000118180 001__ 118180
000118180 005__ 20240319081010.0
000118180 0247_ $$2doi$$a10.1038/s42005-022-00897-0
000118180 0248_ $$2sideral$$a129238
000118180 037__ $$aART-2022-129238
000118180 041__ $$aeng
000118180 100__ $$aDel Genio, Charo I.
000118180 245__ $$aMean-field nature of synchronization stability in networks with multiple interaction layers
000118180 260__ $$c2022
000118180 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118180 5203_ $$aThe interactions between the components of many real-world systems are best modelled by networks with multiple layers. Different theories have been proposed to explain how multilayered connections affect the linear stability of synchronization in dynamical systems. However, the resulting equations are computationally expensive, and therefore difficult, if not impossible, to solve for large systems. To bridge this gap, we develop a mean-field theory of synchronization for networks with multiple interaction layers. By assuming quasi-identical layers, we obtain accurate assessments of synchronization stability that are comparable with the exact results. In fact, the accuracy of our theory remains high even for networks with very dissimilar layers, thus posing a general question about the mean-field nature of synchronization stability in multilayer networks. Moreover, the computational complexity of our approach is only quadratic in the number of nodes, thereby allowing the study of systems whose investigation was thus far precluded. Multilayer networks can achieve synchronization, both for homogeneous and heterogeneous layers, whose dynamics is described by a system of equations often computationally complex and expensive. Here, the authors propose a mean-field approach for estimating the stability of the synchronized state of multilayer networks and show this applies to both homogeneous and heterogeneous layers, lowering computational complexity.
000118180 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E36-20R$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-87519-P$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-90782-REDT$$9info:eu-repo/grantAgreement/ES/MINECO/PID2020-113582GB-I00
000118180 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118180 590__ $$a5.5$$b2022
000118180 592__ $$a1.844$$b2022
000118180 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b17 / 85 = 0.2$$c2022$$dQ1$$eT1
000118180 593__ $$aPhysics and Astronomy (miscellaneous)$$c2022$$dQ1
000118180 594__ $$a8.6$$b2022
000118180 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118180 700__ $$aFaci Lázaro, Sergio$$uUniversidad de Zaragoza
000118180 700__ $$0(orcid)0000-0002-3484-6413$$aGómez Gardeñes, Jesús$$uUniversidad de Zaragoza
000118180 700__ $$aBoccaletti, Stefano
000118180 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000118180 773__ $$g5, 121 (2022), 6$$tCommunications Physics$$x2399-3650
000118180 8564_ $$s665062$$uhttps://zaguan.unizar.es/record/118180/files/texto_completo.pdf$$yVersión publicada
000118180 8564_ $$s1262305$$uhttps://zaguan.unizar.es/record/118180/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118180 909CO $$ooai:zaguan.unizar.es:118180$$particulos$$pdriver
000118180 951__ $$a2024-03-18-15:03:39
000118180 980__ $$aARTICLE