000118264 001__ 118264
000118264 005__ 20220914095756.0
000118264 0247_ $$2doi$$a10.1016/j.clet.2021.100297
000118264 0248_ $$2sideral$$a126781
000118264 037__ $$aART-2021-126781
000118264 041__ $$aeng
000118264 100__ $$aFrisa-Rubio A.
000118264 245__ $$aChemical recycling of plastics assisted by microwave multi-frequency heating
000118264 260__ $$c2021
000118264 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118264 5203_ $$aHandling plastic waste through recycling allows extending the life of polymeric materials, avoiding recurrence to incineration or landfilling. In contrast with traditional mechanical recycling technologies, chemical recycling enables the obtention of the virgin monomers by means of depolymerisation to create new polymers with the same mechanical and thermal properties as the originals. Research presented in this paper is part of the polynSPIRE project (Horizon 2020 European funding programme) and develops and scales-up a heated reactor to carry out the depolymerisation of polyamide-6 (PA6), polyamide-6, 6 (PA66) and polyurethane (PU) using microwave (MW) technology as the heating source. The purpose is to design and optimize a MW reactor using up to eight ports emitting electromagnetic waves. Finite element method (FEM) simulation and optimisation are used to design the reactor, considering as parameters the data obtained from experimental dielectric testing and lab-scale characterisation of the processes and materials studied. Two different COMSOL Multiphysics modules are involved in this work: Radio Frequency (RF) and Chemical Reaction Engineering (RE), to simulate the reactor cavity using two frequency levels (915 MHz and 2.45 GHz) with a power level of 46 kW, and the chemical depolymerisation process, respectively. A sensitivity study has been performed on key parameters such as the frequency, the number of ports, and position inside the reactor to consolidate the final design. It is expected that these results assist in the design and scale-up of microwave technology for the chemical recycling of plastics, and for the large-scale deployment of this sustainable recovery alternative. © 2021 The Authors
000118264 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000118264 594__ $$a0.9$$b2021
000118264 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118264 700__ $$aGonzález-Niño C.
000118264 700__ $$0(orcid)0000-0002-3878-4539$$aRoyo P.
000118264 700__ $$aGarcía-Polanco N.
000118264 700__ $$aMartínez-Hernández D.
000118264 700__ $$aRoyo-Pascual L.
000118264 700__ $$aFiesser S.
000118264 700__ $$aŽagar E.
000118264 700__ $$0(orcid)0000-0003-1486-7628$$aGarcía-Armingol T.
000118264 773__ $$g5 (2021), [9 pp]$$pClean. eng. technol.$$tCleaner engineering and technology$$x2666-7908
000118264 8564_ $$s4027562$$uhttps://zaguan.unizar.es/record/118264/files/texto_completo.pdf$$yVersión publicada
000118264 8564_ $$s2452279$$uhttps://zaguan.unizar.es/record/118264/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118264 909CO $$ooai:zaguan.unizar.es:118264$$particulos$$pdriver
000118264 951__ $$a2022-09-13-14:49:22
000118264 980__ $$aARTICLE