000118213 001__ 118213
000118213 005__ 20240319081021.0
000118213 0247_ $$2doi$$a10.1016/j.cej.2022.137253
000118213 0248_ $$2sideral$$a129609
000118213 037__ $$aART-2022-129609
000118213 041__ $$aeng
000118213 100__ $$aLópez-Porfiri, P.
000118213 245__ $$aGreen supported liquid membranes: The permeability activity-based linear operation (PABLO) method
000118213 260__ $$c2022
000118213 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118213 5203_ $$aSupported liquid membranes (SLMs) containing novel green solvents are proposed as a sustainable alternative separation process in the recovery of biomolecules. In this work, succinic acid has been successfully extracted from model fermentation broths through a stripping phase-facilitated transport mechanism with four different green supported liquid membranes: two eutectic solvents (DL-menthol:OctA and N4444Cl:OctA), the bio-based solvent eucalyptol and the ionic liquid C4pyrr]Tf2N]. A permeability activity-based model that takes into account for the first time solute-phase affinities has been developed using the quantum chemical COSMO-RS method; the model corrects the mass transfer driving force and allows extraction predictions beyond the concentration equilibrium. The best recovery has been achieved experimentally for the eucalyptol-based SLM (concentration factor of 1.4) using an alkaline aqueous solution (0.5 M NaOH) as the stripping phase. A countercurrent cascade extraction process design is proposed, and a graphical method to determine the stage number, interstage concentrations as well as mass transfer area requirements is presented. This new tool, the Permeability Activity-Based Linear Operation (PABLO) method, will substantially enhance the process design of SLMs technology for the biorefinery industry.
000118213 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RYC2019-027060-I
000118213 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000118213 590__ $$a15.1$$b2022
000118213 592__ $$a2.803$$b2022
000118213 591__ $$aENGINEERING, ENVIRONMENTAL$$b3 / 55 = 0.055$$c2022$$dQ1$$eT1
000118213 591__ $$aENGINEERING, CHEMICAL$$b5 / 141 = 0.035$$c2022$$dQ1$$eT1
000118213 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000118213 593__ $$aIndustrial and Manufacturing Engineering$$c2022$$dQ1
000118213 593__ $$aEnvironmental Chemistry$$c2022$$dQ1
000118213 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000118213 594__ $$a21.5$$b2022
000118213 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118213 700__ $$aGonzález-Miquel, M.
000118213 700__ $$0(orcid)0000-0002-6905-714X$$aGorgojo Alonso, P.$$uUniversidad de Zaragoza
000118213 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000118213 773__ $$g446, 3 (2022), 137253 [11 pp]$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000118213 8564_ $$s4883413$$uhttps://zaguan.unizar.es/record/118213/files/texto_completo.pdf$$yVersión publicada
000118213 8564_ $$s2564408$$uhttps://zaguan.unizar.es/record/118213/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118213 909CO $$ooai:zaguan.unizar.es:118213$$particulos$$pdriver
000118213 951__ $$a2024-03-18-16:13:32
000118213 980__ $$aARTICLE