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We study the effect of polarization in Axelrod’s model of cultural dissemination. This is done
through the introduction of a cultural feature that takes only two values, while the other features
can present a larger number of possible traits. Our numerical results and mean-field approximations
show that polarization reduces the characteristic phase transition of the original model to a finite-
size effect, since at the thermodynamic limit only the ordered phase is present. Furthermore, for
finite system sizes, the stationary state depends on the percolation threshold of the network where
the model is implemented: a polarized phase is obtained for percolation thresholds below 1/2, a
fragmented multicultural one otherwise.

I. INTRODUCTION

Agent-based models (ABM) [1, 2] provide a fruitful theoretical framework to study the fundamental mechanisms
underlying the dynamics of social systems [3]. In this line, the Axelrod’s Model for cultural dissemination [4],
introduced in 1977 by Robert Axelrod, has become a paradigm for the study of social imitation. The model relays on
the idea of homophily, i.e. , agents interact more likely with similar neighbors, and therefore, similar neighbors tend
to become even more alike. To implement this idea in the model, the probability for an agent to imitate a neighbor’s
uncommon cultural trait is proportional to the number of other traits that both already share. Axelrod found that,
while for low values of the initial cultural diversity the dynamics drives the system towards a monocultural state,
for larger initial diversity the system freezes in a multicultural state. The Axelrod’s Model has been studied under
different approaches and variations, including complex networks [5, 6], clustering [7], social pressure [8], noise [9, 10],
external fields [11, 12], dynamic features [13], mobility and segregation [14, 15], tolerance [16], confidence thresholds
[17], and dynamic networks [18].

In this work, we are interested in adding to the Axelrod’s model an element that can account for polarization.
Cultural, ideological, and political polarizations are phenomena that recently have attracted the attention of the
scientific community, politics, and society as a whole [19–22]. A source of this renewed interest stems from the
observation that, paradoxically, polarization may constitute a side effect of globalization. Although according to the
homogenization thesis, globalization should standardize a global pattern [23–25], cultural alternatives and resistance
to Western norms suggest that culture universalization may lead to polarization [26, 27]. These two theses constitute
the convergence-divergence open debate [28]. To this end, we propose a modification of the Axelrod’s model that
allows exploring the consequences of polarizing issues on cultural diversity. Polarization is characterized by a process
of segregation where a vast plural pool of moderate and conciliatory positions tend to disappear in favor of a few
opposing positions, eventually characterized by being extreme and partisan. We model this phenomenon focusing
on the most serious polarization situation, where only two distinct positions can be assumed by agents. This is
straightforwardly obtained by introducing a cultural feature that can present only two possible values. As we are
interested in a clear theoretical characterization of the main effects of this phenomenon, we focused on this extreme
case and we do not consider milder forms of polarization.

The introduction of a polarizing issue in the Axelrod’s model seems to have an important impact on the existence
of its phase transition. The order-disorder transition described by Castellano et al. [29] is a genuine phase transition
which occurs in the limit of infinite system size [30, 31]. Anyway, it has already been questioned in relation to
its robustness. In some circumstances, it has been proven that exogenous perturbations can drive the system to
a monocultural state [10]. Another interesting example is the effect that cultural drift, modeled as a noise which
randomly changes one agent’s cultural trait, has on the model. In this case, even if a finite system shows a well
defined noise value which separates the transition between order and disorder, an infinite system always results in a
multicultural state [9, 10]. The disappearance of the transition is also recorded when the original Axelrod’s model
is embedded on a Barabási-Albert network [5]. In that case, the location of the finite-size transition point scales
as a power of the system size with a positive exponent, and, therefore, in the thermodynamic limit, the transition
disappears because the ordered monocultural state always establishes in the system. Keeping in mind these interesting
aspects of the Axelrod’s model, the principal aim of this work is to analyze the effects of the introduction of cultural
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polarization on its phase transition and to characterize the impact of this new element on the dynamics of cultural
dissemination.

II. MODEL

The original Axelrod’s model of cultural dissemination considers N agents interconnected by a network whose links
represent the social interactions. For an agent i, the culture is represented by a set of F variables {σf (i)} (f = 1, ..., F ),
the cultural features, that can assume q values, σf = 0, 1, ...q − 1, the traits of the feature. The number of possible
traits, q, represents the initial cultural diversity, which is obtained by means of an equiprobable random initialization
of each agent’s features. At each time step, an agent i is chosen at random and allowed to imitate an uncommon
feature’s trait of a randomly chosen neighbor j with a probability given by their cultural overlap ωij , which is defined
as the fraction of common cultural features:

ωij =
1

F

F∑
f=1

δσf (i),σf (j) , (1)

here δx,y stands for the Kronecker’s delta, defined as δxy = 1 if x = y and δxy = 0 otherwise.
In this work, we will consider the situation where one of the F features, f = 1, is limited to take only two values

(σ1(i) ∈ {0, 1}, ∀i ∈ {1, 2, . . . , N}). The rest of the features, f = 2, 3, . . . , F , can take q possible values, as in
the original model. In this way, we will address how a dichotomy can impact the process of cultural dissemination
described by the Axelrod’s model.

III. RESULTS

The principal aim of our study is the characterization of the phase transition exhibited by the model. To this end,
we simulate the model on a regular two-dimensional square lattice of size L (i.e. , N = L2 nodes, each node being
occupied by a cultural agent) with periodic boundary conditions. We consider von Neumann neighborhoods so that
each agent has k = 4 neighbors, and interactions take place only between two neighbors. The number of features is
fixed to F = 10 and the parameters q and N are varied.
The phase transition is determined by the passage from an absorbing monocultural state composed by a single

cultural cluster where, for small q values, everybody shares the same culture, to a frozen disordered and fragmented
state. In fact, for large values of q order is not attained and different cultures, distributed among the sites, characterize
the system. Because of this phenomenology, the relative size of the largest cultural cluster present in the system is an
excellent parameter for characterizing the transition [29, 32, 33]. This parameter is defined as the size of the largest
cluster, made up by nodes sharing all the traits, normalized by the system size: Smax/N . The parameter is estimated
averaging over different simulations: ⟨Smax/N⟩.
Panel A of Fig. 1 shows the order parameter ⟨Smax/N⟩ versus the initial cultural diversity q for different system

sizes N . The inspection of the behavior of the order parameter suggests the existence of a transition. In fact, a sharp
transition, characterized by a drop of ⟨Smax/N⟩ for a critical value of q, is observed. We can identify this transition
point looking at the fluctuations of the size of the largest cluster:

χ = ⟨S2
max⟩ − ⟨Smax⟩2 .

Panel C of Fig. 1 shows the values of χ as a function of q for different system sizes N . This quantity displays
its maximum at a value of q that can be considered as the finite-size transition point qc(N). From this analysis we
can estimate the critical point by looking at the convergence of the finite-size transition points qc(N), as estimated
by the localization of the maxima of the fluctuations. The inset of panel C shows that the finite-size transition
point values grow proportionally to the system size as: qc(N) ∝ N . The same conclusion is obtained measuring the
transition points from the location of the observed discontinuity in the normalized size of the largest cluster. This
point corresponds to the first value of q for which ⟨Smax/N⟩ is less than 1. Using these results, we can obtain a data
collapse by introducing the rescaled parameter q/N (see panels B and D of Fig. 1).

This scaling indicates that, in the thermodynamic limit, the transition point (qc = limN→∞ qc(N)) goes to infinite.
Therefore, the system does not display a genuine phase transition, which is rigorously defined at the thermodynamic
limit, where the number of constituents tends to infinity. The introduction of the binary feature destroys the well
known phase transition of the Axelrod’s model: in the thermodynamic limit the transition disappears and the ordered
monocultural state is the sole phase displayed by the system.
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Figure 1: A: Mean of the normalized largest cultural cluster size ⟨Smax/N⟩ as a function of the initial cultural diversity q for
different system sizes N . B: The same plot after rescaling the x-axis for q/N . C: Variance χ of the order parameter ⟨Smax/N⟩
versus q for different system sizes. In the inset: Value of qc for the maximum variance χ (blue squares) and for the jump
location in the normalized size of the largest cluster (red Xs) as a function of the system size N , showing the tendency of
the finite-size transition points qc(N) in the thermodynamic limit: qc = limN→∞ qc(N) = ∞. D: χ versus q/N for different
system sizes N . It is shown that the maximum of the fluctuations in the order parameter takes place for the same value of
q/N regardless of the system size. All these results correspond to a lattice (k=4) and F=10. Each point is averaged over 1000
simulations. Note that as qc grows linearly with L, for characterizing the theoretical behavior of the phase transition we must
consider a very large number of cultural traits, even if these specific high values can not be considered realistic, taking into
account the typical situation of a social community.

A clear understanding of this result can come from the exploration of the dynamics of the density ρ of active links.
An active link is a bond that connects two agents (i, j) with at least one different feature and at least another one
equal (i.e. , 0 < ωij < 1). The nodes at both ends of these links are the only ones that can change their states and
produce some dynamics. For this reason, ρ = 0 implies a frozen configuration. Figure 2 displays the time evolution
of this quantity. Panel A of Figure 2 shows the result of ten different simulations for q < qc(N), which generate
ordered final configurations. In this situation, ρ starts near 0.5, experiences a decrease but then rises again towards a
peak before finally decaying to zero. The second part of the dynamics, after the maximum is reached, is a coarsening
process which follows different erratic paths and abruptly reaches zero. Note that the final state corresponding to one
region of ordered features is reached as the result of a fluctuation in a finite system. A finite size effect produces a
final ordered region of size comparable to the whole system.

When q > qc(N) (Panel B of Figure 2) the simulations do not converge to an ordered state and ρ follows quite
regular paths towards zero. This smooth coarsening process gives rise to regions clearly smaller than the system size
(of the order of N/10) and produces regular similar trajectories of ρ(t). These results are totally analogous to those
of the original Axelrod’s model [29].

In order to better understand the impact of the binary feature on the evolution of the system, we have studied
the dynamics of the mean overlap ⟨ω(t)⟩. Panels A-C of Figure 3 display the trajectories of the mean overlap of the
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Figure 2: Evolution of the density ρ of active links in a regular lattice (N = 1600, k = 4) for q = 100 (A), q = 5 × 105 (B).
Each color corresponds to a realization among ten randomly selected.
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Figure 3: Evolution of the mean overlap for the binary feature versus the overlap for the non-binary features. Solid lines
correspond to the numerical results for a regular lattice (k = 4, N = 1600) and q = 102 (A), 104 (B), 1012 (C). Different
colors correspond to 10 different characteristic realizations. Dashed blue lines show the results corresponding to the mean-field
approximation given in Eq. (2).

binary feature (⟨ωB(t)⟩) versus the mean overlap of the non-binary features (⟨ωNB(t)⟩). Solid lines correspond to
the numerical results, different colors corresponding to different single simulations. We can distinguish three different
stages. During the first stage, the binary feature remains almost unaltered, in contrast to the non-binary overlap
which increases. This suggests that the cultural uniformization is realized predominantly within clusters of agents
that share the binary trait. For q > qc(N) (Panel C), only this first stage takes place, and the system remains frozen
in a disordered state with a characteristic number of different cultural clusters. For q ≲ qc(N) (Panels A-B), after
a particular overlap value of the non-binary feature is reached, the two overlaps start to increase together. In this
regime, the cultural exchange might take place also between agents marked by distinct binary features. Finally, a
finite-size driven process turns on and the system converges to the ordered phase. It is interesting to note that, in
general, the binary feature reaches the convergence before the non-binary ones.

To improve our understanding of the overlaps dynamics, here we extend the single link mean-field approach described
in [29] to the case where one of the features is restricted to only two values. In order to do that, we define Pm,s as
the probability for two neighbors to coincide in m features (out of F − 1) and s = 0, 1 binary features. Then, by
considering the probability of link states actualization, we can write a system of equations that describe the time
evolutions of Pm,s. To compute these probabilities, we notice that when an agent j imitates a feature from an agent
z, it modifies the state of the link between j and z (direct process) and the state of some of the other links of agent j
(indirect processes). Figure 4 displays a diagrammatic description of all the possible processes that contribute to the
Pm,s dynamics.
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Figure 4: Schematic description of the different processes that contribute to equation 2. a) to c) correspond to direct processes
while d) to i) correspond to indirect ones. To illustrate the meaning of these diagrams lets consider two of them. The sub-
diagram b) corresponds to the direct process where a (m − 1, s) link evolves to a (m, s) link. The probability for this process
to happen is given, in a mean-field approximation, by the probability of a (m − 1, s) link to be sorted (Pm−1,s), times, the
probability of the imitation process to happen (m− 1+ s/F ), times, the probability for the imitation to occur on a non-binary
feature ((F −m + s)/(F −m + 1)), which produces the second term of equation (2). The sub-diagram e) corresponds to the
indirect process where the state change of a link, from (n, s′) to (n+1, s′), also modifies one of the (k− 1) neighbor links from
(m, s) to (m− 1, s). The probability for this process to occur is approximated by the probability of a (n, s′) link to be sorted
(Pn,s′), times, the probability to have a (m, s) as a neighbor link ((k − 1) · Pm,s), times, the probability for the imitation to
happen ((n+ s′)/F ), times, the probability to imitate a non-binary feature ((F − 1− n)/(F − n− s′)), times, the probability
that the chosen feature was one of the m shared features (m/(F − 1)), which produce the fifth term of equation (2).

By considering all the depicted diagrams we finally arrive to:

dPm,s

dt
= −Pm,s

m+ s

F
(1− δF,mδs,1) +

Pm−1,s
m− 1 + s

F

(
F −m+ s

F −m+ 1

)
+

Pm,s−1
m

F

(
s

F −m

)
+

(k − 1) ×

−∑
n,s′

Pm,sPn,s′
n+ s′

F

1− s′

F − n− s′

−
∑
n,s′

Pm,sPn,s′
n+ s′

F

F − 1− n

F − n− s′
m

F − 1

−
∑
n,s′

Pm,sPn,s′
n+ s′

F

F − 1− n

F − n− s′
F − 1−m

F − 1
ωδ(s,s′)(t)

+
∑
n,s′

Pm−1,sPn,s′
n+ s′

F

F − n− 1

F − n− s′
F −m

F − 1
ωδ(s,s′)(t) (2)

+
∑
n,s′

Pm,s̄Pn,s′
n

F

1− s′

F − n− s′

+
∑
n,s′

Pm+1,sPn,s′
n+ s′

F

F − n− 1

F − n− s′
m+ 1

F − 1

 ,

where k is the mean connectivity of the network, δ(a, b) is the Kronecker’s delta function, s̄ stands for the logic
negation of s, and ω1(t) (resp., ω0(t)) is the mean overlap between agents that share (not share) the binary trait. We
also consider P−1,s = PF+1,s = 0.

Dashed blue lines in panels A-C of Figure 3 show the evolution of the binary feature’s overlap versus the non-binary
features overlap, according to the mean-field approximation. As shown, the mean-field approximation qualitatively
reproduces the behavior of all the regimes, including the first two until the finite size of the numerical simulations
allows the final convergence for q ≲ qc.
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To test if the mean-field description can reproduce the effect of the connectivity on the dynamical behavior, we run
some simulations of our model implemented on a random regular network (RRN) with different values of the degree
k. The thin solid lines in Figure 5 display the numerical results for the evolution of binary and non-binary overlaps for
the RRN with increasing connectivity: k = 4, 6, 8 in Panels A, B, C, respectively. The thick dashed lines correspond
to the mean-field approximation for the same values of k. As shown, the mean-field approach describes the decreasing
value of the non-binary overlap reached after the first part of the dynamics, before the finite-size driven coarsening
dynamics start.
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Figure 5: Solid lines show the evolution of the overlap for the binary feature versus the overlap for the non-binary features
according to simulations run on a RRN (N = 1600) with k = 4 (A), 6 (B), 8 (C); different colors correspond to 10 different
characteristic runs. Dashed blue lines show the results corresponding to the mean-field approximation. q = 103.

As mean-field descriptions assume infinite system size, the considered approximation can be useful also for shedding
light on the absence of the transition in the thermodynamic limit, corroborating our numerical findings with some
analytic arguments. If we consider a system of an infinite size, as already suggested by Castellano et al. [29], for q < qc
the system is posed indefinitely in a coarse-grained state and, for q > qc, after a characteristic time, the coarsening
process stops and the density of active links ρ equals zero. Hence, for infinite systems, we can rigorously define the
transition looking at the value of ρ, which acts as an order parameter distinguishing among the two different dynamical
regimes: one with a perennial coarsening state (ρ > 0), and one with a frozen state (ρ = 0). Therefore, if a phase
transition exists ρ undergoes a discontinuity, jumping from a finite value to zero. In our mean-field approximation

ρ can be computed by solving the system of equations (2), which lead to: ρ =
∑F−1

f=1 Pf,s=0 +
∑F−2

f=0 Pf,s=1. We
calculated the stationary values of ρ for different q. The corresponding values are independent of q and always
positive, without any discontinuity, implying that it is not possible to detect any phase transition in the infinite-size
limit.

Finally, we study the model behavior in the regime that does not lead to a monocultural state (q > qc). When the
site percolation threshold of the network is below 1/2, agents sharing a given binary trait form a giant component
even for a random distribution of the traits. Therefore, initially, there will be two binary-feature clusters, one for
each binary trait, allowing cultural imitation inside those components, since any pair of connected nodes belonging
to one of those components has a non-zero cultural overlap. Those two clusters will converge separately, leading the
system to a final polarized state. Conversely, when the percolation threshold of the network is above 1/2, initially
there are no giant components for the binary traits and, presumably, for large enough values of q and finite system
sizes, initial small clusters of agents sharing the binary feature will converge leading the system to a frozen cultural
mosaic constituting a multicultural fragmented phase [14, 16]. Summarizing, for large values of q, the final state can
correspond either to a fragmented phase with a large number (which scales with the system size) of different cultures
or to a polarized state, where the number of different cultures is finite, with two predominant ones.

To test this hypothesis, we have implemented the model in both a regular square lattice with connectivity k = 4,
which presents a site percolation threshold above 1/2 (0.593), and in an RRN with k = 4, whose site percolation
threshold is below 1/2 (0.25). As argued above, while the regular lattice presents a final multicultural fragmented
state [14], when the model is implemented on a network whose percolation threshold allows the formation of giant
components for the binary traits (RRN), the dynamics leads the system towards a polarized state characterized by
two dominant cultures. This behavior is described in Figure 6, which displays the normalized size (S/N) of the two
largest cultures for both networks. As shown in Panel A, for q > qc(N), in a regular lattice, the two more spread
cultures cover around 10% of the system size. In the case of the RRN (Panel B), for the same q values, the two more
spread communities include near 90% of the system, and the remaining sites correspond to a pool of different cultures
organized on the border separating the two main clusters.
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Figure 6: Normalized size of the communities corresponding to the two largest cultures as a function of q for the model
implemented on a regular square lattice (Panel A) and on a RRN (B), both with connectivity k = 4. Averages are taken over
100 independent simulations and N = 1600.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have presented a study of a modified version of Axelrod’s model to describe the effect of cultural
polarization in a population of interacting agents. This characteristic is introduced by limiting one of the cultural
features to take only two possible values. The model was first analyzed on a regular 2D square lattice with the intention
of clearly characterizing the nature of the transition between the ordered monocultural state and the disordered one.
Our analysis shows that the introduction of a binary feature makes the well-established phase transition of the classical
Axelrod’s model to disappear in the thermodynamic limit. This behavior has been characterized through a finite-size
scaling analysis based on the variance of the order parameter. Additional confirmations of this result come from the
outputs of a mean-field description of the model.

These results show that the system does not display a genuine phase transition. Even if this point is not a genuine
critical point, it has a clear physical meaning as it is the value of the q parameter that identifies the shift from the order
to the disorder regime. Other models, where the transition is only observed for finite size systems, disappearing in the
thermodynamic limit, and which present system size scaling, are well known in the literature [34–37]. In particular,
this phenomenon has been previously observed in the Axelrod’s model [5, 9, 10, 14, 16].

In general, when we transfer statistical physics tools to problems of social sciences, the population size is always
considerably smaller than the Avogadro number, and so, not so large to justify the thermodynamic limit and its
results. In fact, we are interested in the behavior of finite-size systems, where important phenomena can appear
regardless of the number of individuals [34]. For this reason, it is interesting to characterize the behavior of our
system for typical finite numbers of individuals. We have presented some results for the overlap dynamics of both
binary and not binary features, displaying three different stages. In the first stage, the cultural uniformization takes
place predominantly inside groups of agents with the same binary trait. Then, only for low q values, a new regime of
coarsening takes place, with a first step where the cultural exchange also happens between agents, marked by distinct
binary features and, finally, a finite-size driven process that leads the system to converge to the ordered phase. This
behavior suggests that the binary feature has a predominant role in characterizing the dynamics of the system. This
fact can be interpreted in social terms: agents find empathy on the base of some polarizing feature and then tend to
align their cultures. Consequently, the spatial structure in the initial condition of the binary feature clusters is essential
to characterize the dynamics of the system. Varying these initial conditions, it is possible to modify the dynamics
and to pose the system in different disordered absorbing states. This is possible by changing the connectivity of the
network of interactions. We considered the case of a regular square lattice and random regular networks with different
average degrees. For the regular lattice, which presents a percolation threshold larger than 0.5, there is no giant
component in the cluster of the binary feature and the disordered absorbing state of the system is a fragmented one.
For the random regular networks, which present a percolation threshold smaller than 0.5, the clusters of the binary
feature are giant components, and, therefore, the disordered absorbing state of the system corresponds to cultural
polarization. In contrast to the original Axelrod’s model, always characterized by fragmentation and with a large
number of different cultures scaling with the system size, our system can be partitioned in a few different cultures.
This is an interesting result because models with a large number of possible different absorbing states that present
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polarization are uncommon [32, 38]. We conclude that our implementation can effectively describe polarization in
finite populations.
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