000118271 001__ 118271
000118271 005__ 20240319081017.0
000118271 0247_ $$2doi$$a10.3389/fmats.2022.879614
000118271 0248_ $$2sideral$$a129541
000118271 037__ $$aART-2022-129541
000118271 041__ $$aeng
000118271 100__ $$aAmores, V. J.
000118271 245__ $$aCrossing Scales: Data-Driven Determination of the Micro-scale Behavior of Polymers From Non-homogeneous Tests at the Continuum-Scale
000118271 260__ $$c2022
000118271 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118271 5203_ $$aWe propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 stages: First, a Macro-Micro-Macro approach; second, a finite element method. Thus, we no longer require the typical stress-strain curves from standard homogeneous tests, but we use instead the applied/reaction forces and the displacement field obtained, for example, from Digital Image Correlation. The approach is based on the P-spline local approximation of the constituents behavior at the micro-scale (a priori unknown). The sought spline vertices determining the polymer behavior are first pushed up from the micro-scale to the integration point of the finite element, and then from the integration point to the element forces. The polymer chain behavior is then obtained immediately by solving a linear system of equations which results from a least squares minimization error, resulting in an inverse problem which crosses material scales. The result is physically interpretable and directly linked to the micro-structure of the material, and the resulting polymer behavior may be employed in any other finite element simulation. We give some demonstrative examples (academic and from actual polymers) in which we demonstrate that we are capable of recovering “unknown” analytical models and spline-based constitutive behavior previously obtained from homogeneous tests. Copyright © 2022 Amores, Montáns, Cueto and Chinesta.
000118271 536__ $$9info:eu-repo/grantAgreement/EC/H2020/101007815/EU/COncurrent METAmaterial-Structure design using functionally graded metamaterials/CoMetaS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101007815-CoMetaS
000118271 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118271 590__ $$a3.2$$b2022
000118271 592__ $$a0.63$$b2022
000118271 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b185 / 343 = 0.539$$c2022$$dQ3$$eT2
000118271 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ2
000118271 594__ $$a4.7$$b2022
000118271 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118271 700__ $$aMontáns, F. J.
000118271 700__ $$0(orcid)0000-0003-1017-4381$$aCueto, E.$$uUniversidad de Zaragoza
000118271 700__ $$aChinesta, F.
000118271 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000118271 773__ $$g9 (2022), 879614 [13 pp.]$$pFront. mater.$$tFrontiers in Materials$$x2296-8016
000118271 8564_ $$s1306242$$uhttps://zaguan.unizar.es/record/118271/files/texto_completo.pdf$$yVersión publicada
000118271 8564_ $$s2214730$$uhttps://zaguan.unizar.es/record/118271/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118271 909CO $$ooai:zaguan.unizar.es:118271$$particulos$$pdriver
000118271 951__ $$a2024-03-18-15:48:15
000118271 980__ $$aARTICLE