overlaps with the LT-AMS) for the last extensional stage, and hence this HF-AMS, RT-AMS and LT-AMS overlapping informs about the geological processes acting at the latest stages of the basin evolution. Besides, the coincidence between the AARM and the RT-AMS in most of the limestones sampled in the Central High Atlas suggests a major contribution of magnetite to the bulk magnetic fabric (Calvín et al., 2018a). In this case, the long axis of the magnetic anisotropy ellipsoid has been interpreted to show the extensional direction during authigenic magnetite growth also during basin evolution (Calvín et al., 2018b). In addition, the HF-AMS analyses performed in the Triassic red beds of the NW Castilian Branch Basin of the Iberian Range confirmed that phyllosilicates and hematite (both the saturated and the non-saturated part of the signal) share the same orientation distribution (García-Lasanta et al., 2015). These overlappings and the structural observations reveal the primary origin of the RT-AMS. In other cases, when ferromagnetic fabrics are analyzed and they do not overlap RT-AMS/LT-AMS carried by phyllosilicates, they indicate the different timing and strain ellipsoid orientation for the ferromagnetic fabric development respect to the RT-AMS/LT-AMS fabric (Calvín et al., 2018a). This fact is also well known from previous studies from the literature, that do not necessarily relate to inversion of extensional basins. Generally, the ferromagnetic fabric is more randomly oriented than RT-AMS and LT-AMS in the extensional basins and it does not provide compelling information in, for example, the Organyà Basin (Oliva-Urcia et al., 2010a). In other cases, particularly in remagnetized basins, the AARM is not random and its determination has been essential for defining the strain during the basinal stage (Calvín et al., 2018a, 2018b).

Finally, comparison between the magnetic ellipsoids with bedding and other structural elements is basic to interpret the magnetic fabrics. In this sense the clustering degree of the magnetic ellipsoid axes is compared between sites before and after bedding correction. Since remagnetizations are common in sedimentary basins having a thick filling, sometimes it is possible to use it to calculate the paleodip of beds, i.e. to restore the attitude of bedding at the remagnetization time (e.g. Villalaín et al., 2003, 2015; Soto et al., 2008b). To restore the magnetic fabrics according to the paleodip has been useful to understand ferromagnetic fabrics whose carriers are related to the remagnetization event (Calvín et al., 2018a).
4. AMS patterns

The magnetic fabric can be considered, analogously to finite strain, as a sum of all the processes undergone by the basin (hence its value as a geological marker), including its burial and tectonic history. From a qualitative point of view magnetic fabric could be expressed as:

$$MF = \sum ([\text{early diagenesis}]^a + [\text{late diagenesis}]^b + [\text{early metamorphism}]^c + [\text{early inversion processes}]^d + [\text{final inversion}]^e + [\text{epidiagenesis}]^f)$$

The exponent (a, b, c, d, e, f) for each process represents its relevance and depends on the mechanisms and specifications involved in each case, especially magnetic mineralogy and the P-T conditions prevailing during that particular period or process, and which are in turn related to the burial history. Not all processes will be able to produce a significant imprint in the magnetic fabric and hence the possibility of defining the extensional stages in basin evolution will depend on the particular conditions of each basin.

4.1. Early magnetic fabrics

The development of magnetic fabrics in sedimentary rocks has been demonstrated to start very early during the deposit of sediments being contemporary with the earliest diagenetic processes, such as compaction and fluids migration (e.g. Kissel et al., 1986; Tarling and Hrouda, 1993; Larrasoaña et al., 2004; Cifelli et al., 2005; Parés et al., 1999; García-Lasanta et al., 2013). The initial shape of the AMS ellipsoid, in sediments deposited in an environment only influenced by the effect of gravitational forces, shows an oblate geometry with the minimum susceptibility axes grouped perpendicular to the bedding plane and magnetic lineation in a radial distribution within the magnetic foliation plane, parallel to bedding (depositional magnetic fabric; Tarling and Hrouda, 1993). When additional hydrodynamic forces (e.g. paleocurrents, tides, etc.) affect the depositional process, the resultant magnetic fabric may be conditioned by them. This influence is translated in a prolate geometry of the AMS ellipsoid with the magnetic lineation oriented in relation with the current direction, and showing different relationship (parallel, perpendicular) depending on its velocity (see e.g. Hamilton and Rees, 1970; Tarling and Hrouda, 1993 for further information).

The depositional mechanism governing the sedimentation of the smallest-size particles (< 2 µm) is flocculation (when plates are attached or attracted edge to edge (Meade, 1964), see e.g. García-Lasanta et al., 2016), which is the typical mechanism of deposition in low-energy environments (e.g. alluvial plains or lacustrine areas in continental areas), where sedimentation is only influenced by gravity. In these cases, small-size, platy particles of phyllosilicate grains will accumulate with their [001]-axes (i.e. the minimum susceptibility axes; Martín-Hernández and Hirt, 2003) perpendicular to bedding, and other platy particles (e.g. hematite detrital grains) will lie with their longer axes randomly oriented within the bedding plane.

Due to this early development, magnetic fabrics are able to record, not only the influence of sedimentary conditions, but also the strain pattern controlling the tectonic evolution of the area during sedimentation and early diagenesis (e.g. Kissel et al., 1986; Larrasoaña et al., 2004; Cifelli et al., 2005; references in
This capacity is essential to apply AMS as a petrofabric marker in structural studies involving sedimentary rocks, not only in strongly deformed areas (e.g. Graham, 1966; Borradaile and Tarling, 1981; Lowrie and Hirt, 1987; Averbuch et al., 1992; Sagnotti et al., 1999; Borradaile and Jackson, 2004; Parés and Van der Pluijm, 2002a, 2004), but also in contexts where rocks seem to have undergone weak or no deformation (e.g. Kissel et al., 1986; Lowrie and Hirt, 1987; Mattei et al., 1997, 1999; Cifelli et al., 2004, 2005, 2009).

The large variability of tectonic contexts in which AMS has been applied makes possible to establish different relationships between the orientation and shape of the magnetic ellipsoid and the associated strain pattern. Thus, magnetic lineation in compressional-related magnetic fabrics is known to orient parallel to the trend of the compressional structures (i.e. perpendicular to the shortening direction) during the earliest moments of compressional deformation, and parallel to the intersection lineation between bedding and cleavage planes in pervasively deformed areas, to finally become parallel to the stretching direction within the foliation plane (e.g. Borradaile and Jackson, 2004; Parés et al., 1999). Meanwhile, magnetic fabrics associated to an extensional context show their magnetic lineation parallel to the stretching direction and within the bedding dip, therefore perpendicular to the main trend of faults controlling the basin development (e.g. Mattei et al., 1999; Cifelli et al., 2005), whereas their minimum susceptibility axis remains orthogonal to bedding. At grain scale, the phyllosilicates orientation are the carriers of the AMS, with a weak crenulation whose fold axis is parallel to the main stretching direction (Mattei et al., 1999) and with a magnetic lineation related to the spatial distribution of phyllosilicates (in the described case mainly chlorite), lying parallel to the common axis of differently oriented basal planes (Cifelli et al., 2005).

4.2. Total number of data and statistical representation in AMS studies

The general procedure to study extensional-related fabrics in a basin presenting scarce strain markers is to obtain as many AMS sites as possible to cover the whole outcropping area of the basin (from 20 to 95 sites in a basin area of 200 to 600 km², Table 2). The sampling is spatially distributed as homogeneously as possible throughout the whole basin, considering a density of sampling of one site for every 2-10 km². The number of samples measured per site varying between 9 and 18, to ensure a correct statistical treatment per site. Apart from spreading the sampling of the same lithology throughout the whole basin, one of the goals is to drill, if possible, the finest grain size rocks in order to avoid the effect of paleocurrents or mineralogical artifacts that may hinder the standard interpretation of AMS under extensional conditions (García-Lasanta et al., 2016; Oliva-Urcia et al., 2016).

The next step will consist on classifying the magnetic ellipsoids that result from the standard RT-AMS measurements according to the bulk magnetic susceptibility of samples, their scattering and the orientation variation of the magnetic axes with respect to bedding and/or cleavage. After elucidating the main magnetic fabric carrier(s) and determining magnetic subfabrics, the whole AMS dataset may be properly interpreted in terms of strain acting during extensional basin formation, which has been defined as k_{max} (magnetic lineation) parallel to the main extension direction (Mattei et al., 1997, 1999; Cifelli et al., 2005). Final interpretations will be based on sites in which k_{min} axes dispose perpendicular to bedding.
Subsequent inversion tectonics or fluid circulation events (for example) that may have affected the extensional fabric in certain sites will be singled out thanks to the magnetic mineralogy and the subfabrics separation analyses, and thus discarded from final interpretations about extension directions (i.e., Organyà Basin, Oliva-Urcia et al., 2010a; Pyrenean Axial Zone, Izquierdo-Llavall et al. 2013; Cameros, Maestrat, García-Lasanta et al., 2014; 2016).

4.3. **AMS ellipsoids and the deformatonal style**

The key factors intervening in the development of magnetic fabrics related to basin inversion are represented in the double-triangle diagram shown in Fig. 3. The starting point would be extensional or transtensional basins in which the stretching direction is perpendicular or oblique, respectively, to the main border faults. The geometry resulting from inversion is represented by end members (vertexes of the diagram) including (i) buttressing without a relative uplift of the hanging-wall with regard to the foot-wall, (ii) complete inversion with thrusting canalized through a low-strength décollement, (iii) basement-involved uplift without either horizontal displacement or thin-skin thrust sheets. Internal boundaries for the diagram are the limit for foliation development and buttressing structures (that can be coincident or not, depending on the structural level and thus the P-T conditions of deformation). Therefore, most cases of inverted extensional basins should fit between these geometrical end members.

A parallelism can be established between basin/inversion models and AMS patterns (Fig. 5). In order to simplify the final picture of axes directions, we can consider a basinal extension direction parallel to the shortening direction during inversion (which is indeed a situation relatively common or, at least, frequently assumed in many inversion-related structures). Magnetic fabrics resulting from extension would be slightly or totally unchanged in two different situations: when shortening is not significant or when a complete décollement during inversion favors the passive, horizontal displacement of the whole basin and prevents the formation of shortening structures in the hanging wall (i.e. the syn-rift sequence). This means that early fabrics, formed during or shortly after compaction and thus reflecting the extension direction, can be long-lived, provided that no other deformation mechanism is involved during compression.

Maximum modifications of extensional fabrics take place when flattening against the master faults occurs under the adequate P-T conditions or lithology for cleavage formation by re-orientation of phyllosilicates (and/or hematite flakes), or by pressure-solution. These processes are able to change the initial fabric (magnetic foliation becoming parallel to the actual, tectonic foliation and magnetic lineation progressively displacing towards the intersection lineation and then to the stretching lineation as deformation increases), according to models defined by Averbuch et al. (1992), Bakhtari et al. (1998), Parés et al. (1999), and Parés and van der Pluijm (2002b), which described the transition from sedimentary to intermediate fabrics (pencil structure) and to tectonic fabrics. When inversion is related to thin-skin thrust tectonics, each thrust sheet can show its own AMS signature, depending on its position within the thrust sequence and within the frame of the sedimentary basin pre-dating inversion. In a piggy-back thrust sequence, the lower thrust units could reach higher P-T conditions bringing on the development of cleavage and the modification of the previous extensional magnetic fabrics. On the contrary, upper thrust units will
potentially preserve inherited fabrics that, although tilted, maintain the necessary information to define
the pre-inversion, extension direction.

5. Application to the Western Tethys basins

The Western Tethys provides a broad range of examples of inverted basins, formed under different
tectonic contexts and undergoing different types and degrees of inversion (Table 2, Fig. 3). We have
centered our review in those belonging to the northern half of the Iberian plate (Pyrenees, Iberian Range
and Lusitanian Basin, Fig. 1) and the North African plate (High Atlas, Fig. 1). Both systems formed as a
consequence of the extension and convergence between Africa and Iberia (and, secondarily, Europe) in
the forelands of the main orogen (Betics-Rif) resulting from the Cenozoic collision between both plates
(e.g. De Vicente et al., 2004). The considered extensional basins share a common evolution (with certain
particularities) dominated by two rifting cycles, during Late Permian-Triassic and Late Jurassic-Early
Cretaceous, respectively, whereas post-rift thermal subsidence governed during Early-Middle Jurassic
and Late Cretaceous (Salas et al., 2001) times (Fig. 6).

Basins located in the Iberian Range (central-eastern Iberia) are related either to the Permian-Triassic
extension (NW Castilian Branch Basin, Fig. 7A) or the Early Cretaceous stage (Camos and Maestrat
Basins, Figs. 7 B, C), which produced the thickest sedimentary piles within the Iberian plate: up to 8km in
the Cameros Basin (Casas-Sainz and Gil-Imaz, 1998; Casas et al., 2009) and up to 4km in the easternmost
part of the Maestrat Basin (Martín-Chivelet et al., 2002). Triassic basins were bounded by major faults of
lithospheric depth, since magma of asthenospheric origin reached the surface during the Late Triassic
(Lago et al. 2005). Thickness changes are very sharp for the Lower Triassic (even more for the strongly
subsiding, localized Permian basins; e.g. Sánchez-Moya and Sopeña, 2004) and gentler in the middle-
upper part of the series (Sopeña et al., 1988). The obliquity between the main extension direction during
the Triassic (close to ENE-WSW, Fig. 8A) and the master faults resulting from Late-Variscan fracturing
(Arthaud and Matte, 1977), striking mainly WNW to NW-SE, was responsible for a
transtensional pattern during the basinal stage. Triassic syn-rift sequences expand up to Late Triassic
times, when thick accumulations of evaporites (Keuper facies) deposited. Active faults during Triassic
were partly, extensionally reactivated during the subsequent Late Jurassic-Early Cretaceous rifting stage:
Jurassic-Cretaceous basins are controlled by NW-SE and NE-SW-striking deep basement faults (Canérot,
1974; Guiraud and Séguret, 1984; Roca, 1994; Salas and Guimerà, 1997), and locally decoupled from
cover faults through the Upper Triassic evaporites.

Inversion styles in the inner part of the plate correspond to classical models of tectonic inversion
(Hayward and Graham, 1989; Liesa et al., 2018) conditioned (i) in the lower part of the sequence by the
steep dip of normal or strike-slip faults bounding the basins, and (ii) in the upper part of the series by the
presence of the Upper Triassic, regional detachment level that allowed for thin-skinned thrusting,
especially in the northern and southern basin borders (De Vicente et al., 2009; Guimerà and Alvaro,
1990). The Cameros and Maestrat Basins underwent an inversion conditioned by basement thrusting
(Paleozoic and Lower Triassic) with displacement transfer to the Mesozoic cover by means of the Upper
Triassic décollement. The thickness of the sedimentary pile and the relationship with master faults
determined the occurrence of cleavage during an early inversion stage, widespread in the Cameros basin at depths of more than 3000 m within the synrift sequence, but discontinuous since its occurrence was conditioned by lithological factors (Gil-Imaz et al., 2000). In relation to this cleavage development, changes from an extensional magnetic fabric (with NNE-SSW magnetic lineation, parallel to the regional extension direction) to a compressional one (with magnetic lineation intermediate or parallel, NW-SE, to the intersection lineation) took place. The ferromagnetic fabrics available for this basin (i.e. HF-AMS torque measurements; García-Lasanta et al., 2014) seem to point that this fraction could preserve the extensional fabric even in areas where cleavage post-dating extension was well developed. In the Maestrat Basin, magnetic fabric results allowed to differentiate the influence of two main tectonic processes occurring at the plate-scale during its sedimentary evolution (García-Lasanta et al., 2016): the opening of the Bay of Biscay that triggered the Early Cretaceous rifting in the Iberian domain and the configuration of the western limit of the Tethys Ocean (Fig. 8B).

Pyrenean basins are distributed both along the Europe-Iberia isthmus and the Cantabrian Pyrenees. The Mesozoic basins linked to the Axial Zone that we include in this review (Castejón-Las Paúles Basin in the Nogueres Zone, Organyà Basin and Mauleón Basin; Figs. 7D, E and F, respectively) share some of their features with other Triassic-Cretaceous basins. Moreover, the evolution of the Northern Iberian margin was conditioned from 125 to 83 M.a. by the around 35º counterclockwise rotation of Iberia linked to the opening of the Bay of Biscay (e.g. Van der Voo, 1969; Vissers and Meijer, 2012; Neres et al., 2013). This event influenced the extensional style followed by the Cretaceous Pyrenean basins during their development. Extension started in the region following a transtensive scenario and resulted in the thinning of the continental crust during an episode of hyper-extension (Jammes et al., 2010), accompanied by partial exhumation of mantle rocks (Lagabrielle and Bodinier, 2008). This scenario is an alternative (but not totally incompatible) with the evolution of a system of pull-apart en-échelon basins during Aptian-Albian times (Choukroune, 1992).

The Pyrenean convergence in the Castejón-Las Paúles Basin led to the detachment of several thrust sheets each showing different degree of deformation. The RT-AMS associated to each thrust sheet allows to establish comparisons in terms of magnetic fabrics changing from cleavage-related to pure extensional or sedimentary fabrics (Fig. 9A, Izquierdo-Llavall et al., 2013). The extensional fabric shows a main NW-SE extensional direction (Fig. 9A, Izquierdo-Llavall et al., 2013) as in López-Gómez et al. (2005) for the Cantabrian-Pyrenean basins. The Early Cretaceous Organyà Basin was transported in the hangingwall of the thrust sheets of the South Pyrenean Central Unit (SPCU, Séguret, 1972), undergoing very little internal deformation during the convergence. Various interpretations are proposed to describe its extensional stage. On one hand, a pure extensional N-S origin is interpreted from the structural analysis in Tavani et al. (2011) or the AMS study in Gong et al. (2009), which also interprets NW-SE magnetic lineation orientations as related to the subsequent compression. On the other hand, AMS investigations, accompanied with brittle structural and rock magnetic analyses, allow separating the AMS data related to the basinal stage from the sites modified due to compression (whose k_{min} axes are not perpendicular to bedding; Oliva-Urcia et al., 2010a). These authors interpret that basinal AMS data define a coexistence of NW-SE and N-S extension directions that occurred during the same tectonic event, associated with a...
regional extension (far-field) direction oblique to the main E-W Pyrenean faults controlling sedimentation (Fig. 9B).

A very particular context surrounds the Mauléon Basin (Fig. 7F), located along the North-Pyrenean fault. It is a strongly subsiding basin filled with up to 1500m-thick of black marls and interpreted as resulting from pull-apart mechanisms (Debroas, 1990) coeval to the hyper-extension episode (Jammes et al., 2010) along the Iberia-Europe margin. The basin formed under strong geothermal gradients and accommodated strike-slip movements related to the opening of the Bay of Biscay and the rotation of Iberia during the Aptian-Albian. During the Pyrenean compression, buttressing of the Mauléon Basin infill led to cleavage development across syn-rift units and produced the re-arrangement of its early magnetic fabrics close to the main basin-bounding faults, whereas extensional magnetic fabrics remained in few sites depending on their position with respect to basin margin faults and heterogeneous deformation areas (Fig. 9C, Oliva-Urcia et al., 2010c).

The Cantabrian basins record a complex sedimentary history since the Triassic and up to the Early Cretaceous, characterized with high subsidence rates, comparable to those obtained in the Cameros or the Organyà Basins. An intra-Cretaceous uplift stage (Soto et al., 2011) invokes a contribution of strike-slip tectonics, probably linked to the sinistral movement of Iberia with respect to Europe (Soto et al., 2011), but the record of this movement was probably obliterated during wholesale inversion of the basins, in which the main WNW-ESE faults, oblique to the Cantabrian margin, were re-activated as reverse-dextral faults (Oviedo, Saltacaballos,…). In this area, the change of magnetic fabrics along the stratigraphic sequence (as also occurring in the Cameros Basin, Soto et al., 2008a; García-Lasanta et al., 2014) indicates changes in the boundary conditions of the margins of the Iberian plate during Mesozoic times (Fig. 8C). Limited cleavage development associated with buttressing and inversion points to a N-S shortening during the Cenozoic (Fig. 7G; Table 2), consistent with the orientation of magnetic fabrics (E-W vertical magnetic foliation and E-W horizontal lineation, Fig. 9D; Soto et al., 2007b; Oliva-Urcia et al., 2013). Compression-related magnetic fabrics extend along a portion of the stratigraphic sequence that is slightly wider than the portion affected by cleavage. This distribution evidences that extensional magnetic fabrics can be only interpreted when there is a minimum separation (in the vertical or the horizontal) to the cleavage front and \(k_{min} \) remains perpendicular to bedding and does not show a girdle (either incipient or well-developed) distribution (Fig. 9D; Oliva-Urcia et al., 2013).

Magnetic fabrics in the western coast of Iberia do not reflect a simple history, as could be thought from a first approach at the structure. Up to four rifting phases have been recognized in the Lusitanian Basin, being the first (Late Triassic-Hettangian) and the third (Late Jurassic) studied by means of AMS analyses (Soto et al., 2012 and references therein). This study determined a change in extension directions with time in the passive margin, without influence of inversion structures, from almost radial with a subtle main NW-SE extension direction in the Late Triassic to NE-SW extension direction in the Late Jurassic. Both orientations are oblique to the broadly N-S (in present-day coordinates) extensional structure of the continental margin but consistent with the beginning of oceanic extension and contrasting with the rifting evolution in the Iberian Range. The Late Jurassic NE-SW extension direction was interpreted in relation
to secondary processes linked to the regional E-W stretching and the Atlantic Ocean spreading (Fig. 10A, Soto et al., 2012).

The basinal evolution of the Triassic Argana Basin, in the Atlantic Moroccan coast, shares some common features with the western coast of Iberia during the Mesozoic. In both cases, the reactivation of Paleozoic structures oriented N-S and NNE-SSW as transtensional to pure extensional controlled the Triassic basinal development according to a NW-SE orientation. The process led to thickness variations in the Triassic sequence between 1 km in the offshore area to 3 km in Argana Basin (Baudon et al., 2012; Fig. 10B). Weak inversion is observed in this basin, since the main extensional faults were not re-activated during shortening (Laville et al., 1977). Interestingly, in this case, the magnetic fabrics analyses allowed describing the mean WNW-ESE extensional direction for 20 sites (out of the total 48) that corresponds to the far field extension driven by rifting (and later oceanic spreading) in the Atlantic margin (Fig. 10B, Oliva-Urcia et al., 2016).

The other Mesozoic basins located along the Moroccan High Atlas Range display different histories depending on their position in relation to the main faults and axis of the basin/Range. The evolution of the Middle Jurassic to the Early Cretaceous basins (dominated by red beds sequences, up to 500m in Aït-Attab Basin and 875m in Ouaouitzaght Basin Figs. 7J, K) are controlled, as in the other Mesozoic basins, by the reactivation of Variscan faults, although the tectonic regime during sedimentation is not yet clear (Moussaid et al., 2013 and references therein). The RT-AMS analyses lead to interpret a compressional-related origin for the Aït-Attab Basin and a transtensional-related origin associated with directional movements on the major faults having Atlasic directions for the Ouaouitzaght Basin (Figs. 10C, D; Moussaid et al., 2013). The contribution of a strike-slip component is clearer in the case of the Ouaouitzaght Basin, according to the basin shape and its inversion features.

The sedimentary sequence in the Central High Atlas Basin (Imichil area Fig. 7L) is characterized by a thick sedimentary cover (up to 5 km in the depocentres) of Jurassic rocks affected by a remagnetization at ca 100 Ma (Torres-López et al., 2014, 2016; Calvín et al., 2017). Relatively weak deformation is associated to tectonic inversion, which took place through a thick Triassic detachment level and resulted in the decoupling of the basement and the Jurassic cover (Calvín et al., 2017 and references therein). The principal structures observed in the area are thrusts at the northern and southern margins and tightening of previously developed folded structures in its central part. Cleavage developed in favorable lithologies and positions within the stratigraphic pile (Calvín et al., 2017). The remagnetization postdates magmatic and salt-tectonics-related events that contributed significantly to the early structuring of the central part of the Atlas Range before the onset of compression, and clearly predates cleavage formation (Frizon de Lamotte et al., 2009; Vergès et al., 2014; Calvín et al., 2017). Magnetic fabrics reflect both the NW-SE extension direction during the basinal stage and the compression perpendicular to the basin axis during the Cenozoic (defining a NE-SW magnetic lineation). Magnetic fabrics are strongly conditioned by lithology (marls tend to register compressional fabrics, whereas limestones record extensional ones) and structures at the outcrop scale (compressional cleavage, also related to lithology). As mentioned in the previous section in this review about magnetic mineralogies, this distinction is also related to the origin (para- or magnetite-related ferromagnetic) of the magnetic fabrics (Calvín et al., 2018a).
6. Discussion

The above exposed studies of different basinal and inversion styles provide robust patterns of AMS-tectonics relationships that can be extrapolated to the study of other basins worldwide. In this section we discuss the range of applicability and limitations to this technique.

On the side of magnetic mineralogy, both ferro- and paramagnetic fabrics can give information about the extensional stage and the subsequent compression. Classically, paramagnetic minerals, namely phyllosilicates, have been considered a good marker for deformation. This is clear in the case of shortening, because the axes of folds coincide with the zone axis for planar grains within a deformed volume of rock, and hence with the magnetic lineation (Borradaile and Jackson, 2010; Anastasio et al., 2015). The sensitivity of AMS analyses respect to classical strain analyses is higher as seen in the weakly deformed Appalachian sandstones (Burmeister et al., 2009). Under extension, the coincidence between the stretching direction and the magnetic lineation (e.g. Mattei et al., 1997, 1999; Cifelli et al., 2005; García-Lasanta et al., 2014, 2015, 2016) must be explained by the preferred, although weaker, orientation of initially parallel grains in a similar way. The recognition of one or other basinal processes depends on their relative importance, the p-T conditions (and thus burial/exhumation history) and the particular magnetic mineralogy intervening in each process.

An important distinction must be done between magnetite- and hematite-driven ferromagnetic fabrics, since the behavior of primary hematite reproduces almost perfectly the fabric of paramagnetic minerals (i.e. phyllosilicates) due to their magnetocrystalline anisotropy. Magnetite-driven fabric also shows a strong dependency on the state of magnetite due to its shape and distribution anisotropy. Superparamagnetic grains grown during remagnetization stages provide a record of strain precisely during this stage (Calvín et al., 2018a) and therefore give new possibilities for dating magnetic fabrics. In general, no inverse fabrics were found in the different basins presented in this work, which can be measured by the anisotropy of the remanence. Paradoxically, the more anomalous results were found linked to hematite-bearing rocks (red beds) and not to magnetite-bearing rocks. Axes switching occurs probably linked to precipitation of hematite during diagenesis forming aggregates able to disturb the bulk magnetic fabric (Fig. 10B, Oliva-Urcia et al., 2016). The fact that these anomalies occur in sandstones and not in lutites points to secondary fluid circulation as the responsible for this phenomenon, that could be possibly avoided by applying harder criteria in the selection of sampling sites.

Timing of development (also called fixation, blocking, etc.; see García-Lasanta et al., 2013 for a discussion) of the magnetic fabric is also a major issue in interpreting AMS in sedimentary basins. From the examples presented, it can be inferred that magnetic fabric is a dynamic marker that can change according to the P-T conditions and deformation of rocks during their history. The first stages, in which deposition takes place, are of crucial importance (García-Lasanta et al., 2013) in the arrangement of sedimentary particles, and hence the possibility of recording extensional, syn-sedimentary features. However, a stage of “blocking” of the magnetic fabric cannot be recognized because under new conditions, provided that they are able to change the orientation of phyllosilicates or to create new ferromagnetic phases according to the prevailing strain field, magnetic fabrics can also change.
Recognizing each of the phases that build the total magnetic fabric is an important task that can be accomplished by complementary techniques, either magnetic (determination of ferromagnetic subfabrics, AARM and AIRM, or enhanced, LT paramagnetic subfabrics) or non-magnetic (e.g. thin sections under the petrological microscope, electronic microscopy, SEM-EDX observations, X-Ray goniometry, neutron goniometry, electron back scattered diffraction, XRD and image analyses, or even AMS modeling).

A major factor often oversimplified in tectonic inversion studies is the angular relationship (obliquity or parallelism) between the extension and compression directions (“translated” to shortening and stretching directions when considering rock volumes and AMS or finite strain analysis) during the basinal and inversion stages, respectively (see discussion in its application to the Cameros Basin, e.g. in Casas-Sainz and Gil-Imaz, 1994). As previously mentioned (Fig. 5 and related paragraphs), coaxiality can contribute to enhance the resulting magnetic fabric, provided that the minimum horizontal stress axis coincides in both stages. Although we have also considered end-members of strain directions in the classification of magnetic fabrics and their possible evolution (Fig. 5), intermediate positions are probably the most common situations. However, the strong constraint imposed by fault reactivation at the basin margins can also deviate the remote (or “regional”) stress directions, more easily during compression (see e.g. Casas et al., 1992; Liesa and Simón, 2009; Simón and Liesa, 2011), making them perpendicular to the reverse faults (e.g. Oliva et al., 2010a). In any case, zonation of strain axes obtained from AMS can give a portrait of changes resulting alternatively (or both) from (i) the occurrence of secondary faults and interference by local structures and associated deviations and from (ii) changes at the regional scale (remote stress), controlled, for example, by rifting linked to different mechanisms or different, active plate margins (Figs. 10A, 8B, Soto et al., 2012; García-Lasanta et al., 2016). Unexpected results in terms of extension direction can give the clues for defining, in some cases, the large-scale evolution of sedimentary basins (Soto et al., 2008a). Cautiously deciphering the directional features of AMS in relation to the master faults is necessary to correctly interpret basin evolution.

The examples shown provide a picture of the Mesozoic-Cenozoic evolution of the westernmost part of Africa and Eurasia from which some insights into the geodynamics of the area can be obtained. Triassic rifting was strongly controlled by basement faults probably reaching the base of the lithosphere, inherited from Late-Variscan fracturing (Arthaud and Matte, 1977; García-Lasanta et al., 2015 and references therein, Fig. 8A). Extension was controlled by N-S faulting along the future passive margin related to the opening of the Atlantic Ocean (Mattauer et al. 1977; Rasmussen et al., 1998) only in the westernmost margin of Iberia-Africa. Evolution of Cretaceous Pyrenean basins (Basque-Cantabrian, North-Pyrenean and South-Pyrenean), including early inversion stages, support a period of strike-slip or transtensional deformation rather than an extension linked to a frontal divergence between Iberia and Europe. Although hyperextension is the widely accepted model at this moment to explain the opening of the Pyrenean realm during the Mesozoic and the exposures of mantle rocks at surface (Masini et al., 2014; Tugend et al., 2014), the oblique extension directions obtained from AMS (Fig. 9B, point to a significant component of oblique extension consistent with a transtensional movement of Iberia at this time (what agrees, on the other hand, with other models based on magnetic anomalies in the ocean floor, where transpression is also reflected (Rosenbaum et al., 2002; Sibuet et al., 2004).
Magnetic fabrics show a strong influence of the early stages in basin evolution; therefore, characterizing shortening directions from AMS is not straightforward. The degree of deformation inferred from structural indicators is consistent both with the above-mentioned factors particular of each basin and with their position within the plate. A deformation gradient can be established from Pyrenean basins (undergoing stronger deformation during compression, as corresponding to a continental subduction plate-boundary) to Atlasic and Iberian basins (located in equivalent positions with respect to plate margins), that grade from total to partial or almost null inversion (Fig. 3), and finally to Atlantic-bounded basins that occupy marginal areas in the compressional Eurasia-Iberia-Africa convergence system.

7. Conclusions

Anisotropy of Magnetic Susceptibility has become a first-order tool for the study of the evolution of inverted sedimentary basins. The magnetic fabric of pelitic rocks records the extensional and the inversion histories, providing a composite picture that must be deciphered by separating sub-fabrics carried by different minerals, and the aid of geological indicators, at the macro- (master faults limiting the basin), meso- (cleavage and faults at the outcrop scale) and micro- (interaction between grains and pressure-solution surfaces) scales. Consistent magnetic fabrics are carried in general by paramagnetic (mainly phyllosilicates) and ferromagnetic minerals. Among the second group, hematite is a reliable carrier to obtain direct information about extensional stage although some tests must be done to guarantee its primary origin in relation to sedimentation or early diagenesis (or the prevalence of these stages in relation to other subsequent processes in the imprint to the magnetic fabric). The selection of fine-grained lithologies where post-depositional fluid circulation is limited can help to constrain this issue. Other ferromagnetic carriers such as pyrrhotite and magnetite can give valuable information about the extensional stage, especially in basins where there is a remagnetization associated with the basinal stage, triggered by chemical or thermal processes. Sub-fabric separation by different methods and cross-correlation between present-day dips, paleodips and orientation of AMS axes can help in dating the different tectonic stages associated with subfabrics. Magnetic fabrics, and hence mineral grain orientation can be explained by plastic deformation of beds that determines the preferred orientation of platy grains. In the case of magnetite-carried fabrics, oxidation of previous, iron-rich paramagnetic grains (pyrite and other iron sulphides) probably plays a major role. Both the remote stress field determined by deformation at the plate margins and the local stress resulting from the interaction with major faults at the basin margin (or secondary faults within the basin) influence the deformation of the rock volume and hence the final magnetic fabric. A minimum number of even-distributed sites is necessary to determine the significance of each of the two variables.

Determining the contribution of basinal (extensional) and compressional (inversion) deformation to the total magnetic fabric is a major issue in understanding of the internal deformation underwent by the basin fill. This also depends on the particular conditions of each basin, including the mechanical stratigraphy of the pre-rift sequence (here the presence/absence of detachment levels plays a major role), the geometry of major faults, its P-T evolution and its location with respect to the main tectonic traits within the plate.

Considering the different types of basins, in first instance the perpendicularity or obliquity to the major
faults gives clues for interpreting transtensional components and hence the prevalence of crustal- or
lithospheric-scale fracture zones vs. newly formed faults. Fixation or evolution of the magnetic fabrics
along time mainly depends on the possibility of modifying the orientation of phyllosilicates during the
inversion stage (under relatively high temperature gradients) or of oxidation/crystallization of
ferromagnetic phases.

The results presented, including a number of basins within the Iberian and North African plates, show a
strong imprint of Late-Variscan or Early Mesozoic faults, resulting in transtension during the first rifting
stages (Triassic) in the inner part of the plates, and extension orthogonal to the main faults near the
Atlantic margin of Africa and Iberia. This situation evolved towards NE-SW (Pyranean) and NW-SE
(Tethyan, including Atlasic extension) during the Jurassic and Early Cretaceous. Inversion took place in a
variety of tectonic environments, above and below the cleavage front, with (i) buttressing, tight folding
and cleavage development, thus deflecting the original extensional magnetic fabric; (ii) inversion
associated with transport in the hangingwall of thrust sheets, either unique or superimposed, in which the
presence of low-strength levels favored preservation of structures; (iii) weak inversion preserving the
original structures and magnetic fabrics.

As a summary, the application of AMS (and subfabric separation) analyses in inverted sedimentary basins
has been fundamental for:

- Covering extensive areas in a relatively short time of basin outcrops where strain markers are
 absent or scarce in order to determine extensional strain (in basins formed under such
 conditions), once the relationship between magnetic fabrics and microstructures has been
 established. Even where conventional geological markers are missing, we can define the
deformation ellipsoid, related with either of the geological processes underwent by the
sedimentary basin.

- Discerning a possible coaxiality or non-coaxiality of extensional and compressional strains, an
 issue that often constitutes the hobbyhorse in drawing cross-sections of inverted basins, and a
 fundamental step for defining the transport direction for both extension and compression and
 correct basin reconstruction.

- Determining the extensional strain variations through time and/or space or a zonation according
to the prevalence of different plate-margin processes (in our case, applied to the Basque-
Cantabrian, Cameros, Maestrat, Lusitanian, and Iberian Castillian branch basins).

- Qualitatively determining the strain threshold necessary for a compressional fabric to be present
(defined in the Cabuérniga, and the Aït Attab remagnetized Central High Atlas basins). This also
allows for zoning inverted sedimentary basins in relation to older extensional structures and for
establishing a hierarchy of structures depending on their contribution to the final basin
structuring.
Determining the zonation or the partition of the compressional deformation after the extensional stage (Mauléon and Organyà basins), that can give clues about the existence of possible strike-slip components derived from the external field or interference with intra-basinal structures.

Acknowledgements

The authors are grateful to Fabio Speranza and two anonymous referees for their thorough revisions of the manuscript. We also acknowledge the use of Servicio de Apoyo a la Investigación-SAI, Universidad de Zaragoza. This study has been financed by the research projects CGL2009-08969 (UZ), CGL2016-77560-C2-1-P and CGL2016-77560-C2-2-P of the MICINN (Spanish Ministry of Science and Innovation).
References

deformation path within a fold-thrust structure: a test case from the Corbières (NE Pyrenees, France). Journal of Structural Geology 14, 461-474.

Borradaile, G.J., Jackson, M., 2010. Structural geology, petrofabrics and magnetic fabrics (ASM,

Guiraud, M., Séguret M., 1984. Releasing solitary overstep model for the Late Jurassic–Early Cretaceous (Wealdien) Soria strike-slip basin (North Spain) In: Biddle KT, Cristhie-Blick N (eds) Strike-slip deformation, basin formation and sedimentation. SEPM Spec Publ 37, 159-175.

Kelso, P.R., Tikoff, B., Jackson, M., Sun, W., 2002. A new method for the separation of paramagnetic and ferromagnetic susceptibility anisotropy using low field and high field methods. Geophysical

Richter, C., van der Pluijm, B.A., 1994. Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Physics of
Robion, P., Grelaud, S., Frizon de Lamotte, D. 2007. Pre-folding magnetic fabrics in fold-and-thrust belts: why the apparent internal deformation of the sedimentary rocks from the Minervois basin (NE-Pyrenees, France) is so high compared to the Potwar basin (SW-Himalaya, Pakistan)? Sedimentary Geology 196, 181-200.

Vergés, J., Saura, E. Messager, G., Martín-Martín, J.D., Moragas, M., Razin, P., Grelaud, C., Joussiaume,
Table captions

Table 1. Summary of main characteristics of the basins included in this review as explained in the studies consulted for this review (Ref). Aspects included: geological context and age of the sampled rocks,
sampled lithologies and specific magnetic carriers identified from rock magnetism procedures, basin style controlling the sedimentary infill, tectonic inversion style (presence or lack of detachment level, cleavage development or not), angle between extensional and compressional directions.

Table 2. Summary of the magnetic fabric analyses from each basin included in this review. N sites: number of AMS sites; N samples: total number of analyzed samples; presence or lack of macroscopic cleavage in the studied rocks; analyzed structures other than cleavage; AMS sites and their relationship with the tectonic regime as interpreted in each study; methods of subfabric-analyses used and number of selected sites in which they were applied; methods of magnetic mineralogy analyses and number of selected samples in which they were applied; other non-magnetic methods used that help interpreting the AMS, and number of analyzed samples when specified.

Figure captions

Fig. 1. Location of the Western Tethys inverted extensional basins considered in this review. See for detailed geological cartographies in the respective references.

Fig. 2. Block diagrams representing intraplate geological contexts for basin formation (A) and inversion (B).

Fig. 3. Double ternary diagram showing the key factors intervening in the development of basin inversion styles and classifying the different types of inverted basins. This classification is based on (i) the amount of internal deformation in Y coordinates (i.e., development of mesoscopic cleavage) and (ii) the degree of inversion and type of inversion structures in X coordinates. +Y and –Y correspond to uncleaved and cleaved basins, respectively, the density of cleavage increasing towards the base of the diagram. X coordinates represent an increasing degree of inversion towards -X, from non-inverted, purely-extensional geometries (right corner of the diagram). Three main inversion styles are sketched, from the right to the left: (i) slight inversion of the normal faults bounding the basins with development of open fault-related, hanging-wall anticlines, (ii) folding of the syn-rift units and (iii) development of one or several thrust sheets that are detached into a main pre-rift décollement and transport syn-rift sequences in their hangingwalls.

Fig. 4. Examples of rock magnetism experiments. (A) Thermomagnetic k-T curve of sample LU14-5B of the Mauléon Basin; (B) thermomagnetic k-T curve of sample RS3-13 of the NW Castilian Branch Basin (heating run is represented in red and cooling run in blue, for both a and B); (C) Hysteresis loop of sample VC5-1 (from left to right: uncorrected and corrected for the paramagnetic signal) of the Cabuérniga Basin; (D) IRM acquisition and backfield curves of samples BE5-2 and MO2-3 of the Maestrat Basin; (E) Ratios between the magnetic susceptibility at low and at room temperature (LT/RT) of analyzed samples of Argana Basin. The slopes of 1.5 and 3.8 (perfect paramagnetic) are also plotted.

Fig. 5. Double ternary diagram showing the AMS patterns that can be obtained depending of the
basin/inversion models shown in Fig. 3 and the coaxiality between the resultant magnetic fabrics from extensional and compressional stages. See text for further explanations.

Fig. 6. Paleogeographical sketches of the western Tethys during the Mesozoic (modified after Ziegler, 1990) showing the location of the different studied basins.

Fig. 7. Main sampled units in the different basins: A) NW Castilian Branch Basin: Permo-Triassic red beds (picture of the Tiermes Roman site, where siltstones were excavated as an amphitheater); (B) Maestrat Basin: Lower Cretaceous units (looking West); (C) Cameros Basin: lacustrine marls and limestones of the Enciso Group (looking WNW), the apparent horizontal of non-competent units correspond to ancient terrace farming practices; (D) Nogueres Zone: Triassic units in the forelimb of the Orri sheet; (E) Organyà Basin: Marls of the Lluça Formation in the southern limb of the Santa Fe syncline, affected by normal faults with calcite-filled steps associated with tension gashes (Oliva-Urcia et al., 2010b); (F) Mauléon Basin: Albian black marls; (G) Cuárbrega Basin: Slate cleavage affecting siltstones; (H) Lusitanian Basin: Upper Triassic units and syn-sedimentary faults; (I) Aragón Basin: Permian units (looking West); (J) Ait Attab Basin: Cretaceous red beds; (K) Ouautitzaght Basin: Cretaceous red beds (looking West); (L) Central High Atlas (Imilchil Area): Jurassic marls and limestones.

Fig. 8. Studied basins in the Iberian Range: A) Sketch of the tectonic frame during the Permian-Triassic Iberian Rift in the NW Castilian Branch (see García-Lasanta et al., 2015 for legend details in the geological map); black arrows show the variations of the extension direction along the rift due to strain partitioning processes; B) Interpretation of the spatially distributed incidence of the main tectonic events according to the orientation of magnetic lineations in the Maestrat Basin (from García-Lasanta et al., 2016): green, Iberian extension-related sites; blue, Tethyan extension-related sites; red, Cenozoic compression-related sites; C) Simplified sketches showing the evolution of the extension directions as interpreted from magnetic fabrics along the stratigraphic sequence in the Cameros Basin that points to changes in the boundary conditions of the Iberian plate during Mesozoic. Synthetic stratigraphic column for the sedimentary series in the depocentre of the Cameros Basin as represented in García-Lasanta et al (2014). A, B and C are accompanied by the equal area projection of k_{\max} (magnetic lineations) and k_{\min} (pole to magnetic foliation) including their density diagrams (blue and red respectively). Data were plotted after restoring bedding to horizontal. Green arrows show the main extension direction.

Fig. 9. Studied basins in the Pyrenees: (A) Restored, intermediate and final stages of geological cross-section in the eastern part of the Nogueres Zone (see Izquierdo-Llavall et al., 2013 for legend details), including representative AMS stereoplots; (B) Extension directions deduced from AMS data during Aptian-Albian in the Organyà Basin, together with lower hemisphere stereographic projection of maximum and minimum susceptibility axes (modified from Oliva-Urcia et al., 2010b); (C) In the upper part, simplified model interpreting a pull-apart basin (under a strike-slip regime) in the Mauléon Basin (Oliva-Urcia et al., 2010a), according to extension directions interpreted from magnetic ellipsoids orientations; in the lower part, simplified model interpreting deformation in the
previous magnetic fabrics due to a NNE–SSW shortening direction during the Pyrenean compression; (D) To the left, cross-section and representative stereoplots of magnetic fabrics in the Cabuérniga Basin; to the right, sketch about the relationships between main structures and AMS characterization (both from Oliva-Urcia et al., 2013).

Fig. 10. Lusitanian and Atlantic studied basins: (A) Rose diagrams representing magnetic lineations orientation (black) and fault trends orientation (grey) for Upper Triassic-Hettangian and Upper Jurassic rocks of the Lusitanian Basin (Soto et al., 2012); (B) Sketch showing extension directions as inferred from AMS data (red arrows) and from faults trend analysis (blue arrows) in the Argana Basin (see Oliva-Urcia et al., 2016 for further information), accompanied by representative AMS stereoplots; (C) Geological map of the Ait Attab Basin and magnetic lineations (k_{max}) orientations after restoration to the horizontal; (D) Geological map of the Ouauitzaght Basin and magnetic lineations (k_{max}) orientations after restoration to the horizontal. (C and D, modified from Moussaid et al., 2013).
<table>
<thead>
<tr>
<th>Studied area</th>
<th>Ref</th>
<th>Structural context</th>
<th>Age</th>
<th>Sampled lithologies</th>
<th>Magnetic carriers</th>
<th>Basin style</th>
<th>Tectonic inversion style (and degree of inversion)</th>
<th>Detachment level</th>
<th>Cleavage</th>
<th>Coaxiality between extension and compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mauléon Basin</td>
<td>Oliva-Ucie et al., 2010a</td>
<td>N Pyrenees</td>
<td>Low. Cretaceous</td>
<td>Marls</td>
<td>Phyllosilicates</td>
<td>Strike-slip</td>
<td>Moderate inversion of inherited normal faults. Cleavage-related folding and diapir reactivation in syn-rift units</td>
<td>Pre-extensional detachment (Kespor evaporites)</td>
<td>Strongly cleaved (widespread bedding parallel cleavage + local oblique cleavage)</td>
<td>~45º. N-S extension vs NE-SW compression</td>
</tr>
<tr>
<td>Noguera zone (Las Paules Basin)</td>
<td>Izaquero-Llavall et al., 2013</td>
<td>Axial Pyrenees</td>
<td>Permian-Triassic</td>
<td>Red beds (shales, sandstones and conglomerates)</td>
<td>Phyllosilicates + hematite</td>
<td>Transtension</td>
<td>Strong inversion of inherited normal faults. Folding and southwards (till of syn-rift units that are involved in a contractual duplex</td>
<td>Pre-extensional décollement within the Paleozoic basement and post-extensional décollement in Late Triassic</td>
<td>Fold-related cleavage</td>
<td>~30º. Radial to NW-SE extension and NNE-SSW Cenozoic compression.</td>
</tr>
<tr>
<td>Organyà Basin</td>
<td>Gong et al., 2009; Oliva-Ucie et al., 2010b</td>
<td>Central Pyrenees</td>
<td>Low. Cretaceous</td>
<td>Limestones, marls and marly limestones</td>
<td>Paramagnetic (phyllosilicates)</td>
<td>Transtension/extension</td>
<td>Moderate inversion of inherited normal faults bounding the basin. Short-cut thrusting and folding of syn-rift units</td>
<td>Pre-extensional detachment (Kespor evaporites)</td>
<td>No cleavage</td>
<td>~60 to 90º. NW-SE to N-S extension vs N-S to NNE-SSW compression</td>
</tr>
<tr>
<td>Cabuérniga Basin</td>
<td>Soto et al., 2007b; 2008a; Oliva-Ucie et al., 2013</td>
<td>Basque-Cantabrian Basin</td>
<td>Triassic-Low. Cretaceous</td>
<td>Red beds, limestones, marly limestones and shales</td>
<td>Phyllosilicates + hematite + magnetite</td>
<td>Riff</td>
<td>Weak inversion of inherited normal faults. Open contractual folds + local buttressing and cleavage development</td>
<td>Not detached</td>
<td>No cleavage, incipient cleavage, well-developed cleavage</td>
<td>~60º. Extension is NE-SW during Triassic, Jurassic-Barremian, whereas compression is NNE-SSW</td>
</tr>
<tr>
<td>Cameros Basin</td>
<td>Garcia-Lasanta et al., 2014</td>
<td>Iberian Range</td>
<td>Triassic-Low. Cretaceous</td>
<td>Siltstones, marls, fine-grained sandstones, red beds, limestones, marly limestones and marls</td>
<td>Phyllosilicates + hematite + magnetite + pythophite</td>
<td>Transtension</td>
<td>Strong inversion of the northern basin boundary (basement faults + shallower extensional décollement at the top of the Triassic). Short-cut thrusting and folding of syn-rift units</td>
<td>Pre-extensional detachment (Kespor evaporites)</td>
<td>No cleavage and cleavage (pre-Cenozoic inversion)</td>
<td>~60º. N-S to NE-SW during Triassic, Jurassic-Barremian and Albain, but NW-SE during Aptian</td>
</tr>
<tr>
<td>Maestraz Basin</td>
<td>Garcia-Lasanta et al., 2016</td>
<td>Iberian Range</td>
<td>Up. Jurassic-Low. Cretaceous</td>
<td>Mudstones, marls, marly limestones, limestones and fine-grained sandstones</td>
<td>Phyllosilicates + hematite + magnetite + pythophite</td>
<td>Riff</td>
<td>Moderate inversion of the northern basin boundary (basement faults + shallower extensional décollement in the Middle Triassic). Short-cut thrusting and folding of syn-rift units</td>
<td>Pre-extensional detachment (Kespor evaporites)</td>
<td>No cleavage</td>
<td>~30 to 60º. Extension is NE-SW in the Iberian domain and NW-SE in the Teburtian domain whereas compression is NNE-SSW</td>
</tr>
<tr>
<td>NW Castilian Branch Basin</td>
<td>Garcia-Lasanta et al., 2015</td>
<td>Iberian Range</td>
<td>Permian-Triassic</td>
<td>Red beds (mudstones, siltstones and clays)</td>
<td>Hematite + phyllosilicates</td>
<td>Dextral transgression</td>
<td>Weak inversion of inherited normal faults. Open contractual folds are developed in their hanging-walls</td>
<td>Not detached</td>
<td>No cleavage</td>
<td>~45º. ENE-WSW extension vs NNE-SSW compression</td>
</tr>
<tr>
<td>Lusitanian Basin</td>
<td>Soto et al., 2012</td>
<td>W Portugal</td>
<td>Up. Triassic-Jurassic</td>
<td>Siltstones, sandstones and marls</td>
<td>Phyllosilicates + hematite + magnetite</td>
<td>Riff</td>
<td>Weak inversion of inherited normal faults. Open contractual folds + diapir development/reactivation</td>
<td>Pre-to early syn-rift Hettangian salt</td>
<td>No cleavage</td>
<td>~0 to 45º. Radial extension during Triassic and N-S to NE-SW extension during Jurassic. NW-SE Cenozoic compression.</td>
</tr>
<tr>
<td>Argana Basin</td>
<td>Oliva-Ucie et al., 2016</td>
<td>Atlas</td>
<td>Triassic</td>
<td>Red sandstones and shales</td>
<td>Phyllosilicates + hematite</td>
<td>Riff</td>
<td>Weak inversion of inherited normal faults. Open contractual folds are developed in their hanging-walls.</td>
<td>Not detached</td>
<td>No cleavage</td>
<td>~45º. NW-ENE to NW-SE extension vs N-S compression</td>
</tr>
<tr>
<td>Central High Atlas (Imichil Zone)</td>
<td>Calvín et al., 2014a</td>
<td>Atlas</td>
<td>Jurassic</td>
<td>Limestones</td>
<td>Magnetite + phyllosilicates</td>
<td>Riff</td>
<td>Strong inversion</td>
<td>Upper Triassic décollement</td>
<td>No cleavage and cleaved (axial-plane cleavage)</td>
<td>~30º. NW-SE extension vs N-S compression</td>
</tr>
</tbody>
</table>

Table 1. Summary of main characteristics of the basins included in this review as explained in the studies consulted for this review (Ref). Aspects included: geological
context and age of the sampled rocks, sampled lithologies and specific magnetic carriers identified from rock magnetism procedures, basin style controlling the sedimentary infill, tectonic inversion style (presence or lack of detachment level, cleavage development or not), angle between extensional and compressional directions.
<table>
<thead>
<tr>
<th>Studied area</th>
<th>N sites</th>
<th>N samples</th>
<th>Sites with macroscopic cleavage</th>
<th>Mesostructures</th>
<th>AMS results (N sites)</th>
<th>Subfabric Analyses - Sites</th>
<th>Magnetic mineralogy analyses – Samples</th>
<th>Other methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW Castilian Branch Basin</td>
<td>55</td>
<td>810</td>
<td>No</td>
<td>Joints, tension gashes, normal faults</td>
<td>(9) 37</td>
<td>9</td>
<td>LT-AMS – 5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HF-AMS – 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IRM – 14</td>
<td></td>
</tr>
<tr>
<td>Cameros Basin</td>
<td>95</td>
<td>1351</td>
<td>No</td>
<td>Syn-sedimentary faults, tension gashes</td>
<td>84</td>
<td>11</td>
<td>LT-AMS – 13</td>
<td>Thin sections – 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HF-AMS – 8</td>
<td>Calcimetry – 13</td>
</tr>
<tr>
<td>Maestras Basin</td>
<td>42</td>
<td>671</td>
<td>No</td>
<td>Syn-sedimentary faults</td>
<td>35</td>
<td>7</td>
<td>LT-AMS – 7</td>
<td>Thin sections – 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k-T curves – 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hystereses, IRM-back field, IRM three components – 17</td>
<td></td>
</tr>
<tr>
<td>Cabaérniga Basin</td>
<td>37</td>
<td>639</td>
<td>No</td>
<td>Tension gashes, joints, syn-sedimentary faults</td>
<td>27</td>
<td>10</td>
<td>LT-AMS – 4</td>
<td>XRD – 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AARM – 1</td>
<td>SEM-EDX – 4</td>
</tr>
<tr>
<td>Lusitanian Basin</td>
<td>37</td>
<td>535</td>
<td>No</td>
<td>Syn-sedimentary faults</td>
<td>36</td>
<td>1</td>
<td>LT-AMS – 7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M-T curves, IRM-back field, hystereses</td>
<td></td>
</tr>
<tr>
<td>Nogueres Zone (Las Paúles Basin)</td>
<td>31</td>
<td>540</td>
<td>No</td>
<td>Syn-sedimentary faults</td>
<td>8</td>
<td>23</td>
<td>LT-AMS – 3</td>
<td>Thin sections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k-T curves – 11</td>
<td></td>
</tr>
<tr>
<td>Maulián Basin</td>
<td>40</td>
<td>720</td>
<td>No</td>
<td>S0, S1, tension gashes</td>
<td>31</td>
<td>5</td>
<td>LT-AMS – 4</td>
<td>XRD – 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k-T curves – 11</td>
<td>SEM-EDX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hysteresis – 7</td>
<td></td>
</tr>
<tr>
<td>Organyà Basin</td>
<td>45</td>
<td>547</td>
<td>No</td>
<td>Tension gashes, faults</td>
<td>28</td>
<td>6</td>
<td>LT-AMS – 8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AARM – 5</td>
<td>SEM-EDX – 8</td>
</tr>
<tr>
<td>Argana Basin</td>
<td>48</td>
<td>Not specified</td>
<td>No</td>
<td>Normal faults, fractures, tension gashes</td>
<td>20</td>
<td>Not specified</td>
<td>LT-AMS – 10</td>
<td>EBS-EDX – 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k-T curves, hystereses, IRM-back field, IRM three components – 13</td>
<td></td>
</tr>
<tr>
<td>Aït Attab Basin</td>
<td>20</td>
<td>227</td>
<td>No</td>
<td>Not specified</td>
<td>0</td>
<td>Not specified</td>
<td>Not specified</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k-T curves, IRM three components</td>
<td></td>
</tr>
<tr>
<td>Ouaouizaght Basin</td>
<td>22</td>
<td>232</td>
<td>No</td>
<td>Not specified</td>
<td>0</td>
<td>Not specified</td>
<td>Not specified</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k-T curves, IRM three components</td>
<td></td>
</tr>
<tr>
<td>Central High Atlas (Imilchil Zone)</td>
<td>53</td>
<td>487</td>
<td>No</td>
<td>Jinents, tension gashes</td>
<td>24</td>
<td>20</td>
<td>LT-AMS – 13</td>
<td>Thin sections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AARM – 13</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Summary of the magnetic fabric analyses from each basin included in this review. N sites: number of AMS sites; N samples: total number of analyzed samples; presence or lack of macroscopic cleavage in the studied rocks; other mesostructures than cleavage analyzed; AMS sites and their relationship with the tectonic regime as interpreted in each study; methods of subfabric-analyses used and number of selected sites in which they were applied; methods of magnetic mineralogy analyses and number of selected samples in which they were applied; other non-magnetic methods used that help interpreting the AMS, and number of analyzed samples when specified.
Fig. 1. Location of the Western Tethys inverted extensional basins considered in this review. See for detailed geological cartographies in the respective references.
Fig. 2. Block diagrams representing intraplate geological contexts for basin formation (A) and inversion (B).
Fig. 3. Double ternary diagram showing the key factors intervening in the development of basin inversion styles and classifying the different types of inverted basins. This classification is based on (i) the amount of internal deformation in Y coordinates (i.e., development of mesoscopic cleavage) and (ii) the degree of inversion and type of inversion structures in X coordinates. +Y and −Y correspond to uncleaved and cleaved basins, respectively, the density of cleavage increasing towards the base of the diagram. X coordinates represent an increasing degree of inversion towards -X, from non-inverted, purely-extensional geometries (right corner of the diagram). Three main inversion styles are sketched, from the right to the left: (i) slight inversion of the normal faults bounding the basins with development of open fault-related, hanging-wall anticlines, (ii) folding of the syn-rift units and (iii) development of one or several thrust sheets that are detached into a main pre-rift décollement and transport syn-rift sequences in their hangingwalls.
Fig. 4. Examples of rock magnetism experiments. (A) Thermomagnetic k-T curve of sample LU14-5B of the Maulèon Basin; (B) thermomagnetic k-T curve of sample RS3-13 of the NW Castilian Branch Basin (heating run is represented in red and cooling run in blue, for both a and B); (C) Hysteresis loop of sample VC5-1 (from left to right: uncorrected and corrected for the paramagnetic signal) of the Cabuérniga Basin; (D) IRM acquisition and backfield curves of samples BE5-2 and MO2-3 of the Maestrat Basin; (E) Ratios between the magnetic susceptibility at low and at room temperature (LT/RT) of analyzed samples of Argana Basin. The slopes of 1.5 and 3.8 (perfect paramagnetic) are also plotted.
Fig. 5. Double ternary diagram showing the AMS patterns that can be obtained depending of the basin/inversion models shown in Fig. 3 and the coaxiality between the resultant magnetic fabrics from extensional and compressional stages. See text for further explanations.
Fig. 6. Paleogeographical sketches of the western Tethys during the Mesozoic (modified after Ziegler, 1990) showing the location of the different studied basins.
Fig. 7. Main sampled units in the different basins: A) NW Castilian Branch Basin: Permo-Triassic red beds (picture of the Tiermes Roman site, where siltstones were excavated as an amphitheater); B) Maestrat Basin: Lower Cretaceous units (looking West); C) Cameros Basin: lacustrine marls and limestones of the Enciso Group (looking WNW), the apparent horizontal of non-competent units correspond to ancient terrace farming practices; D) Nogueres Zone: Triassic units in the forelimb of the Orri sheet; E) Organyà Basin: Marls of the Luça Formation in the southern limb of the Santa Fe syncline, affected by normal faults with calcite-filled steps associated with tension gashes (Oliva-Urcia et al., 2010b); F) Maulèon Basin: Albian black marls; G) Cabuérniga Basin: Slaty cleavage affecting siltstones; H) Lusitanian Basin: Upper Triassic units and syn-sedimentary faults; I) Argana Basin: Permian units (looking West); J) Alt Attab Basin: Cretaceous red beds; K) Oualitzaght Basin: Cretaceous red beds (looking West); L) Central High Atlas (Imlilchil Area): Jurassic marls and limestones.
Fig. 8. Studied basins in the Iberian Range: A) Sketch of the tectonic frame during the Permian-Triassic Iberian Rift in the NW Castilian Branch (see García-Lasanta et al., 2015 for legend details in the geological map); black arrows show the variations of the extension direction along the rift due to strain partitioning processes; B) Interpretation of the spatially distributed incidence of the main tectonic events according to the orientation of magnetic lineations in the Maestrat Basin (from García-Lasanta et al., 2016): green, Iberian extension-related sites; blue, Tethyan extension-related sites; red, Cenozoic compression-related sites; C) Simplified sketches showing the evolution of the extension directions as interpreted from magnetic fabrics along the stratigraphic sequence in the Cameros Basin that points to changes in the boundary conditions of the Iberian plate during Mesozoic. Synthetic stratigraphic column for the sedimentary series in the depocentre of the Cameros Basin as represented in García-Lasanta et al (2014). A, B and C are accompanied by the equal area projection of kmax (magnetic lineations) and kmin (pole to magnetic foliation) including their density diagrams (blue and red respectively). Data were plotted after restoring bedding to horizontal. Green arrows show the main extension direction.
Fig. 9. Studied basins in the Pyrenees: (A) Restored, intermediate and final stages of geological cross-section in the eastern part of the Nogueres Zone (see Izquierdo-Llavall et al., 2013 for legend details), including representative AMS stereoplots; (B) Extension directions deduced from AMS data during Aptian-Albian in the Organyà Basin, together with lower hemisphere stereographic projection of maximum and minimum susceptibility axes (modified from Oliva-Urcia et al., 2010b); (C) In the upper part, simplified model interpreting a pull-apart basin (under a strike-slip regime) in the Mauléon Basin (Oliva-Urcia et al., 2010a), according to extension directions interpreted from magnetic ellipsoids orientations; in the lower part, simplified model interpreting deformation in the previous magnetic fabrics due to a NNE–SSW shortening direction during the Pyrenean compression; (D) To the left, cross-section and representative stereoplots of magnetic fabrics in the Cabuerniga Basin; to the right, sketch about the relationships between main structures and AMS characterization (both from Oliva-Urcia et al., 2013).
Fig. 10. Lusitanian and Atlasic studied basins: (A) Rose diagrams representing magnetic lineations orientation (black) and fault trends orientation (grey) for Upper Triassic-Hettangian and Upper Jurassic rocks of the Lusitanian Basin (Soto et al., 2012); (B) Sketch showing extension directions as inferred from AMS data (red arrows) and from faults trend analysis (blue arrows) in the Argana Basin (see Oliva-Urcia et al., 2016 for further information), accompanied by representative AMS stereoplots; (C) Geological map of the Ait Attab Basin and magnetic lineations (kmax) orientations after restoration to the horizontal; (D) Geological map of the Ououitzaght Basin and magnetic lineations (kmax) orientations after restoration to the horizontal. (C and D, modified from Moussaid et al., 2013).