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ABSTRACT

The efficiency of path-planning in robot navigation is crucial in tasks, such as
search-and-rescue and disaster surveying, but this is emphasised even more when
considering multi-rotor aerial robots due to the limited battery and flight time. In
this spirit, this Master Thesis proposes an efficient, hierarchical planner to achieve
a comprehensive visual coverage of large-scale outdoor scenarios for small drones.
Following an initial reconnaissance flight, a coarse map of the scene gets built in
real-time. Then, regions of the map that were not appropriately observed are identified
and grouped by a novel perception-aware clustering process that enables the generation
of continuous trajectories (sweeps) to cover them efficiently. Thanks to this partitioning
of the map in a set of tasks, we are able to generalize the planning to an arbitrary
number of drones and perform a well-balanced workload distribution among them. We
compare our approach to an alternative state-of-the-art method for exploration and
show the advantages of our pipeline in terms of efficiency for obtaining coverage in
large environments. This work was carried out in person collaboration with the Vision
for Robotics Lab (V4RL) in ETH Ziirich. The stay enabled to share knowledge and
methods in perception and path planning between both laboratories that underlie the
results of this thesis. As a result of the collaboration, a scientific article was submitted
for publication to the IEEE Robotics and Automation Lettters with option to the 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems.

Supplementary video — https://youtu.be/V2UIrM910Q8
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Chapter 1

Introduction

Recent advances in robot navigation and perception have enabled the establishment
of modern multi-rotor aircraft, i.e., drones, as the best choice for autonomous 3D
reconstruction or visual coverage of large-scale outdoor scenarios. Their flexibility
allows them to move freely through the environment and observe areas that are not
visible from the ground. However, time efficiency is critical for using drones because
of their short flight times (due to battery limitations), usually well under 30 minutes.
Moreover, certain deployments add extra time requirements, such as search-and-rescue
or disaster surveying as the case shown in Figure 1.1, where lives can be endangered.
Therefore, the efficiency and effectiveness of the planning algorithms is essential to
enable the deployment of drones in large scale outdoor environments. Similarly, using
multiple drones as advocated in this work promises to boost the efficiency of the

scene-coverage mission.

Figure 1.1: Use case of a team of drones for disaster surveying during Gjerdrum
landslide in Norway . Drones can traverse large distances fast and reach inaccessible
areas.

1 enterprise-insights.dji.com/blog/let-drones-search-so-you-can-rescue-norway-landslide-m300
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Deploying drones for mapping a large area from a high altitude is an effective way to
obtain a first estimation, as collisions with the environment can be more easily avoided.
However, this strategy does not provide informative enough viewpoints for scene
coverage and impacts the quality of the scene captures. State-of-the-art exploration
approaches [1, 2] often lack in efficiency because of problems such as over-exploring
local regions, and abrupt changes in motion due to constant re-planning or the need

for revisiting areas.

Figure 1.2: Team of drones that sweep the area of interest by flying paths generated by
the proposed planner in order to achieve fast coverage. Using a rough prior map (e.g.
captured in a reconnaissance flight) to identify areas that require further observation,
this work generates efficient path planning and workload distribution for a team of
drones (three in this example) to cover the scene.

To overcome these limitations, this Master Thesis presents a hybrid solution that
uses the best of both types of strategy in a synergetic way. We consider a team of drones
with cameras, each performing a fast, reconnaissance flight at a high-altitude capturing
a rough map of the area of interest using a coarse real-time mapping pipeline. Although
the noise present in the obtained map, we obtain a dense representation that allows
reasoning on the scene structure. Based on this map, the proposed method computes
a set of drone trajectories for subsequent flights in order to efficiently cover the area
of interest completely. This process aims to maximize the use of sweep lines to avoid
constant changes of the flight direction, while considering the visibility of surfaces
as shown in Figure 1.2 and, at the same time, managing the workload distribution

amongst the participating drones to minimize the execution time.

1.1 Objectives and scope

The aim of this Master Thesis is to develop a system that is able to achieve visual
coverage of previously unknown outdoor scenarios with a team of drones. To accomplish

this goal, the following objectives are established:



1. First, a study of state-of-the-art methods for scene reconstruction and exploration
with drones. We discuss their applicability to the task of efficient coverage of

large-scale outdoor environments and the practicality for real-world deployments.

2. Design of a system that is able to obtain coverage of the scene. We consider real

drones capabilities and propose a hierarchical strategy to solve the problem at
hand.

3. The implementation of the proposed multi-stage strategy. Each of the stages
is treated in a modular way, which allows to consider alternative approaches in
each part. The system integrates newly proposed methods and leverages existing

techniques to consolidate an end-to-end pipeline.

4. Finally, the evaluation of the proposed pipeline in simulated environments to
asses the performance of the system and extent of obtained coverage. The
coverage strategy is also compared with a state-of-the-art planner for exploration

of unknown environments to showcase the advantages of the proposed method.

The Master Thesis has required the application of path planning and perception
techniques together in a joint problem. The student has collaborated with researchers
from the RoPeRT group in the Universidad de Zaragoza and the Vision for Robotics
Lab (V4RL) in ETH Ziirich with expertise in the two fields. This work has lead to the
submission of a scientific article for publication to the IEEE Robotics and Automation
Lettters with option to the 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (included in Appendix X).

The remaining of this Thesis is structured as follows. First, a comprehensive frame
of reference is explained for the unexperienced reader in Chapter 2. Then, a more
precise literature review is offered in Chapter 3 where current state of research in visual
coverage, exploration and reconstructions of scenes is discussed. The proposed pipeline,
the theoretical methods and implementation details are explained in Chapter 4. In
Chapter 5, the experiments to evaluate the performance of the pipeline for the task of
visual coverage of unknown scenes is presented and the results are discussed. Finally,

Chapter 6 offers a conclusion and proposes future directions for next work.



Chapter 2

Frame of Reference

2.1 Scene Reconstruction

The use of robots for automated acquisition of knowledge about unknown environments
is one of the most relevant topics in the roboitcs research community. As in the case
of humans, vision sensors provide rich information about the world. Obtaining visual
information of the scene can be the ultimate goal, as in photogrametry, or a tool
to achieve other goals such as navigation, object search or assessing the structural
integrity of a building. Depending on the task, different reconstructions modalities can

be pursued:

— Sparse landmarks are represented as points in the space (Figure 2.1a) . They are
used in traditional visual Simultaneous Localization and Mapping (SLAM) allow
robots to localize themselves in the environment [3]. This reconstructions can be
achieved with cameras applying classical Computer Vision methods able to work
in real-time. They are used in Structure-from-motion (SfM) and SLAM pipelines
[4]. Despite enabling navigation in the space, these reconstructions barely offer

any information to reason over the scene.

— Occupancy reconstructions are a good solution to improve the navigation through
an environment [5] (Figure 2.1b). The space is discretized in 2D or 3D voxels and
they are classified as unknown, free or occupied. As SfM and SLAM methods are
only able to reconstruct the scene sparsely, alternative sensors such as RGB-D
or stereo cameras are used to detect small obstacles. Even though the surfaces
are detected as occupied voxels, their visibility is not considered (i.e., frontal
observations), which does not ensure that high-level features such as textures or

small details can be identified.

— Dense surface reconstructions offer the most meaningful information about the

scene (Figure 2.1c). Traditionally, these reconstructions are obtained with
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classic Computer Vision methods such as Multi-View Stereo (MVS) [6]. Correct
visibility of the surfaces (i.e., fronto-parallel views, enough parallax...) to
reconstruct are a requirement of these methods. Inspired by the Graphics
community, Signed Distance Field (SDF) can be built with stereo or RGB-D
cameras and used to obtain precise real-time surface reconstructions with the
Marching cubes method [7] (Figure 2.1d).

The aim of this thesis is to obtain a comprehensive visual reconstruction of the scene.
Thus, we focus on methods that attempt to obtain dense surface reconstructions that
enable to reconstruct accurate 3D models. In particular, our pipeline takes inspiration

from MVS reconstructions methods to ensure visibility of the scene.

Information Gain -
low high

(c) MVS dense surface reconstruction [9] (d) SDF based surface reconstruction [2]

Figure 2.1: Different map reconstructions. Sparse landmarks (a) and (b) occupancy
maps are used for navigation but they are not appropriate to reason about surfaces.
Dense reconstructions from MVS pipelines (¢) and SDFs (d) include richer information
about surfaces.



2.2 Map Representation

Depending on the task, different map representations might be used. The main
considerations are: the meaning of the stored information and their computational

efficiency.

— Point Clouds represent points in 3D space by its coordinates and parameters such
as intensity or color (Figure 2.2a). The extensive research on this representation
resulted in many out-of-the-shelf algorithms that ease the processing data,
allowing to extract high-level features such as surfaces and their normals’ or
identifying objects. This representation is common in landmark reconstructions
(SLAM). Point Clouds can quickly become too dense to be computationally
efficient. KD-Trees are used for efficient operations on them such as neighbor

search.

— Occupancy Maps divide the space in a grid and classify each cell as unknown,
occupied or free space (Figure 2.2b). This representation is commonly used in 2D
environments. The extension to 3D environments requires the use of hierarchical
resolution to reduce the computational complexity such as octrees [5] or reducing

the map to a local space around the robot [10].

— Signed Distance Fields (SDF) have recently been applied to robotics as the
implicit representation of surfaces is suited for online reconstructions and
planning. The two most common SDF are Euclidean SDF (ESDF) and Truncated
SDF (TSDF). In both cases, the space is discretized and each cell stores the
distance to the nearest object. The distance is positive outside of the object
and negative inside. Surfaces are represented by the zero crosses in the map.
TSDF differs from ESDF in that the distance measurements are truncated after
some value. One of the established systems in the robotics research community is
Voxblox [11] (Figure 2.2¢). This methods iteratively builds a TSDF by integrating
projective depth measurements along the ray between the sensor and the surface.
In this case, each cell of the SDF also include a weight which represents the
confidence about the depth measurement. The distances integrated in the TSDF
are accurate near surface crossings, but accumulates large global errors. In order
to obtain a global accurate representation of the space, the TSDF is processed
to build a ESDF incrementally, which correctly represents the environment.
In the same way of Occupancy Maps, the computational complexity of this

representation also grows fast for 3D environments.
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— Heightmaps are a great solution to reduce the computational complexity in
very large-scale environments (Figure 2.2d). In this case, the environment
is represented by a 2D grid where each cell stores its height. Additionally,
other measurements such as a weight to represent the confidence of the height
or its color can be stored. Thus, the 3D environment is reduced to a
2.5D representation. The main advantage is the lightweight representations
of large-scale environments but their disadvantage is the loss of structural
information in the vertical dimension of the environment by assuming that all

the volume below the highest detected surface is occupied.

(c) Voxblox generated mesh [11] (d) Heightmap *

Figure 2.2: Different map representations. Point Clouds (a) are sparse but there are
many available processing tools. Octomap (b) is also useful for navigation but it
does not account for the quality of represented surfaces. Voxblox (c) can generate
accurate surfaces in real-time and includes implicit information about them which is
useful to perform planning based on the surfaces in the map. Despite their simplicity,
Heightmaps (d) can be a good solution to scale maps in a computationally efficient
way. However, the structural information in the vertical direction is lost.

Throughout our system, different representations are used. Voxblox is used as the
main representation for it can offer rich information to reason about the geometry
of the scene, which renders the necessary observations to correctly cover the scene
(Section 3.2). Additionally, Point Clouds are used to cluster the environment as
they ease the processing thanks to already existent tools (Section 4.3). Heightmaps
were considered also as an alternative representation to Voxblox to manage large-scale

environments.

lyiki.ros.org/grid_map
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2.3 Sensors for visual coverage

The most common and extended sensor to obtain visual information are monocular
cameras. Their reduced size and low consumption make them suitable to be mounted
on small drones. Despite being able to infer the geometric structure of the scene using
Structure from Motion (SfM), a camera by itself cannot estimate the real-world scale
of a scene [4].

Stereo cameras can obtain this measurement using a real-world prior: the distance
between the two cameras (baseline). However, the depth that these cameras can
estimate is limited by the parallax of the cameras, which increases with the baseline.
The available baseline in small drones is short due to their limited size, limiting the

sensing range of stereo cameras.

(a) Velodyne LiDAR 2 (b) Intel Realsense D4351 RGB-D

camera 3

Figure 2.3: Sensors used to reconstruct the real-scale geometry of a scene in order to
reason over it using the time-of-flight of infrared light beams. RGB-D cameras generate
a dense pointcloud but their limited range and low intensity make them unsuited for
outdoor scenarios. LiDARs’ measurements are also dense and in 3D but have high
weight and consumption for small drones.

RGB-D cameras as the one shown in Figure 2.3b have additional sensors such as
infrared to compute ground truth depth measurements to surfaces in the scene by
using the time-of-flight of infrared light beams. These cameras work well in indoor
environments or close to surfaces but they are affected by distance and outdoor light
due to the low intensity of the infrared light compared to the sun and the reflections
that different surfaces cause. LiDAR sensors also apply the idea of time-of-flight with
higher intensity light beams, enabling outdoor use for distances up to 80 m. In order

to obtain dense representations of the environment Velodyne LiDARs’ models rotate

1velodynelidar .com
lintelrealsense.com/depth-camera-d435i/

8


velodynelidar.com
intelrealsense.com/depth-camera-d435i/

a vertical array of 16 or 32 rays to generate a 3D point cloud. These sensors are used
in combination with monocular cameras in autonomous driving applications. Small
drones, however, have low autonomy due to their batteries and can only carry low
payloads which also affect their autonomy. LiDARs have a great consumption and their
weight is well above cameras. Furthermore, the measurements of LIDARs become more
sparse with the distance, reducing the amount of information that can be extracted.
These reasons were the motivation that inspired the appearance of Depth Completion

techniques.

In our system we use an out-of-the-box Deep Learning Depth Completion method
to create an initial rough estimate of the environment flying at high altitude [12]
(Section 3.2). This method is able to estimate dense depth for all the pixels in a
image providing an RGB image and sparse depth measurements. Additionally, we use
a stereo camera to enable navigation (Section 4.5). Finally, as the aim of this thesis is
the acquisition of visual coverage of a scene, the images from a monocular camera are

considered as the last output of the system.

2.4 Clustering the space

Clustering is the task of identifying groups and assigning elements to them. In this
thesis we are interested in clustering regions of the scene to generate tasks that can be
assigned to a team of drones. Two basic methods were considered and modified to fit
our problem. The basic methods are introduced here and the modification explained

in Section 4.3.

— K-Means classifies observations in a number of given clusters, k (Figure 2.4a).
The elements are assigned to clusters according to some metric such as the
Euclidean distance to the centroid of the clusters. The result are Voronoi cells

that separate the space equally.

— Density-based spatial clustering of applications with noise (DBSCAN) [13] is a
density-based clustering. It groups points that are near in space and classifies
isolated points as noise (Figure 2.4b). This algorithms work by iteratively
initializing new clusters and extending them to neighbours if they fulfil the density

criteria (i.e., there are enough neighbors to the point to extend).
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Figure 2.4: Classical clustering methods. KMeans (a) groups points in a pre-defined
number of clusters using the distances between the points. DBScan (b) initializes
clusters and expands them while the density criteria (i.e., min. number of points in
search radius) is fulfilled for the candidate neighbors.

2.5 Vehicle Routing Problem

The Vehicle Routing Problem is a traditional planning method which arose from
logistics and delivery. The problem is the routing of a fleet of one or more vehicles
that have to visit a set of tasks only once, minimizing the total distance traversed
by all the agents. The method models the problem of a set of tasks represented as
nodes, v € V, in a graph, G that have to be visited by a number of agents, k € K.
The nodes are connected by edges, e € £, with an associated weight ¢;; with 7,5 € V
that represents the possible routes between nodes and the cost to traverse them. The
solution is proposed by means of Integer Linear Programming (ILP). Define X = {x%,},
for 7,5 € V, and k € K, the set of binary variables that indicate whether agent k has

traverse the route from i to j or not. The VRP solves:

m/%nz ZZcijxfj, s.t. (2.1a)

keK i€V jeVv

YN afi=1 viev\{o} (2.1b)

keK i€V
oD k=1 viev\{0} (2.1¢0)
keK jeV
DD whh=> > =K (2.1d)
keK i€V JjeV keK
Sk <|S|—1, VS CV\{0},5#£0 (2.1e)
1,jES
ol €{0,1} Vijev (2.1f)
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where (2.1a) is the cost function, which denotes the sum of all the cost (i.e., traversed
distances) among all the agents for a given assignment, constraints (2.1b) and (2.1c)
indicate that drones only visit each location once. Constraints in (2.1d) impose the
drones to start and end at the initial point. Constraints (2.le) are the sub-tour
elimination constraints that eliminate all solutions containing tours that return back
to the start, without visiting all the tasks. Finally, conditions (2.1f) impose binary
conditions on the decision variables. Figure 2.5 shows a toy example of this problem

and a possible solution.

()
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Figure 2.5: Example problem of a VRP problem with a possible solution. The distance
traversed to visit all the nodes once and return back is minimize by using four agents .

In our problem, regions to observe in the scene are represented as tasks and assigned
to the drones that will solve them by observing them in a defined trajectory. However,
basic VRP only considers the minimization of the total distance traversed by all the
drones. Depending on the structure of the scene and initial point (for example, use
as depot node 15 in Figure 2.5), the distance might be minimized by only using one
drone. In order to ensure balanced workload distribution among the available agents,

we use a modified version, the min-max VRP explained in Section 4.4.

3developers.google.com/optimization/routing/vrp

11


developers.google.com/optimization/routing/vrp

Chapter 3

Related Work

Aerial planning for the best path in order to explore a scene has been a topic of extensive

research in robotics and computer vision already due to its wide applicability.

3.1 Scene exploration and coverage

With the robotics literature mainly concentrating on online map construction from
unknown or partially known, environments, the computer vision literature conversely
focuses on highly accurate, but computationally demanding reconstructions. With the
outlook of practicality, robotics approaches often focus on fast scene exploration, by
eliminating the unknown space as quickly as possible. Frontier exploration methods
look for regions, where free and unknown space meet [14]. The exploration is completed
by identifying and pushing frontiers separating known and unknown space until all the
space is explored. There are different criteria used to decide which frontier to explore
next, such as their proximity to the current field of view [15], following a greedy selection
strategy [16] or having global planning dictate their selection [1]. All these methods
focus on volumetric representations of the map, whereas our approach considers
surfaces and their visibility. Other works use Active SLAM in 2D environments for
indoors ground robot navigation using landmarks [17, 18] or learning methods [19, 20].
In comparison, we consider aerial robots in 3D outdoor environments to obtain a
comprehensive visual coverage.

When considering the reconstruction of surfaces of the scene, sampling-based
approaches to address this by proposing a set of configurations (e.g. viewpoints) that
get evaluated with respect to their expected information gain. For example, accurate
surface reconstructions [21] can be achieved in a Next-Best View fashion [22]. In
order to improve the efficiency of the planning, Rapidly-exploring Random Trees are
a common approach [22, 21, 2]. To improve the sampling process, [2] applies informed

sampling of configurations by reasoning over the available reconstructed model. The

12



method in [23] considers voxels lying on the surface at a frontier, near both the unknown
and free space. In general, all of these methods use depth cameras that allow for
exploration or reconstruction in indoor and small scenarios. However, the performance
in large-scale outdoor scenarios as considered in this work, decreases as the sensor
range only allows for observations at a close distance. In [8], it is proposed to use
online Multi-View Stereo (MVS) reconstruction in order to incrementally asses the
surface reconstruction and plan iteratively in order to improve the reconstructed mesh.
In comparison, the proposed approach executes a fast high-altitude reconnaissance
flight to obtain a global coarse map as a prior, to provide an insight of the structure

of the whole scene at once.

3.2 Use of a prior map

Other works used priors for improving the view selection for 3D reconstruction and
generate a global plan. They analyse a prior map obtained from a previous flight in
order to plan views that maximize heuristics for 3D reconstruction as parallax angle
[24] or matchability [25]. These methods propose an initial distribution of views in the
space and optimize them based on the aforementioned heuristics. In [24], the problem
is addressed by using submodular optimization to improve the proposed views in the
free space and obtain the final trajectory by solving an orienteering problem accounting
for a maximum allowed time-budget. Submodular optimization is also used by [9] to
plan views based on volumetric representations in a any-time optimization.

As discussed by [8], many of the previous methods obtain their prior from MVS
pipelines, which is time consuming and might require long waiting times for processing,
which is impractical for time-critical applications. In this work, we obtain a prior map
online using depth completion, which allows us to extract good estimates of the views
to reconstruct the scene. The work in [8] considers individual views without focusing
on the trajectory to connect them, which might generate path redundancies and lower
the efficiency of the global plan. In contrast, here we leverage the fact that many of
these views can be grouped in a single efficient trajectory in order to cover large parts

of the scene, e.g. building facades.

3.3 Multi-robot extension

All of the aforementioned methods assume a single robot. While they can be
extended to multi-robot setups by partitioning the area of interest according to the

number of robots, this does not ensure efficient enough collaboration between them.
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Cooperative frontier based approaches have also been proposed in a centralized [26] and
decentralized [27] way. These methods address the coordination problem in frontier
based approaches, but suffer from the aforementioned locality problems and do not
use global information until the scene is explored. Relevant is the work in [23], which
is extended to the multi-robot case by greedily assigning the view configurations [28].
Another approach would be to perform partitioning of the area of interest, however,
the complexity of the environment is not known a priori and the load balancing
between the robots would not be accounted for. In this sense, [29] proposes continuous
region partitioning based on Voronoi components for informative path planning. By
considering the whole map and the set of regions to be covered (tasks) as a Vehicle
Routing Problem (VRP), the generalization to multiple drones is straightforward in our
pipeline, easily accounting for collaboration between them and minimizing the overall

mission time.
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Chapter 4

Method

Our goal is the efficient mapping of a bounded 3D outdoor space using a team of drones
equipped with one monocular camera each. We achieve this by developing a system
that computes smooth and straight flights for the drones to reduce the execution time
of a mission. These trajectories are dubbed sweeps, as the maneuvers can be executed
at higher speeds and do not require to change the flight direction.

In order to follow good practices in MVS reconstruction, we also search for
trajectories that yield fronto-parallel views of the scene surfaces to maximize the scene

coverage and quality of a posterior reconstruction.

4.1 System overview

Our planner is illustrated in Figure 4.2 and the results at different steps of the pipeline
are shown in Figure 4.1. First, an initial down-looking (nadir) flight over the area is
performed by the drones (Figure. 4.1a). The aim of this reconnaissance flight plan is
twofold: to capture a large portion of the top view of the area of interest flying at
high speeds, and to obtain a global overview of the scene online. This enables better
informed reasoning over the subsequent drone trajectories to complete the coverage
due to the detection of missing and poorly observed surfaces in the map (Figure. 4.1b).
These surfaces are then grouped into clusters by a novel perception-aware clustering
algorithm (Figure. 4.1¢c), favouring the generation of flights that sweep the scene to
better capture these surfaces with efficient maneuvers (Figure. 4.1d). The next step
computes global paths of all drones participating in the mission, aiming to minimize
the distance travelled and the duration of the mission. This is achieved with a
variation of the classical Vehicle Routing Problem (VRP), assigning surface-clusters
to the drones (Figure. 4.1e). The processing of the initial map and the global plan
are performed by a central server that integrates the measurements obtained in the

initial reconnaissance flight. Finally, the flight-plans are assigned to the drones and a
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(a) Reconnaissance flight

(b) Analysis of the map

(c) Perception-aware
clustering

(d) Sweep generation

(e) Global planning

(f) Local trajectory
execution

Figure 4.1: The drones perform a down-looking flight to compute online a coarse initial
map shown in (a), which is used to detect poorly observed or missing areas visualized
in (b); red voxels correspond to surfaces seen from an oblique point of view (i.e., poorly
observed) and blue voxels represent missing areas. Using perception-aware clustering
these missing areas get clustered, shown in different colors in (c¢). The clusters are used
to compute sweeps, visualized in (d), to observe them efficiently. The orange arrows
represent the surface normals and red lines, the computed sweeps. The global paths of
each drone are shown in (e), as computed by a VRP aiming to minimize the mission
time and favour longer sweeps. These get smoothed out by a local planner to result in
the final drone trajectories seen in (f).
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Figure 4.2: Proposed pipeline.
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The drones send measurements for the initial map

integration to a central server. This processes the information to generate an efficient
plan for the team of drones, which is communicated back to the drones.
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trajectory planner guides the drones smoothly along the sweeps to obtain new relevant
views of the scene (Fig. 4.1f). This execution is carried out without the need of
exchanging information with the server or between the drones, favoring the deployment
of small and low-powered platforms. In practice, one run of the pipeline is enough to
cover most of the scene. Only complex concave surfaces, galleries and narrow passages
could remain unexplored as they are not detected from the top of the scene. A possible
way to explore them would be to integrate the local plans observations into Voxblox

to repeat the process until the whole scene is covered.

4.2 Initial map

The reconnaissance flight captures top views of the scene to obtain a first approximation
of the map quickly. However, the high altitude, together with the use of monocular
cameras onboard the drones render the generation of this map challenging without the
use of MVS expensive reconstruction methods. To compute it online, we use a depth
completion system [12] onboard the drones that provides dense depth measurements
from a sparse input, e.g., SLAM. [3].

We considered heightmaps and SDFs as the map representation. The first is
more efficient due to the lower dimensionality. However, heightmaps cannot represent
structural variations along the vertical direction. Its lower information would yield
worse successive planning than using a 3D representation. SDFs are better for
representing surfaces and can be used for planning in the successive flights. Increasing
the voxel size for the SDFs proved to adapt the system to larger maps, improving
the efficiency with similar results. The depth measurements from the sensor are
integrated into a common voxel-based Truncated Signed Distance Field (TSDF) map,
that incrementally builds a Euclidean Signed Distance Field (ESDF) map [11], M
(Figure 4.3a). Voxels are organized in a uniform grid, where each voxel, m € M,
contains a distance, d,,, to the closest surface and a weight, w,,, that contains the
confidence about the depth measurement of that voxel. Moreover, we denote by p,,
the centroid of the voxel and n,, its normal vector. Voxels that do not have any
measurement have an associated weight equal to wy.

The initial map is analysed in order to detect voxels that require additional
observations. In particular, voxels that belong to a poorly observed surface, M, and
voxels without measurements (i.e., are unobserved), M, (Figure 4.4 and Figure 4.3b).

Surfaces are identified locating the voxels that satisfy
Wy, > wo and |d,,| < d, (4.1)

where d,, is the voxel size.
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(a) Reconnaissance flight (b) Analysis of the map

Figure 4.3: Result obtained for the initial map and its analysis. During
the reconnaissance flights, a depth completion system creates a Voxblox coarse
reconstruction in real-time which is analyzed to detect well (green) and poorly (red)
observed surfaces and accessible unorbserved areas (blue).

Aligning the sensor’s depth direction with the surface normal, as shown in
Figure 4.4, is key in enabling accurate and high-quality scene reconstructions. With

this in mind, we identify poorly observed surface voxels, M, as
— Oy - 1y, > cos(6y) (4.2)

where o,,, is the observation direction of the camera for the voxel and 6, is the threshold
angle to consider the observation of the surface valid. We consider 6, = 45° as a
good indication that the visibility of a surface is poor. During the initial flight, the
cameras are looking downward (i.e., —Z axis). Thus, vertical and oblique surfaces are
considered poorly observed, while horizontal or low tilted surfaces are considered as
correctly observed.

The second step is the analysis of the unobserved voxels. Out of all the unobserved
voxels in the map, with weight equal to wy, we find those that are accessible (i.e., can
be observed). Unobserved voxels are accessible if they are surrounded by free space

voxels, my, defined by

Wy, > wo and d,, > d,. (4.3)

The accessible unobserved voxels, M, are then formalized as the voxels, such that
Elmf S Ngﬁ(m), (4.4)

where Nog(m) is the set of 26-connected neighbors, around the voxel m. Finally, the

set of voxels that need further observations is defined as

M, = M,UM, . (4.5)
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Figure 4.4: The analysis the initial map, visualised from a side view on the right with
two down-looking cameras, indicates the quality of the views of the scene seen on the
left, obtained in the reconnaissance flight. Voxels on the left are visualised as dashed
lines on the right, with arrows indicating the estimated surface normals. Red and green
indicate poorly and well captured surfaces, respectively, while blue indicates accessible
unknown areas, whose normals are estimated to point towards free space.

Additional heuristics can be used to improve the reasoning over the map. Some
of the implemented ideas that we did not consider in the final result reason over the
weight value of the voxels. The weight of each voxel is increased with each depth
measurement by a constant value or a weighted value inverse to the distance from the
sensor, as the confidence of measured depth is reduced with respect to the squared of
it distance. Thus, the weight would encode a measurement that informs of surfaces
that were observed few times or from a large distance, which could also require further
observation.

An alternative is to update the weight of the voxel depending on the observation
angle with respect to the current estimated normal direction of the surface. This
adds the criteria of perpendicular observations in the confidence of the map. These
heuristics were not used because the value of the voxel weight is currently designed
for the integration process. More research is required to study its applicability to infer

statistical confidence metrics applicable to our case.

4.3 Perception-aware clustering

This step performs clustering over M;. Different cluster techniques were studied
in order to split the working environment between the set of agents. Ideally, the
segmentation would generate a balanced workload-distribution among the drones.

First K-Means was studied as a naive segmentation. This technique only considers
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the distances in the map but ignores the structure of it. Thus, opposed surfaces
are clustered together but they do not allow the generation of efficient trajectory
planning. To improve the generation of meaningful tasks, K-Means was modified to
not only account for the distances in position, but also the angle distance between the
normals of the voxels with respect to the surface they represent. This worked well for
small environments such as simple buildings, separating different facades and assigning
them to different drones that can be covered more efficiently. However, in large-scale
environments several facades will be assigned to each of the robots. Additionally, this
method segments the environment in a fix number of tasks and pushes the problem
of trajectory generation to a lower level in the planning stack. Figure 4.5 shows a

comparison of the clustering alternatives.

(a) KMeans (b) Normals aware KMeans (¢c) Perception-aware
clustering

Figure 4.5: Alternative clustering methods applied to a ground truth model of a
house. Basic KMeans (a) only considers distances and ignores the structure of the
scene. Normals aware KMeans (b) consider the general structure but only works
for basic structures as the house (notice the the structure is not considered in the
well). The proposed Perception-aware clustering is able to separate surfaces depending
on their proper observation direction. The edges produce individual clusters due to
noisy normals. In our application, the small clusters coming from edges or noisy
measurements are merged with the most similar cluster in their vicinity.

We found that considering the generation of efficient trajectories in the clustering
offered a better environment segmentation and simplified successive planning steps
to a task assignment problem. With this objective, we propose a perception-based
clustering to group voxels together, such that can be observed by a drone in a single
efficient sweep trajectory by considering the distribution of their normals in the cluster
(Figure 4.6a). This clustering also aims at generating a natural partition of the scene
into a set of tasks that can be assigned to a team of drones. In the following, we explain
how the clustering works and how sweep paths are generated from them (Figure 4.6b).

The proposed clustering is based on the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) method [13]. The basic method groups voxels®

!The original method refers to points.

20



(a) Perception-aware clustering (b) Sweep generation

Figure 4.6: Result for the clustering and sweep generation steps. The voxels represented
in (a) are the result of our Perception-aware cluster with each color representing a
cluster. Except for the noise, the clustering models surfaces that can be observed in a
similar direction. We show in (b) the sweep paths generated for each cluster to observe
them in an efficient maneuver.

that are closely together in space and identifies as noise isolated voxels in low density
regions. It works by iteratively expanding clusters, C;, to neighboring voxels that fulfill

the following density condition:
NG (Pm)| > €, (4.6)

where |V, (p,,)| is the number of neighboring voxels in a radius o of the voxel’s center,
Pm, and € is the minimum number of neighbors to include the voxel in that cluster.
Our goal is to group regions observable from a similar point of view (i.e., surfaces).
Thus, we extend DBSCAN by adding a second condition for expansion. This condition
checks if the normal of a candidate voxel, n,,, lies within the distribution of normals
in the cluster. The normals in M are estimated from the gradient of distances in the
ESDF initial map. The normals of unobserved voxels are computed as the average of
all the directions that lead from p,, to free space voxels in Naog(m) (Figure 4.4). We
also smooth the estimated normals using neighboring values to filter noise.
In particular, we focus on the distribution of the cosine distance with respect to
the mean normal of the cluster, n.,
n,, - n.

do(npp,n) =1 — —.
[ [ [l

(4.7)

We then compute the average p4(C;), and standard deviation o4(C;) of the distances
from all the normals of the voxels in the cluster to n.. The normal direction condition
checks that the distance of the normal between the candidate voxel and the cluster’s

distribution is sufficiently small,
do (N, n.) < min(ug(C;) + 204(C), 7). (4.8)
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where 7 is a fixed value.

We identify 14(C;)+204(C;) as the relative tolerance to the cluster’s distribution and
7 as the absolute tolerance. The aim of the relative tolerance is to adapt the expansion
of the cluster to the surface in question, e.g., allowing soft curvatures. On the other
hand, the absolute tolerance avoids the cluster to expand through discontinuities such
as edges.

Finally, we perform a merging step that fuses small clusters with the most similar
neighbor. If no neighbor is found, these voxels are discarded.

Considering that each voxel cluster resembles a surface, a sweep is defined as a
linear trajectory that is orthogonal to the normal of the cluster (Figure 4.7). Among
all the possible sweeps, we find the longest one through the inertia moments of the
cluster, 1;. Then, for each voxel in the cluster, we compute the longest distance from

the center, projected on this axis,
d; = max |1 (pm — )] , (4.9)

where p,, is the centroid of the voxel and ¢; the centroid of the cluster. The extension
of this distance from the centroid of the cluster in both directions of 1; generates the
path that traverses the cluster through its length. We name both ends of this path,
the entrance points of the cluster.

In order to guarantee that the whole surface is visible with a single sweep, we

compute its height in the direction of the axis perpendicular to the sweep direction
The value of the height is computed in the same way as (4.9) using the axis h; instead:

i = max [ (p, —€)

, (4.11)

where h} if the half height of the cluster. Then, we use the relationship between the
field of view (FoV) angle of the camera and h! to compute the distance that is able
to cover the height of the cluster. The observation distance, d,, along the normal is

computed as

dy = —r (4.12)

Finally, if the sweep intersects an obstacle we perform a rotation of the observation

direction to refine it (Figure 4.7).
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Rotated sweep

to avoid obstacle
S i F ° =

Figure 4.7: Sweep definition and refinement scheme (left). The gray area represents a
surface cluster. The dashed red line is the major eigen vector that will be covered by
the sweep (red solid line). The green is the normal. An example in a real map is shown
on the right where the observation direction, n;, was adjusted to avoid an obstacle.

4.4 Global planner

In the next step, the objective is to compute high-level paths for the drones to cover all
the clusters. We want these paths to minimize the total time of the mission and balance
the workload (i.e., traversed distances) between the available drones. We propose to
solve this problem with an adaptation of the min-max Vehicle Routing Problem (VRP).

Originally, this algorithm looks for optimal routes for a set of agents, K, that visit
once all the locations of a given set, V. Denote by ¢;; the cost to go from location ¢
to location j, which we consider is the same for all the agents, and define X = {xfj},
for 7,7 € V, and k € K, the set of binary variables that indicate whether agent k£ has

traverse the route from ¢ to j or not. Then, the min-max VRP solves

min max Z Z cijmfj, s.t. (4.13a)

v keK eV jev

Y D ah=1 vjev\{o} (4.13D)

keK i€V

YD =1 viev\{0} (4.13¢)

keK jeV

YD oah=) ) w =K (4.13d)

keK i€V JEV keK
S ak < IS| =1, VS V\{0}S#0 (4.130)
i,j€S

whe{0,1} VijeV (4.13f)
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where (4.13a) is the cost function, which denotes the largest cost among all the agents
for a given assignment, constraints (4.13b) and (4.13c) indicate that drones only visit
each location once. Constraints in (4.13d) impose the drones to start and end at the
initial point. Constraints (4.13e) are the sub-tour elimination constraints. Finally,
conditions (4.13f) impose binary conditions on the decision variables.

In order to adapt the VRP to the clusters and their sweeps, we propose a definition
of the costs, ¢;;, that considers them. Given two clusters, ¢ and j, we compute the
path between them, as the line that join their closest entrance points with distance,
d;j, if there are no obstacles. In case there are obstacles, we consider the same path,
but flying over the top of the scene. This way we guarantee that all the clusters are
reachable from each other, but we favour assignments of the nearby ones. Additionally,
to account for the cost of covering each cluster, we add the distance of the sweep to all
the costs with it as destination. The distance of the sweep generated for C; is [ = 2d,
with d} defined in (4.9). Therefore, the cost ¢;; is defined as

Lastly, to compute the solution of (4.13), we consider an implementation with

limited capacities. We simplify the objective to minimize the total cost travelled by all

m)}nz DY ek, (4.15)

keK i€V jeVv

the drones

and we add a capacity constraint for each of them,

Z Zcijxfj < Cmax VEk € K. (4.16)

i€V jeV

Our solution searches for the minimum value of ¢, that solves the problem using the

max

bisection method. An example of the obtained global plan is shown in Figure 4.8a.

4.5 Local planner

For the last step of the proposed pipeline, the local planner by Zhou et al. [30] is used to
plan in two stages: an initial kinodynamic A* path search based on motion primitives
finds a safe, feasible and minimum-time initial path, and a B-spline optimization
generates smooth and collision-free trajectories that use gradient information from
the ESDF and dynamic constraints.

The kinodynamic A* path search generates a graph by extending the state of the
robots with motion primitives that respect the dynamic capabilities of the drone. This

is, possible next states are generated by modifying the current state with different
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(a) Global plan (b) Local trajectories

Figure 4.8: Global plan and the trajectories executed by the drones. The min-max
VRP solves the routing of a team of drones through the generated sweeps to minimize
the total time of the mission and balance the distances between the drones (a). Then,
a local planner in each drone computes the trajectories to execute the global path
smoothly and avoiding collisions (b).

accelerations, modifying both the position and velocity. The possible accelerations are
bounded by the maximum acceleration and velocity selected. Next states are evaluated
a extended to reach the destination position. Once a path is generated, the intermediate
states are introduced in a B-spline optimization setup that smooth the trajectory and
corrects to avoid obstacles. This optimization leverages the ESDF representation of
the environment, which offers a gradient along the normals of the surfaces to avoid
obstacles and B-splines properties to bound the smooth trajectory within the convex
hull of the control points. The resulting trajectory following the original global plan is
shown in Figure 4.8b.

In order to cover a surface efficiently and effectively, the sweep direction needs to
be orthogonal to the observation vector. To enable safe and efficient navigation, while
obtaining high quality scene observations, we decouple the problems of navigation
and observation. We assume that the observation camera is mounted on an actuated
gimbal, which is able to set the yaw and pitch directions. A second sensor, such as a

laser ranger or a depth camera is used for navigation.
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Chapter 5

Experiments and results

To assess the performance of the proposed method, the pipeline is implemented in
a simulation setup and run on photo-realistic outdoor scenarios of varying sizes and
difficulty. We run the experiments considering three different algorithms. We name
Ours single and Ours multi the solutions obtained running our pipeline with one and
four drones respectively. In the multi version, we perform an ablation study to show the
difference in visual coverage obtained after the reconnaissance flight and the successive
flights resulting from our pipeline. Even when our pipeline is not directly comparable
in terms of the sensor setup with other exploration methods that use stereo pairs, the
third method uses the planning approach of Kompis et al. [2] for a single and multiple
drones, which is among the state-of-the-art planners with available implementation. In
the version with multiple drones, the environment was segmented equally among the
drones. This comparison is not intended to rank the two methods but to showcase the
potential advantages of the proposed planning approach in terms of efficiency. In the

following, we explain the simulation setup and the results obtained in the execution.

5.1 Implementation details

The system was tested in a simulation setup for drones and photo-realistic scenarios
that include the simulators, the planning methods and control algorithms. It
was implemented in Ubuntu 18.04 using the Robotics Operating System (ROS)
with Melodic version. It was also ported and tested on Ubuntu 20.04 with ROS
Noetic applying changes to ensure libraries compatibility. ROS is based on a
publisher-subscriber pattern with the concept of nodes. These are processes that run
continuously and communicate through topics and services using different message
1

types A summary of the nodes used in our system and the information flows is

depicted in Figure 5.1

lros.org
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Figure 5.1: Software stack used for the implementation of the pipeline in a simulated
environment. The boxes represent nodes in the ROS system and the arrows are the
information they communicate. Dashed lines are components only used during the
reconnaissance flights.

The Gazebo RotorS simulator is used with ground-truth odometry of the drones
[31]. During the initial map construction, flying at high altitude enables the use
of accurate RTK GPS systems with small odometry error. The uncertainty in the
successive flights can be alleviated by overestimating the observation distance and
safety radius. As we target our application to consumer platforms, problems such
as aerodynamics or other electrical and mechanical delays are assumed to be solved
by their system. The drones are equipped with a monocular camera mounted on an
actuated gimbal that can rotate independently of the orientation of the drone. Its
resolution is 752 x 480 and FoV is 80° x 55°. The drones’ linear and angular maximum
velocity and acceleration are set to 2 ms™! and 0.9 ms™2, respectively, for fairness
with the compared system and to ensure safety at all times. We use a Vulkan Renderer
implemented by the VARL to generate images of photo-realistic models more efficiently
than Gazebo. The experiments showcase four different environments of varying sizes
and difficulty, namely on the Bunker, Wood Bridge, Loarre Castle, and Zurich, visible
in Figure 5.2. The transfer of this simulation setup to real-world cases was proved in
previous work [12][32].

During the reconnaissance flight, the drones fly at a fixed height over the model
in a grid pattern with their cameras looking downward. A Simple Planner was
implemented to compute a grid path from the dimensions of the bounded volume
to explore. The waypoints in the path are used to compute a continuous trajectory

with polynomial interpolation. The trajectory commands are sent to the low-level
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(a) Bunker vs : 0.2 (b) Wood Bridge vs : 0.2 (¢) Loarre castle vs : 0.3 (d) Zurich vs : 0.5
[20m x 20m x 11m)] [Tm x 30m X 7m] [40m x 30m X 20m] [65m x 55m X 30m]

Figure 5.2: The models used in the evaluation indicating their size and the voxel size
used in our pipeline (vs). The voxel size used for Kompis et al. [2] is set to 0.1 to obtain
good reconstructions.

control. The controller is composed of: a non-linear Model Predictive Control (MPC)
that optimizes the velocity command and a PID attitude controller which transforms
the commands to thrust inputs for the drones [33]. The low-level controller is the same

used during the successive flights.

From the visual simulator we obtain ground truth depth for the image which is
sub-sampled to simulate the output of a SLAM system. The sparse depth and RGB
image are introduced to the Depth Completion system implemented in Python using
the Deep Learning library Pytorch [12]. The Depth Completion system generate back
dense Point Clouds that is integrated into the Voxblox map. The voxel size used for
the initial map and planning is 0.2 (Bunker and Wood Bridge), 0.5 (Loarre) and 0.7
(Zurich).

The map manager node represents the central server in Figure 4.2. It performs
the analysis, clustering, sweep generation and global planning. The parameters for the
clustering step depend on the resolution of the prior map (i.e., voxel size v,). We set
e = 10vs, 0 = 6 (Eq. (4.6)) and 7 = 0.4. We also apply an inflation factor over the

coarse map of 20v, to the observation and safety distance for the sweep generation.

The global paths are sent to the Local Planner that generates a smooth and
obstacle-free trajectory and send the commands to the low-level controller. The Local
Planner was modified from [30]. Originally, this system only planned the trajectory
from one point to another. We let the Kinodynamic A* to continue the search to
the next waypoint after reaching the current. Continuing the search allows to further
smooth the path after a waypoint is reached. Due to computational resources required
to simulate several drones, the local paths are executed by a single drone sequentially,
which starts from and comes back to the same initial point. The simulation runs until

all the local trajectories have been executed.
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5.2 Planning efficiency

The times for the execution of the plan are shown in Table 5.1. The time for the
reconnaissance flight and initial map construction with Voxblox is included in the total
and shown below. For the method of Kompis et al., we report the times necessary to

achieve the same coverage as our system.

Tabla 5.1: Execution times to complete a scene coverage mission. The reconnaissance
flight time, in parenthesis, is included in the total time. Qurs single refers to our
pipeline using one drone, while Ours mult: indicates the time taken by the longest
flight of any drone in a team (four in this case), indicating the end of the mission. For
[2], we report the time to reach the same extent of coverage achieved by each of our
methods (Table 5.3). In lager maps, [2] is not able to achieve our coverage after one
hour of execution and the total coverage by that time is reported. The **” indicates that
the global planner only assigned two drones in this map, as introducing more would
not reduce the total time.

Wood Loarre )
Method Bunker Bridge Castle Zurich

Kompis >3600 s >3600 s
etal [2] O00TLs  BITOES er e (13.91%)

Ours 491.91 s 331.16 s 147495 s  2027.88 s
single (183.06 s) (122.54s) (329.88's) (588.56 s)

Kompis et >3600 s
al. multi 2 21443 s 40598 s  1440.39 s 160.49%]
Ours 126.26 s 172.09*s  433.74 s 741.07 s
multi (42.04s)  (53.31s) (117.11s) (269.53 s)

The results for Ours single and Ours multi validate that our setup can generalize
to an arbitrary number of drones. When using several drones instead of one, times are
a fraction of the number of drones with little overhead. In the case of Wood bridge, the
global planner assigned the tasks to only two drones even if four were available. Due
to the scene structure, adding more drones would not reduce the time of the mission
as drones would have to return to the initial point. Compared to Kompis et al., our
method is able to completely cover the maps faster in every case. For large maps (i.e.,
Loarre Castle and Zurich), [2] is not able to cover the environment after one hour of
execution and we report the amount of coverage obtained at that time.

There are two main reasons for this difference. Firstly, the different approach on
drone dynamics in the planners. Stop-and-go motions are necessary as the exploration
process is incremental. This limits the planning horizon of the system to a local region.
In their approach, the drone has to stop in order to acquire each individual view and

plan the next (see Figure 5.3). In our case, the drone is able to keep moving while
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observing a whole surface in a sweep. Notice that our system could potentially use
higher velocities and accelerations for large trajectories in free-space, as in the case
of the reconnaissance flight. This would further improve the planning efficiency. The
second reason is that their planner revisits areas in order to obtain thorough coverage,
committing resources to small regions with difficult accessibility. The reason for their
low coverage result in the Zurich map is explained by their viewpoint proposal method,
which leads to larger re-planning times when the scale of the map grows.

We also report the time for the initial map processing. The time for the analysis
and clustering steps depend on the size and resolution of the map. The global planning
step depends on the number of generated clusters and number of agents. We show the
results in Table 5.2 in the smallest and biggest maps: Bunker and Zurich. The time is

always below one minute which is negligible for the total time of the mission.

N

—— Kompis et al./
—— Ours

\\/

580 600 620 640 660
Time [s]

Velocity [m/s]
=

o

Figure 5.3: Extract of the moving average for the velocity during the simulation in
Loarre Castle for Ours single and [2]. While traditional methods stop to capture a
view and plan the next goal, our method is able to keep flying at higher speed.

Reconnaissance Reconstructions

alli e

Figure 5.4: Comparison of the coverage quality after the reconnaissance flight (up) and
the successive flights (down). Occluded regions under the Bunker are not reconstructed
(a-b). In addition, even though vertical surfaces such as Loarre’s walls are covered,
their observation yields poor scene reconstructions (c-f).
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Tabla 5.2: Computation time for the different map processing steps: analysis, clustering
and global planner. Mean and standard deviation for 10 runs.

Bunker Zurich
Analysis - 2.2240.082s 6.96+1.05s
Clustering - 1.83£0.045s 7.12+£0.297 s

Global  Single 0.99+0.053s 15.43+ 0.689 s
planner —nroi 004+ 0.064s 17.10 £ 0.737 s

5.3 Coverage and surface quality

Besides the efficiency of our planner, we have also assessed that the coverage and the
quality of the views are correct. The images captured from the monocular cameras of
the drones have been used to generate 3D reconstructions of the scenes using COLMAP.
The reconstructed models are compared with the ground-truth (GT) virtual models.
We consider that a point in the GT surface was covered if the closest distance to a
point from the reconstructed mesh is below a threshold of 0.1m. Our metric is the
percentage of covered points in the ground-truth mesh. We also measure the accuracy
of the reconstruction as the RMSE of the distances from the reconstructed model to
the ground truth mesh. While we are mainly interested in the first two metrics, the
accuracy proves that our method can be used to obtain accurate 3D reconstructions
of the environment. We also report the coverage, its quality and the reconstruction
accuracy from the Voxblox generated mesh of the pipeline in [2]. The voxel size for their
reconstruction is the same they use in their experiments, 0.1, which is the threshold
used for considering a point covered in our setup. The results are reported in Table 5.3.
For Kompis et al., the reported value is the coverage achieved by the completion time
of our plan.

The reconnaissance flight (Recon.) is able to cover large amount of surfaces.
However, the coverage quality is low, yielding poor scene reconstructions (Figure 5.4).
After the execution of our pipeline, we obtain images that ensure good observation of
surfaces. We can see similar coverage for the case of single and multi-drone approaches
as the drones traverse similar sweeps. Compared to Kompis et al., our system is able
to achieve more coverage in less time. Notice how the coverage difference is increased
with the size of the map. Qualitative results are shown in Figure 5.5 for all the maps.
It might be seen that our pipeline misses some areas with difficult accessibility. In
return, it is able to cover the overall scene in a fraction of the time. This demonstrates
that lot of information can be extracted from the map by planning more efficiently and

shows the advantage of using prior knowledge about the scene structure for planning.
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Tabla 5.3: For each method, we report the RMSE of the reconstructions and the extent
of the coverage for a threshold of 0.1 meters at the completion time of the experiment
as reported in Table 5.1. Recon. indicates the metrics from a reconstruction with only
the reconnaissance flight.

Method Bunker Wood Bridge Loarre Castle Zurich

Kompis 0.085 m 0.068 m 0.049 m 0.074 m
et al.[2] 75.6 % 55.63 % 42.58 % 9.13 %
] 0.027 m 0.043 m 0.048 m 0.09 m

Ours single
97.35 % 93.23 % 97.92 % 95.96 %
Kompis et 0.076 m 0.074 m 0.059 m 0.087 m
al. multi [2] 89.10 % 60.29 % 50.20 % 20.90 %
Recon. 0.04 m 0.039 m 0.063 m 0.147 m
(ablation)  84.75 % 62.93 % 88.54 % 75.34 %
- 0.026 m 0.039 m 0.043 m 0.086 m

Ours multi
96.36 % 92.37 % 98.64 % 97.34 %
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Kompis et al. [2] Ours single Kompis et al. multi [2] Ours multi

Figure 5.5: Qualitative comparison of the coverage obtained for all the maps considering
a fixed time. In green are points in the ground truth (GT) mesh that have been
covered during the mission, while red indicates the opposite. Our planner is able
to obtain more coverage of the overall scene, despite missing some some details
in inaccessible/non-directly visible surfaces. Detailed numbers of the coverage and
accuracy of the reconstructions are provided in Table 5.3.
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Chapter 6

Conclusion

In order to improve the efficiency in large-scale deployments of drones for visual
coverage, this thesis proposes a multi-stage planner that generates long linear
trajectories (sweeps) that observe a large amount of surface in a continuous motion. We
accomplish this by leveraging a prior coarse map to cluster these surfaces and improve
the posterior coverage trajectories. This approach is generalised to an arbitrary number
of drones, managing the workload distribution between them in order to minimize the
completion time of the mission. Comparison with alternative approaches to exploration
of scenes show the advantages of our pipeline for large scenarios, where the overall
coverage of the scene in a minimal amount of time is necessary. We show that a single
run of our pipeline is able to obtain coverage of scenes faster and with great accuracy.

Future work will explore the integration of the proposed pipeline in a real
platform, including a mapping framework to ensure safe local navigation and
additional coordination systems to deploy a team of autonomous drones in large-scale
environments. Besides, exploring the extension to a team of heterogeneous aerial drones
(i.e., fixed-wing UAVs for the nadir flight) could improve even further the efficiency of
the system by allocating each to different task modalities.
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Sweep-Your-Map: Efficient Coverage Planning for Aerial Teams in
Large-Scale Environments

David Morilla-Cabello, Luca Bartolomei, Lucas Teixeira, Eduardo Montijano, and Margarita Chli

Abstract— The efficiency of path-planning in robot navigation
is crucial in tasks such as search-and-rescue and disaster
surveying, but this is emphasised even more when considering
multi-rotor aerial robots due to the limited battery and flight
time. In this spirit, this work proposes an efficient, hierarchical
planner to achieve a comprehensive visual coverage of large-
scale outdoor scenarios for small drones. Following an initial
reconnaissance flight, a coarse map of the scene gets built in
real-time. Then, regions of the map that were not appropriately
observed are identified and grouped by a novel perception-
aware clustering process that enables the generation of contin-
uous trajectories (sweeps) to cover them efficiently. Thanks to
this partitioning of the map in a set of tasks, we are able to
generalize the planning to an arbitrary number of drones and
perform a well-balanced workload distribution among them. We
compare our approach to an alternative state-of-the-art method
for exploration and show the advantages of our pipeline in
terms of efficiency for obtaining coverage in large environments.
Video — https://youtu.be/V2UIrM910Q8

I. INTRODUCTION

Recent advances in robot navigation and perception have
enabled the establishment of modern multi-rotor aircraft,
i.e., drones, as the best choice for autonomous 3D recon-
struction or visual coverage of large-scale outdoor scenarios.
Their flexibility allows them to move freely through the
environment and observe areas that are not visible from
the ground. However, time efficiency is critical for using
drones because of their short flight times (due to battery
limitations), usually well under 30 minutes. Therefore, the
efficiency and effectiveness of the planning algorithms is
essential to enable the deployment of drones in large scale
outdoor environments. Similarly, using multiple drones as
advocated in this work promises to boost the efficiency of
the scene-coverage mission.

Deploying drones for mapping a large area from a high
altitude is an effective way to obtain a first estimation, as
collisions with the environment can be more easily avoided.
However, this strategy does not provide informative enough
viewpoints for scene coverage and impacts the quality of
the scene captures. State-of-the-art exploration approaches
[1], [2] often lack in efficiency because of problems such as
over-exploring local regions, and abrupt changes in motion
due to constant re-planning or the need for revisiting areas.

David Morilla-Cabello and Eduardo Montijano are with the Instituto
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for Robotics Lab, Department of Mechanical and Process Engineering, ETH
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Fig. 1: Team of drones that sweep the area of interest by flying paths generated
by the proposed planner in order to achieve fast coverage. Using a rough prior
map (e.g. captured in a reconnaissance flight) to identify areas that require
further observation, this work generates efficient path planning and workload
distribution for a team of drones (three in this example) to cover the scene.

To overcome these limitations, this paper presents a hybrid
solution that uses the best of both types of strategy in a
synergetic way. In this work, we assume a team of drones
with cameras, each performing a fast, reconnaissance flight
at a high-altitude capturing a rough map of the area of
interest using a coarse real-time mapping pipeline. Based
on this map, the proposed method computes a set of drone
trajectories for subsequent flights in order to efficiently cover
the area of interest in completely. This process aims to
maximize the use of sweep lines to avoid constant changes
of the flight direction, while considering the visibility of
surfaces and, at the same time, managing the workload
distribution amongst the participating drones to minimize
the execution time. The main contribution of this paper is
the overall perception-aware global planning that is capable
of handling the initial, noisy and coarse map as well as
enforcing high-speed trajectories.

II. RELATED WORK

Aerial planning for the best path in order to explore a
scene has been a topic of extensive research in robotics and
computer vision already due to its wide applicability.

A. Scene exploration and coverage

With the outlook of practicality, robotics approaches often
focus on fast scene exploration, by eliminating the unknown
space as quickly as possible. Frontier exploration methods
look for regions, where free and unknown space meet [3].
There are different criteria used to decide which frontier to
explore next, such as their proximity to the current field of
view [4], following a greedy selection strategy [5] or having
global planning dictate their selection [1]. All these methods



focus on volumetric representations of the map, whereas our
approach considers surfaces and their visibility.

Other works use Active SLAM in 2D environments for
indoors ground robot navigation using landmarks [6], [7] or
learning methods [8], [9]. In comparison, we consider aerial
robots in 3D outdoor environments to obtain a comprehen-
sive visual coverage.

When considering the reconstruction of surfaces,
sampling-based approaches propose viewpoints based on
their expected information gain. For example, accurate
surface reconstructions [10] can be achieved in a Next-Best
View fashion [11]. In order to improve the efficiency
of the planning, Rapidly-exploring Random Trees are a
common approach [10], [11]. To improve the sampling
process, [2] applies informed sampling of configurations
by reasoning over the available reconstructed model. The
method in [12] considers voxels lying on the surface at a
frontier. In general, all of these methods use depth cameras
that allow for exploration or reconstruction in indoor and
small scenarios. The performance in large-scale outdoor
scenarios as considered in this work, decreases as the sensor
range only allows for close observations. In [13], online
Multi-View Stereo (MVS) is used to incrementally asses
the surface reconstruction. In comparison, the proposed
approach executes a fast high-altitude reconnaissance flight
to obtain a global coarse map as a prior and provide an
insight of the structure of the whole scene at once.

B. Use of a prior map

Other works used priors for improving the view selection
for 3D reconstruction and generate a global plan. They anal-
yse a prior map obtained from a previous flight in order to
plan views that maximize heuristics for 3D reconstruction as
parallax angle [14] or matchability [15]. In [14], the problem
is addressed by using submodular optimization to improve
the proposed views in the free space and obtain the final
trajectory by solving an orienteering problem accounting for
a maximum allowed time-budget. Submodular optimization
is also used by [16] to plan views based on volumetric
representations in a any-time optimization.

As discussed by [13], many of the previous methods obtain
their prior from MVS pipelines, which is time consuming
and might require long waiting times for processing. In this
work, we obtain a prior map online using depth completion to
extract good estimates of the views to reconstruct the scene.
The work in [13] considers individual views without focusing
on the trajectory to connect them, which might generate path
redundancies. In contrast, we leverage the fact that many of
these views can be grouped in a single efficient trajectory in
order to cover large parts of the scene, e.g., building facades.

C. Multi-robot extension

All of the aforementioned methods assume a single robot.
While they can be extended to multi-robot setups by parti-
tioning the area of interest according to the number of robots,
this does not ensure efficient enough collaboration between
them. Cooperative frontier based approaches have also been

proposed in a centralized [17] and decentralized [18] way.
These methods address the coordination problem in fron-
tier based approaches, but suffer from the aforementioned
locality problems. The work in [12] extends to the multi-
robot case by greedily assigning the view configurations
[19]. The work in [20] distributes the workload through
continuous region partitioning based on Voronoi components.
By considering the whole map and the set of regions to be
covered (tasks) as a Vehicle Routing Problem (VRP), the
generalization to multiple drones is straightforward in our
pipeline, easily accounting for collaboration between them
and minimizing the overall mission time.

III. METHOD

Our goal is the efficient mapping of a bounded 3D outdoor
space using a team of drones equipped with one monocular
camera each. We achieve this by developing a system that
computes smooth and straight flights for the drones to reduce
the execution time of a mission. These trajectories are dubbed
sweeps, as the maneuvers can be executed at higher speeds
and do not require to change the flight direction.

In order to follow good practices in MVS reconstruction,
we also search for trajectories that yield fronto-parallel views
of the scene surfaces to maximize the scene coverage and
quality of a posterior reconstruction.

A. System overview

Our planner is illustrated in Figure 3 and the results at
different steps of the pipeline are shown in Figure 2. First, an
initial down-looking (nadir) flight over the area is performed
by the drones (Figure. 2a). The aim of this reconnaissance
flight plan is twofold: to capture a large portion of the top
view of the area of interest flying at high speeds, and to
obtain a global overview of the scene online. This enables
better informed reasoning over the subsequent drone trajec-
tories to complete the coverage due to the detection of miss-
ing and poorly observed surfaces in the map (Figure. 2b).
These surfaces are then grouped into clusters by a novel
perception-aware clustering algorithm (Figure. 2c), favouring
the generation of flights that sweep the scene to better capture
these surfaces with efficient maneuvers (Figure. 2d). The next
step computes global paths of all drones participating in the
mission, aiming to minimize the distance travelled and the
duration of the mission. This is achieved with a variation
of the classical Vehicle Routing Problem (VRP), assigning
surface-clusters to the drones (Figure. 2e). The processing
of the initial map and the global plan are performed by a
central server that integrates the measurements obtained in
the initial reconnaissance flight. Finally, the flight-plans are
assigned to the drones and a trajectory planner guides the
drones smoothly along the sweeps to obtain new relevant
views of the scene (Fig. 2f). This execution is carried out
without the need of exchanging information with the server
or between the drones, favoring the deployment of small
and low-powered platforms. In practice, one run of the
pipeline is enough to cover most of the scene. Only complex
concave surfaces, galleries and narrow passages could remain



(d) Sweep generation

(e) Global planning

(f) Local trajectory execution

Fig. 2: The drones perform a down-looking flight to compute online a coarse initial map shown in (a), which is used to detect poorly observed or missing areas
visualized in (b); red voxels correspond to surfaces seen from an oblique point of view (i.e., poorly observed) and blue voxels represent missing areas. Using
perception-aware clustering these missing areas get clustered, shown in different colors in (c). The clusters are used to compute sweeps, visualized in (d), to observe
them efficiently. The orange arrows represent the surface normals and red lines, the computed sweeps. The global paths of each drone are shown in (e), as computed
by a VRP aiming to minimize the mission time and favour longer sweeps. These get smoothed out by a local planner to result in the final drone trajectories seen in (f).
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Fig. 3: Proposed pipeline. The drones send measurements for the initial map
integration to a central server. This processes the information to generate an
efficient plan for the team of drones, which is communicated back to the drones.

unexplored as they are not detected from the top of the scene.
A possible way to explore them would be to integrate the
local plans observations into Voxblox to repeat the process
until the whole scene is covered.

B. Initial map

The reconnaissance flight captures top views of the scene
to obtain a first approximation of the map quickly. However,
the high altitude, together with the use of monocular cameras
onboard the drones render the generation of this map chal-
lenging without the use of MVS expensive reconstruction
methods. To compute it online, we use a depth completion
system [21] onboard the drones that provides dense depth
measurements from a sparse input, e.g., SLAM.

The depth measurements are integrated into a common
voxel-based Truncated Signed Distance Field (TSDF) map,
that incrementally builds a Euclidean Signed Distance Field
(ESDF) map [22], M. Voxels are organized in a uniform

grid, where each voxel, m € M, contains a distance,
dm, to the closest surface and a weight, w,,, that contains
the confidence about the depth measurement of that voxel.
Moreover, we denote by p,,, the centroid of the voxel and n,,,
its normal vector. Voxels that do not have any measurement
have an associated weight equal to wy.

The initial map is analysed in order to detect voxels
that require additional observations. In particular, voxels that
belong to a poorly observed surface, M, and voxels without
measurements (i.e., are unobserved), M,,.

Surfaces are identified locating the voxels that satisfy

Wy > wo and |dp,| < dy , (1

where d,, is the voxel size.

Aligning the sensor’s depth direction with the surface
normal, as shown in Figure 4, is key in enabling accurate
and high-quality scene reconstructions. With this in mind,
we identify poorly observed surface voxels, Mg, as

—0p, - Dy, > cos(6y) )

where 0,, is the observation direction of the camera for the
voxel and 6, is the threshold angle to consider the observation
of the surface valid. We consider #; = 45° as a good
indication that the visibility of a surface is poor. During
the initial flight, the cameras are looking downward (i.e.,
—Z axis). Thus, vertical and oblique surfaces are considered
poorly observed, while horizontal or low tilted surfaces are
considered as correctly observed.

The second step is the analysis of the unobserved voxels.
Out of all the unobserved voxels in the map, with weight
equal to wy, we find those that are accessible (i.e., can
be observed). Unobserved voxels are accessible if they are



Fig. 4: The analysis the initial map, visualised from a side view on the right
with two down-looking cameras, indicates the quality of the views of the scene
seen on the left, obtained in the reconnaissance flight. Voxels on the left are
visualised as dashed lines on the right, with arrows indicating the estimated
surface normals. Red and green indicate poorly and well captured surfaces,
respectively, while blue indicates accessible unknown areas, whose normals are
estimated to point towards free space.

surrounded by free space voxels, my, defined by
Wy, > wo and d,, > d,. 3)

The accessible unobserved voxels, M,,, are then formalized
as the voxels, such that

Hmf S N26 (m), (4)

where Nag(m) is the set of 26-connected neighbors, around
the voxel m. Finally, the set of voxels that need further
observations is defined as

My =M;UM, . &)

C. Perception-aware clustering

This step performs a novel perception-aware clustering
over M;. In particular, voxels get grouped together, such
that can be observed by a drone in a single efficient sweep
trajectory by considering the distribution of their normals in
the cluster. This clustering also aims at generating a natural
partition of the scene into a set of tasks that can be assigned
to a team of drones. In the following, we explain how the
clustering works and how sweep paths are generated from
them.

The proposed clustering is based on the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
method [23]. The basic method groups voxels' that are
closely together in space and identifies as noise isolated vox-
els in low density regions. It works by iteratively expanding
clusters, C;, to neighboring voxels that fulfill the following
density condition:

o (Pm)| > €, (6)

where |N,(pn)| is the number of neighboring voxels in a
radius o of the voxel’s center, p,,, and € is the minimum
number of neighbors to include the voxel in that cluster.
Our goal is to group regions observable from a similar
point of view (i.e., surfaces). Thus, we extend DBSCAN
by adding a second condition for expansion. This condition
checks if the normal of a candidate voxel, n,,,, lies within the
distribution of normals in the cluster. The normals in M are

IThe original method refers to points.

Fig. 5: Sweep definition and refinement scheme (right). The gray area repre-
sents a surface cluster. The dashed red line is the major eigen vector that will be
covered by the sweep (red solid line). The green is the normal. An example in a
real map is shown on the left where the observation direction, n;, was adjusted
to avoid an obstacle.

estimated from the gradient of distances in the ESDF initial
map. The normals of unobserved voxels are computed as the
average of all the directions that lead from p,, to free space
voxels in Nag(m) (Figure 4). We also smooth the estimated
normals using neighboring values to filter noise.

In particular, we focus on the distribution of the cosine
distance with respect to the mean normal of the cluster, n.,
(N

n,  -ng

do(Dpp,ne) =1 — —————.
e ([ | [0

We then compute the average 1i4(C;), and standard de-
viation o4(C;) of the distances from all the normals of the
voxels in the cluster to n.. The normal direction condition
checks that the distance of the normal between the candidate
voxel and the cluster’s distribution is sufficiently small,

da(nmv nc) < mln(ud(cz) + 20d(0i)7 T)' (8)

where 7 is a fixed value.

We identify 114(C;) + 204(C;) as the relative tolerance to
the cluster’s distribution and 7 as the absolute tolerance.
The aim of the relative tolerance is to adapt the expansion
of the cluster to the surface in question, e.g., allowing soft
curvatures. On the other hand, the absolute tolerance avoids
the cluster to expand through discontinuities such as edges.

Finally, we perform a merging step that fuses small
clusters with the most similar neighbor. If no neighbor is
found, these voxels are discarded.

Considering that each voxel cluster resembles a surface, a
sweep is defined as a linear trajectory that is orthogonal to
the normal of the cluster (Figure 5). Among all the possible
sweeps, we find the longest one through the inertia moments
of the cluster, 1;. Then, for each voxel in the cluster, we
compute the longest distance from the center, projected on
this axis,

di = max |1 (pm —€))] . ©)
where p,,, is the centroid of the voxel and c; the centroid of
the cluster. The extension of this distance from the centroid
of the cluster in both directions of 1; generates the path that
traverses the cluster through its length. We name both ends
of this path, the entrance points of the cluster.

In order to guarantee that the whole surface is visible with
a single sweep, we compute its height in the direction of the



axis perpendicular to the sweep direction

The value of the height is computed in the same way as (9)
using the axis h; instead:

(an

hi = max | (P — @)
where £} if the half height of the cluster. Then, we use the
relationship between the field of view (FoV) angle of the
camera and h] to compute the distance that is able to cover
the height of the cluster. The observation distance, d,, along
the normal is computed as

__ M
’ tan("Y)

Finally, if the sweep intersects an obstacle we perform a
rotation of the observation direction to refine it (Figure 5).

D. Global planner

In the next step, the objective is to compute high-level
paths for the drones to cover all the clusters. We propose
to solve this problem with an adaptation of the min-max
Vehicle Routing Problem (VRP).

Originally, this algorithm looks for optimal routes for a set
of agents, K, that visit once all the locations of a given set,
V. Denote by c;; the cost to go from location i to location j,
which we consider is the same for all the agents, and define
X = {af;}, for i,j € V, and k € K, the set of binary
variables that indicate whether agent k& has traverse the route
from ¢ to 5 or not. Then, the min-max VRP solves

(12)

min max Z Z cijzfj, s.t. (13a)
X kek ieV jev
Y ah=1 VjeV\{o} (13b)
keK i€V
SN ali=1 VieV\{0} (13¢)
keK jeVv
YoD k=0 af; = K] (13d)
keK i€V JEV kEK
Soak <IS|-1, ¥SCVA{0LS#£D  (13e)
i,jES
af € {0,1} Vi,jeV (13f)

where (13a) is the cost function, which denotes the largest
cost among all the agents for a given assignment, constraints
(13b) and (13c) indicate that drones only visit each location
once. Constraints in (13d) impose the drones to start and
end at the initial point. Constraints (13e) are the sub-
tour elimination constraints. Finally, conditions (13f) impose
binary conditions on the decision variables.

In order to adapt the VRP to the clusters and their sweeps,
we propose a definition of the costs, ¢;;, that considers them.
Given two clusters, ¢ and j, we compute the path between
them, as the line that join their closest entrance points with

distance, d;;, if there are no obstacles. In case there are
obstacles, we consider the same path, but flying over the top
of the scene. This way we guarantee that all the clusters are
reachable from each other, but we favour assignments of the
nearby ones. Additionally, to account for the cost of covering
each cluster, we add the distance of the sweep to all the costs
with it as destination. The distance of the sweep generated
for C; is I7 = 2d;, with d} defined in (9). Therefore, the cost
cij is defined as

Cij = dij + l; (14)

Lastly, to compute the solution of (13), we consider an
implementation with limited capacities. We simplify the
objective to minimize the total cost travelled by all the drones

: k
min 3 el as)
k€K i€V jEV
and we add a capacity constraint for each of them,
Z Z cijxfj < Cmax Vk € K. (16)
i€V jev
Our solution searches for the minimum value of ¢ that

max

solves the problem using the bisection method.

E. Local planner

For the last step of the proposed pipeline, the local planner
by Zhou et al. [24] is used to plan in two stages: an initial
kinodynamic A* path search based on motion primitives
finds a safe, feasible and minimum-time initial path, and
a B-spline optimization generates smooth and collision-free
trajectories that use gradient information from the ESDF and
dynamic constraints.

In order to cover a surface efficiently and effectively, the
sweep direction needs to be orthogonal to the observation
vector. To enable safe and efficient navigation, while ob-
taining high quality scene observations, we decouple the
problems of navigation and observation. We assume that
the observation camera is mounted on an actuated gimbal,
which is able to set the yaw and pitch directions. A second
sensor, such as a laser ranger or a depth camera is used for
navigation.

IV. EXPERIMENTS AND RESULTS

To assess the performance of the proposed method, the
pipeline is run on photo-realistic outdoor scenarios of varying
sizes and difficulty, namely on the Bunker, Wood Bridge,
Loarre Castle, and Zurich models visible in Figure 8. The
transfer of this simulation setup to real-world cases was
proved in previous work [21] [25]. The Gazebo RotorS
simulator is used with ground-truth odometry of the drones.
During the initial map construction, flying at high altitude
enables the use of accurate RTK GPS systems with small
odometry error. The uncertainty in the successive flights
can be alleviated by overestimating the observation distance
and safety radius. As we target our application to consumer
platforms, problems such as aerodynamics or other electrical
and mechanical delays are assumed to be solved by their
system. The drones are equipped with a monocular camera



TABLE I: Execution times to complete a scene coverage mission. The recon-
naissance flight time, in parenthesis, is included in the total time. Ours single
refers to our pipeline using one drone, while Ours multi indicates the time taken
by the longest flight of any drone in a team (four in this case), indicating the end
of the mission. For [2], we report the time to reach the same extent of coverage
achieved by each of our methods (Table Ill). In lager maps, [2] is not able to
achieve our coverage after one hour of execution and the total coverage by that
time is reported. The *’ indicates that the global planner only assigned two
drones in this map, as introducing more would not reduce the total time.

Wood Loarre

Method Bunker Bridge Castle Zurich
Kompis § . >3600 s >3600 s
etal 2  B97Ls  89T08s  rerogon [13.91%)
Ours 49191 s 331.16 s 147495 s 2027.88 s
single (183.06 s)  (122.54 s) (329.88 s) (588.56 s)
Kompis et >3600 s
al. multi [2] 214.43 s 405.98 s 1440.59 s (60.49%]
Ours 126.26 s 172.09* s 43374 s 741.07 s
multi (42.04 s) (5331s)  (117.11s)  (269.53 s)

mounted on an actuated gimbal that can rotate independently
of the orientation of the drone. Its resolution is 752 x 480 and
FoV is 80° x 55°. The drones’ linear and angular maximum
velocity and acceleration are set to 2 ms~! and 0.9 ms™2,
respectively, for fairness with the compared system and to
ensure safety at all times. During the reconnaissance flight,
the drones fly at a fixed height over the model in a grid
pattern with their cameras looking downward. The voxel size
used for the initial map and planning is 0.2 (Bunker and
Wood Bridge), 0.5 (Loarre) and 0.7 (Zurich).

The parameters for the clustering step depend on the reso-
lution of the prior map (i.e., voxel size vs). We set € = 10vs,
o = 6 (Eq. (6)) and 7 = 0.4. We also apply an inflation factor
over the coarse map of 20v, to the observation and safety
distance for the sweep generation. Due to computational
resources required to simulate several drones, the local paths
are executed by a single drone sequentially, which starts from
and comes back to the same initial point. The simulation runs
until all the local trajectories have been executed.

We run the experiments considering three different algo-
rithms. We name Ours single and Ours multi the solutions
obtained running our pipeline with one and four drones
respectively. In the multi version, we perform an ablation
study to show the difference in visual coverage obtained
after the reconnaissance flight and the successive flights
resulting from our pipeline. Even when our pipeline is not
directly comparable in terms of the sensor setup with other
exploration methods that use stereo pairs, the third method
uses the planning approach of Kompis et al. [2] for a single
and multiple drones, which is among the state-of-the-art
planners with available implementation. In the version with
multiple drones, the environment was segmented equally
among the drones. This comparison is not intended to rank
the two methods but to showcase the potential advantages of
the proposed planning approach in terms of efficiency.

A. Planning efficiency

The times for the execution of the plan are shown in Table
I. The time for the reconnaissance flight and initial map
construction with Voxblox is included in the total and shown

below. For the method of Kompis et al., we report the times
necessary to achieve the same coverage as our system.

The results for Ours single and Ours multi validate that our
setup can generalize to an arbitrary number of drones. When
using several drones instead of one, times are a fraction of
the number of drones with little overhead. In the case of
Wood bridge, the global planner assigned the tasks to only
two drones even if four were available. Due to the scene
structure, adding more drones would not reduce the time of
the mission as drones would have to return to the initial
point. Compared to Kompis et al., our method is able to
completely cover the maps faster in every case. For large
maps (i.e., Loarre Castle and Zurich), [2] is not able to cover
the environment after one hour of execution and we report
the amount of coverage obtained at that time.

There are two main reasons for this difference. Firstly, the
different approach on drone dynamics in the planners. Stop-
and-go motions are necessary as the exploration process is
incremental. This limits the planning horizon of the system
to a local region. In their approach, the drone has to stop
in order to acquire each individual view and plan the next
(see Figure 6). In our case, the drone is able to keep
moving while observing a whole surface in a sweep. Notice
that our system could potentially use higher velocities and
accelerations for large trajectories in free-space, as in the case
of the reconnaissance flight. This would further improve the
planning efficiency. The second reason is that their planner
revisits areas in order to obtain thorough coverage, commit-
ting resources to small regions with difficult accessibility.
The reason for their low coverage result in the Zurich map
is explained by their viewpoint proposal method, which leads
to larger re-planning times when the scale of the map grows.

We also report the time for the initial map processing. The
time for the analysis and clustering steps depend on the size
and resolution of the map. The global planning step depends
on the number of generated clusters and number of agents.
We show the results in Table II in the smallest and biggest
maps: Bunker and Zurich. The time is always below one
minute which is negligible for the total time of the mission.

—— Kompis et al. /
—— Ours

\\/

580 600 620 640 660
Time [s]

Velocity [m/s]
-

Fig. 6: Extract of the moving average for the velocity during the simulation in
Loarre Castle for Ours single and [2]. While traditional methods stop to capture
a view and plan the next goal, our method is able to keep flying at higher speed.

B. Coverage and surface quality

Besides the efficiency of our planner, we have also as-
sessed that the coverage and the quality of the views are
correct. The images captured from the monocular cameras
of the drones have been used to generate 3D reconstructions
of the scenes using COLMAP. The reconstructed models
are compared with the ground-truth (GT) virtual models.



TABLE II: Computation time for the different map processing steps: analysis,
clustering and global planner. Mean and standard deviation for 10 runs.

Bunker Zurich
Analysis - 222400825 6.96+1.05s
Clustering - 1.8340.045s 7.1240.297 s
Global  Single 0.99+£0.053s 15.43+0.689s
planner 0 1 0.04+0.064s  17.10+0.737 s

TABLE IlII: For each method, we report the RMSE of the reconstructions, the
extent of the coverage for a threshold of 0.1 meters at the completion time
of the experiment as reported in Table |. Recon. indicates the metrics from a
reconstruction with only the reconnaissance flight.

Method Bunker Wood Bridge  Loarre Castle Zurich
Kompis 0.085 m 0.068 m 0.049 m 0.074 m
et al. [2] 75.6 % 55.63 % 42.58 % 9.13 %
. 0.027 m 0.043 m 0.048 m 0.09 m

Ours single
97.35 % 93.23 % 97.92 % 95.96 %
Kompis et 0.076 m 0.074 m 0.059 m 0.087 m
al. multi [2]  89.10 % 60.29 % 50.20 % 20.90 %
Recon. 0.04 m 0.039 m 0.063 m 0.147 m
(ablation) 84.75 % 62.93 % 88.54 % 75.34 %
. 0.026 m 0.039 m 0.043 m 0.086 m

Ours multi
96.36 % 92.37 % 98.64 % 97.34 %

f ' { bl 3 X “ |
: oY B 11 |
’i: 11 = B9

Recon. Reconstruction Final Reconstruction

Fig. 7: Comparison of the coverage quality after the reconnaissance flight (left)
and the successive flights (right). Occluded regions under the Bunker are not
reconstructed (up). In addition, even though vertical surfaces such as Loarre’s
walls are covered, their observation yields poor scene reconstructions (down).

We consider that a point in the GT surface was covered
if the closest distance to a point from the reconstructed
mesh is below a threshold of 0.1m. Our metric is the
percentage of covered points in the ground-truth mesh. We
also measure the accuracy of the reconstruction as the RMSE
of the distances from the reconstructed model to the ground
truth mesh. While we are mainly interested in the first two
metrics, the accuracy proves that our method can be used to
obtain accurate 3D reconstructions of the environment. We
also report the coverage, its quality and the reconstruction
accuracy from the Voxblox generated mesh of the pipeline in
[2]. The voxel size for their reconstruction is the same they

use in their experiments, 0.1, which is the threshold used
for considering a point covered in our setup. The results are
reported in Table III. For Kompis et al., the reported value
is the coverage achieved by the completion time of our plan.
The reconnaissance flight (Recon.) is able to cover large
amount of surfaces. However, the coverage quality is low,
yielding poor scene reconstructions (Figure 7). After the
execution of our pipeline, we obtain images that ensure good
observation of surfaces. We can see similar coverage for the
case of single and multi-drone approaches as the drones
traverse similar sweeps. Compared to Kompis et al., our
system is able to achieve more coverage in less time. Notice
how the coverage difference is increased with the size of the
map. Qualitative results are shown in Figure 8 for all the
maps. It might be seen that our pipeline misses some areas
with difficult accessibility. In return, it is able to cover the
overall scene in a fraction of the time. This demonstrates
that lot of information can be extracted from the map by
planning more efficiently and shows the advantage of using
prior knowledge about the scene structure for planning.

V. CONCLUSION

In order to improve the efficiency in large-scale deploy-
ments of drones for visual coverage, this article proposes
a multi-stage planner that generates long linear trajectories
(sweeps) that observe a large amount of surface in a continu-
ous motion. We accomplish this by leveraging a prior coarse
map to cluster these surfaces and improve the posterior
coverage trajectories. This approach is generalised to an arbi-
trary number of drones, managing the workload distribution
between them in order to minimize the completion time
of the mission. Comparison with alternative approaches to
exploration of scenes show the advantages of our pipeline
for large scenarios, where the overall coverage of the scene
in a minimal amount of time is necessary. We show that a
single run of our pipeline is able to obtain coverage of scenes
faster and with great accuracy.

Future work will explore the integration of the proposed
pipeline in a real platform, including a mapping framework
to ensure safe local navigation and additional coordination
systems to deploy a team of autonomous drones in large-
scale environments. Besides, exploring the extension to a
team of heterogeneous aerial drones (i.e., fixed-wing UAVs
for the nadir flight) could improve even further the efficiency
of the system by allocating each to different task modalities.
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