Partial Differential Equation-Constrained Diffeomorphic Registration from Sum of Squared Differences to Normalized Cross-Correlation, Normalized Gradient Fields, and Mutual Information: A Unifying Framework; 35632143
Resumen: This work proposes a unifying framework for extending PDE-constrained Large Deformation Diffeomorphic Metric Mapping (PDE-LDDMM) with the sum of squared differences (SSD) to PDE-LDDMM with different image similarity metrics. We focused on the two best-performing variants of PDE-LDDMM with the spatial and band-limited parameterizations of diffeomorphisms. We derived the equations for gradient-descent and Gauss-Newton-Krylov (GNK) optimization with Normalized Cross-Correlation (NCC), its local version (lNCC), Normalized Gradient Fields (NGFs), and Mutual Information (MI). PDE-LDDMM with GNK was successfully implemented for NCC and lNCC, substantially improving the registration results of SSD. For these metrics, GNK optimization outperformed gradient-descent. However, for NGFs, GNK optimization was not able to overpass the performance of gradient-descent. For MI, GNK optimization involved the product of huge dense matrices, requesting an unaffordable memory load. The extensive evaluation reported the band-limited version of PDE-LDDMM based on the deformation state equation with NCC and lNCC image similarities among the best performing PDE-LDDMM methods. In comparison with benchmark deep learning-based methods, our proposal reached or surpassed the accuracy of the best-performing models. In NIREP16, several configurations of PDE-LDDMM outperformed ANTS-lNCC, the best benchmark method. Although NGFs and MI usually underperformed the other metrics in our evaluation, these metrics showed potentially competitive results in a multimodal deformable experiment. We believe that our proposed image similarity extension over PDE-LDDMM will promote the use of physically meaningful diffeomorphisms in a wide variety of clinical applications depending on deformable image registration.
Idioma: Inglés
DOI: 10.3390/s22103735
Año: 2022
Publicado en: Sensors 22, 10 (2022), 3735 [35 pp]
ISSN: 1424-8220

Factor impacto JCR: 3.9 (2022)
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 26 / 86 = 0.302 (2022) - Q2 - T1
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 19 / 63 = 0.302 (2022) - Q2 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 100 / 274 = 0.365 (2022) - Q2 - T2

Factor impacto CITESCORE: 6.8 - Engineering (Q1) - Chemistry (Q1) - Biochemistry, Genetics and Molecular Biology (Q2) - Physics and Astronomy (Q1)

Factor impacto SCIMAGO: 0.764 - Instrumentation (Q1) - Analytical Chemistry (Q1) - Medicine (miscellaneous) (Q2) - Information Systems (Q2) - Biochemistry (Q2) - Atomic and Molecular Physics, and Optics (Q2) - Electrical and Electronic Engineering (Q2)

Tipo y forma: Article (Published version)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-16:04:11)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Lenguajes y Sistemas Informáticos



 Record created 2022-09-08, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)