000118227 001__ 118227
000118227 005__ 20220908161754.0
000118227 0247_ $$2doi$$a10.1016/j.jct.2016.03.026
000118227 0248_ $$2sideral$$a94730
000118227 037__ $$aART-2016-94730
000118227 041__ $$aeng
000118227 100__ $$aRivas, C.
000118227 245__ $$aThermodynamic properties of a CO2 - Rich mixture (CO2 + CH3OH) in conditions of interest for carbon dioxide capture and storage technology and other applications
000118227 260__ $$c2016
000118227 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118227 5203_ $$aMethanol can be an impurity in transported and stored anthropogenic CO2 in carbon dioxide capture and storage technology; likewise, methanol is one of the most useful CO2 modifiers for supercritical processes. Therefore reliable values of thermodynamic properties of CO2 - rich mixtures CO2 + CH3OH are needed. We measured the following properties of a (CO2 + CH3OH) mixture with xx CO2=0.9700 in dense phase at six temperatures from 263.15 K to 313.15 K:The speed of sound, c, up to 194.49 MPa, using a double-path pulse-echo method at 5 MHz, for which a repeatability study gave an overall standard uncertainty of c, u(c) = 5.9 × 10-4c.The density, ¿, at pressures =20.00 MPa using a vibrating-tube densimeter with a standard uncertainty, u(¿) = 0.4 kg/m-3.Combining our c and ¿ experimental values and the isobaric specific heat capacity, cp, from the GERG equation of state (EoS), we calculated ¿, cp, the volume-dependent solubility parameter, dV, and the Joule-Thomson coefficient, µJT, at pressures =195.0 MPa. We are the first to report the adaptation for compressed gases of a calculation method based on numerical integration previously used only for liquids. The experimental and calculated values were compared with those from the PC-SAFT and GERG EoSs, allowing us to validate both EoSs to represent the experimental properties of the system under most conditions studied and the calculation method up to 195.0 MPa.
000118227 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000118227 590__ $$a2.726$$b2016
000118227 591__ $$aTHERMODYNAMICS$$b13 / 58 = 0.224$$c2016$$dQ1$$eT1
000118227 591__ $$aCHEMISTRY, PHYSICAL$$b64 / 145 = 0.441$$c2016$$dQ2$$eT2
000118227 592__ $$a0.971$$b2016
000118227 593__ $$aAtomic and Molecular Physics, and Optics$$c2016$$dQ1
000118227 593__ $$aPhysical and Theoretical Chemistry$$c2016$$dQ1
000118227 593__ $$aMaterials Science (miscellaneous)$$c2016$$dQ1
000118227 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000118227 700__ $$0(orcid)0000-0002-6992-5656$$aGimeno, B.$$uUniversidad de Zaragoza
000118227 700__ $$aBravo, R.
000118227 700__ $$0(orcid)0000-0003-1810-9488$$aArtal, M.$$uUniversidad de Zaragoza
000118227 700__ $$0(orcid)0000-0001-5256-6055$$aFernández, J.$$uUniversidad de Zaragoza
000118227 700__ $$0(orcid)0000-0003-2632-2916$$aBlanco, S. T.$$uUniversidad de Zaragoza
000118227 700__ $$0(orcid)0000-0001-6607-6858$$aVelasco, M. I.$$uUniversidad de Zaragoza
000118227 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000118227 773__ $$g98 (2016), 272-281$$pJ. Chem. Thermodyn.$$tJOURNAL OF CHEMICAL THERMODYNAMICS$$x0021-9614
000118227 8564_ $$s1210665$$uhttps://zaguan.unizar.es/record/118227/files/texto_completo.pdf$$yPostprint
000118227 8564_ $$s1351009$$uhttps://zaguan.unizar.es/record/118227/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000118227 909CO $$ooai:zaguan.unizar.es:118227$$particulos$$pdriver
000118227 951__ $$a2022-09-08-14:11:49
000118227 980__ $$aARTICLE