000118228 001__ 118228
000118228 005__ 20220908161755.0
000118228 0247_ $$2doi$$a10.1016/j.apenergy.2017.08.048
000118228 0248_ $$2sideral$$a101576
000118228 037__ $$aART-2017-101576
000118228 041__ $$aeng
000118228 100__ $$0(orcid)0000-0002-6992-5656$$aGimeno, B.$$uUniversidad de Zaragoza
000118228 245__ $$aInfluence of SO2 on CO2 storage for CCS technology: Evaluation of CO2/SO2 co-capture
000118228 260__ $$c2017
000118228 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118228 5203_ $$aIn this work, we determined the influence of SO2 as an impurity in anthropogenic CO2 on carbon capture and storage (CCS) technology. We evaluated the impact on selected injection and storage parameters and the Joule-Thomson coefficient to assess the safety of long-term geological storage of CO2. For this purpose, we obtained new pressure-density-temperature-composition, vapor-liquid-equilibrium, and pressure-speed of sound-temperature-composition experimental data for CO2-rich mixtures containing SO2. To increase the general understanding of the impact of SO2, the compositions cover possible co-capture mixtures, SO2-enriched mixtures, and mixtures similar to industrial emissions. Temperatures and pressures were based on relevant geological storage site values. Our experimental results were used to validate the EOS-CG and PC-SAFT equations of state (EoSs) for CO2 + SO2 under the studied CCS conditions. On the understanding that the chemical reactivity effects due to SO2 have not been considered, we concluded that the presence of SO2 is profitable in most of the studied aspects, especially in the case of shallow reservoirs, and that CO2/SO2 co-capture may be considered as an alternative approach to reduce the costs of CO2 purification. Based on the assessment of the impact of 5 mol% SO2 in the injected fluid in seven saline aquifers, we determined that the reservoirs that would receive the most benefit were Sleipner, Nagaoka and Frio.
000118228 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000118228 590__ $$a7.9$$b2017
000118228 591__ $$aENGINEERING, CHEMICAL$$b4 / 137 = 0.029$$c2017$$dQ1$$eT1
000118228 591__ $$aENERGY & FUELS$$b8 / 97 = 0.082$$c2017$$dQ1$$eT1
000118228 592__ $$a3.162$$b2017
000118228 593__ $$aBuilding and Construction$$c2017$$dQ1
000118228 593__ $$aCivil and Structural Engineering$$c2017$$dQ1
000118228 593__ $$aEnergy (miscellaneous)$$c2017$$dQ1
000118228 593__ $$aNuclear Energy and Engineering$$c2017$$dQ1
000118228 593__ $$aFuel Technology$$c2017$$dQ1
000118228 593__ $$aManagement, Monitoring, Policy and Law$$c2017$$dQ1
000118228 593__ $$aMechanical Engineering$$c2017$$dQ1
000118228 593__ $$aEnergy Engineering and Power Technology$$c2017$$dQ1
000118228 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000118228 700__ $$0(orcid)0000-0003-1810-9488$$aArtal, M.$$uUniversidad de Zaragoza
000118228 700__ $$0(orcid)0000-0001-6607-6858$$aVelasco, I.$$uUniversidad de Zaragoza
000118228 700__ $$0(orcid)0000-0003-2632-2916$$aBlanco, S.T.$$uUniversidad de Zaragoza
000118228 700__ $$0(orcid)0000-0001-5256-6055$$aFernández, J.$$uUniversidad de Zaragoza
000118228 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000118228 773__ $$g206 (2017), 172-180$$pAppl. energy$$tApplied Energy$$x0306-2619
000118228 8564_ $$s2428867$$uhttps://zaguan.unizar.es/record/118228/files/texto_completo.pdf$$yPostprint
000118228 8564_ $$s462726$$uhttps://zaguan.unizar.es/record/118228/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000118228 909CO $$ooai:zaguan.unizar.es:118228$$particulos$$pdriver
000118228 951__ $$a2022-09-08-14:11:58
000118228 980__ $$aARTICLE