000118270 001__ 118270
000118270 005__ 20240319081017.0
000118270 0247_ $$2doi$$a10.1016/j.cej.2022.137468
000118270 0248_ $$2sideral$$a129540
000118270 037__ $$aART-2022-129540
000118270 041__ $$aeng
000118270 100__ $$aAlvira, D.$$uUniversidad de Zaragoza
000118270 245__ $$aPlant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research
000118270 260__ $$c2022
000118270 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118270 5203_ $$aSodium-ion batteries (SIBs) are one of the most promising candidates to replace lithium-ion batteries (LIBs) in grid-scale energy storage applications. SIBs technology is still in an early development stage and new feasible and low-cost active materials are required. The design of high-performance anodes and the fully understanding of the sodium storage mechanisms are the main bottleneck to overcome. Hard carbons (HCs) are extensively studied as anode material since sodium ions can be intercalated in pseudographitic domains and reversibly adsorbed in surface edges, defects and nanopores. This review aims at providing a comprehensive overview of the current state of knowledge of plant-derived HC anodes in SIBs, which can be helpful for researchers from different backgrounds working in the field. Working principles of SIBs are summarized, together with a detailed description of the Na-ion storage mechanisms in hard carbon anodes proposed to date. Finally, an exhaustive literature review on the performance of plant-derived HCs in SIBs is presented, with special focus on the synthesis pathways (including activation and/or doping treatments).
000118270 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2029-107737RB-I00
000118270 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000118270 590__ $$a15.1$$b2022
000118270 592__ $$a2.803$$b2022
000118270 591__ $$aENGINEERING, ENVIRONMENTAL$$b3 / 55 = 0.055$$c2022$$dQ1$$eT1
000118270 591__ $$aENGINEERING, CHEMICAL$$b5 / 141 = 0.035$$c2022$$dQ1$$eT1
000118270 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000118270 593__ $$aIndustrial and Manufacturing Engineering$$c2022$$dQ1
000118270 593__ $$aEnvironmental Chemistry$$c2022$$dQ1
000118270 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000118270 594__ $$a21.5$$b2022
000118270 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118270 700__ $$aAntorán, D.$$uUniversidad de Zaragoza
000118270 700__ $$0(orcid)0000-0002-0118-3254$$aManyà, J.J.$$uUniversidad de Zaragoza
000118270 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000118270 773__ $$g447 (2022), 137468 [17 pp.]$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000118270 8564_ $$s4817448$$uhttps://zaguan.unizar.es/record/118270/files/texto_completo.pdf$$yVersión publicada
000118270 8564_ $$s2642456$$uhttps://zaguan.unizar.es/record/118270/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118270 909CO $$ooai:zaguan.unizar.es:118270$$particulos$$pdriver
000118270 951__ $$a2024-03-18-15:48:09
000118270 980__ $$aARTICLE