
Master’s Thesis

Sweep-Your-Map: Efficient Coverage Planning for
Aerial Teams in Large-Scale Environments

Master thesis title

Autor

David Morilla Cabello

Directores

Eduardo Montijano Muñoz

Margarita Chli

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2022

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors, Eduardo and Margarita,

and the researchers, Lucas and Luca, who contributed with their inestimable help in

this work. Their inspiring ideas and practicality made this work possible, and their

corrections finally polished the final result and my experience as a future researcher.

I would also like to thank my colleagues, whose friendship facilitated the move to

Zaragoza and made it feel like a second home. Finally, I would like to thank my

parents, Mavi and Luis, who supported me in every decision and move and encouraged

me to follow my goals.

I

ABSTRACT

The efficiency of path-planning in robot navigation is crucial in tasks, such as

search-and-rescue and disaster surveying, but this is emphasised even more when

considering multi-rotor aerial robots due to the limited battery and flight time. In

this spirit, this Master Thesis proposes an efficient, hierarchical planner to achieve

a comprehensive visual coverage of large-scale outdoor scenarios for small drones.

Following an initial reconnaissance flight, a coarse map of the scene gets built in

real-time. Then, regions of the map that were not appropriately observed are identified

and grouped by a novel perception-aware clustering process that enables the generation

of continuous trajectories (sweeps) to cover them efficiently. Thanks to this partitioning

of the map in a set of tasks, we are able to generalize the planning to an arbitrary

number of drones and perform a well-balanced workload distribution among them. We

compare our approach to an alternative state-of-the-art method for exploration and

show the advantages of our pipeline in terms of efficiency for obtaining coverage in

large environments. This work was carried out in person collaboration with the Vision

for Robotics Lab (V4RL) in ETH Zürich. The stay enabled to share knowledge and

methods in perception and path planning between both laboratories that underlie the

results of this thesis. As a result of the collaboration, a scientific article was submitted

for publication to the IEEE Robotics and Automation Lettters with option to the 2022

IEEE/RSJ International Conference on Intelligent Robots and Systems.

Supplementary video – https://youtu.be/V2UIrM91oQ8

II

https://youtu.be/V2UIrM91oQ8

Index

1 Introduction 1

1.1 Objectives and scope . 2

2 Frame of Reference 4

2.1 Scene Reconstruction . 4

2.2 Map Representation . 6

2.3 Sensors for visual coverage . 8

2.4 Clustering the space . 9

2.5 Vehicle Routing Problem . 10

3 Related Work 12

3.1 Scene exploration and coverage . 12

3.2 Use of a prior map . 13

3.3 Multi-robot extension . 13

4 Method 15

4.1 System overview . 15

4.2 Initial map . 17

4.3 Perception-aware clustering . 19

4.4 Global planner . 23

4.5 Local planner . 24

5 Experiments and results 26

5.1 Implementation details . 26

5.2 Planning efficiency . 29

5.3 Coverage and surface quality . 31

6 Conclusion 34

Bibliography 35

III

List of Figures 39

List of Tables 41

A Article 42

IV

Chapter 1

Introduction

Recent advances in robot navigation and perception have enabled the establishment

of modern multi-rotor aircraft, i.e., drones, as the best choice for autonomous 3D

reconstruction or visual coverage of large-scale outdoor scenarios. Their flexibility

allows them to move freely through the environment and observe areas that are not

visible from the ground. However, time efficiency is critical for using drones because

of their short flight times (due to battery limitations), usually well under 30 minutes.

Moreover, certain deployments add extra time requirements, such as search-and-rescue

or disaster surveying as the case shown in Figure 1.1, where lives can be endangered.

Therefore, the efficiency and effectiveness of the planning algorithms is essential to

enable the deployment of drones in large scale outdoor environments. Similarly, using

multiple drones as advocated in this work promises to boost the efficiency of the

scene-coverage mission.

Figure 1.1: Use case of a team of drones for disaster surveying during Gjerdrum
landslide in Norway 1. Drones can traverse large distances fast and reach inaccessible
areas.

1enterprise-insights.dji.com/blog/let-drones-search-so-you-can-rescue-norway-landslide-m300

1

enterprise-insights.dji.com/blog/let-drones-search-so-you-can-rescue-norway-landslide-m300

Deploying drones for mapping a large area from a high altitude is an effective way to

obtain a first estimation, as collisions with the environment can be more easily avoided.

However, this strategy does not provide informative enough viewpoints for scene

coverage and impacts the quality of the scene captures. State-of-the-art exploration

approaches [1, 2] often lack in efficiency because of problems such as over-exploring

local regions, and abrupt changes in motion due to constant re-planning or the need

for revisiting areas.

Figure 1.2: Team of drones that sweep the area of interest by flying paths generated by
the proposed planner in order to achieve fast coverage. Using a rough prior map (e.g.
captured in a reconnaissance flight) to identify areas that require further observation,
this work generates efficient path planning and workload distribution for a team of
drones (three in this example) to cover the scene.

To overcome these limitations, this Master Thesis presents a hybrid solution that

uses the best of both types of strategy in a synergetic way. We consider a team of drones

with cameras, each performing a fast, reconnaissance flight at a high-altitude capturing

a rough map of the area of interest using a coarse real-time mapping pipeline. Although

the noise present in the obtained map, we obtain a dense representation that allows

reasoning on the scene structure. Based on this map, the proposed method computes

a set of drone trajectories for subsequent flights in order to efficiently cover the area

of interest completely. This process aims to maximize the use of sweep lines to avoid

constant changes of the flight direction, while considering the visibility of surfaces

as shown in Figure 1.2 and, at the same time, managing the workload distribution

amongst the participating drones to minimize the execution time.

1.1 Objectives and scope

The aim of this Master Thesis is to develop a system that is able to achieve visual

coverage of previously unknown outdoor scenarios with a team of drones. To accomplish

this goal, the following objectives are established:

2

1. First, a study of state-of-the-art methods for scene reconstruction and exploration

with drones. We discuss their applicability to the task of efficient coverage of

large-scale outdoor environments and the practicality for real-world deployments.

2. Design of a system that is able to obtain coverage of the scene. We consider real

drones capabilities and propose a hierarchical strategy to solve the problem at

hand.

3. The implementation of the proposed multi-stage strategy. Each of the stages

is treated in a modular way, which allows to consider alternative approaches in

each part. The system integrates newly proposed methods and leverages existing

techniques to consolidate an end-to-end pipeline.

4. Finally, the evaluation of the proposed pipeline in simulated environments to

asses the performance of the system and extent of obtained coverage. The

coverage strategy is also compared with a state-of-the-art planner for exploration

of unknown environments to showcase the advantages of the proposed method.

The Master Thesis has required the application of path planning and perception

techniques together in a joint problem. The student has collaborated with researchers

from the RoPeRT group in the Universidad de Zaragoza and the Vision for Robotics

Lab (V4RL) in ETH Zürich with expertise in the two fields. This work has lead to the

submission of a scientific article for publication to the IEEE Robotics and Automation

Lettters with option to the 2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (included in Appendix X).

The remaining of this Thesis is structured as follows. First, a comprehensive frame

of reference is explained for the unexperienced reader in Chapter 2. Then, a more

precise literature review is offered in Chapter 3 where current state of research in visual

coverage, exploration and reconstructions of scenes is discussed. The proposed pipeline,

the theoretical methods and implementation details are explained in Chapter 4. In

Chapter 5, the experiments to evaluate the performance of the pipeline for the task of

visual coverage of unknown scenes is presented and the results are discussed. Finally,

Chapter 6 offers a conclusion and proposes future directions for next work.

3

Chapter 2

Frame of Reference

2.1 Scene Reconstruction

The use of robots for automated acquisition of knowledge about unknown environments

is one of the most relevant topics in the roboitcs research community. As in the case

of humans, vision sensors provide rich information about the world. Obtaining visual

information of the scene can be the ultimate goal, as in photogrametry, or a tool

to achieve other goals such as navigation, object search or assessing the structural

integrity of a building. Depending on the task, different reconstructions modalities can

be pursued:

− Sparse landmarks are represented as points in the space (Figure 2.1a) . They are

used in traditional visual Simultaneous Localization and Mapping (SLAM) allow

robots to localize themselves in the environment [3]. This reconstructions can be

achieved with cameras applying classical Computer Vision methods able to work

in real-time. They are used in Structure-from-motion (SfM) and SLAM pipelines

[4]. Despite enabling navigation in the space, these reconstructions barely offer

any information to reason over the scene.

− Occupancy reconstructions are a good solution to improve the navigation through

an environment [5] (Figure 2.1b). The space is discretized in 2D or 3D voxels and

they are classified as unknown, free or occupied. As SfM and SLAM methods are

only able to reconstruct the scene sparsely, alternative sensors such as RGB-D

or stereo cameras are used to detect small obstacles. Even though the surfaces

are detected as occupied voxels, their visibility is not considered (i.e., frontal

observations), which does not ensure that high-level features such as textures or

small details can be identified.

− Dense surface reconstructions offer the most meaningful information about the

scene (Figure 2.1c). Traditionally, these reconstructions are obtained with

4

classic Computer Vision methods such as Multi-View Stereo (MVS) [6]. Correct

visibility of the surfaces (i.e., fronto-parallel views, enough parallax...) to

reconstruct are a requirement of these methods. Inspired by the Graphics

community, Signed Distance Field (SDF) can be built with stereo or RGB-D

cameras and used to obtain precise real-time surface reconstructions with the

Marching cubes method [7] (Figure 2.1d).

The aim of this thesis is to obtain a comprehensive visual reconstruction of the scene.

Thus, we focus on methods that attempt to obtain dense surface reconstructions that

enable to reconstruct accurate 3D models. In particular, our pipeline takes inspiration

from MVS reconstructions methods to ensure visibility of the scene.

(a) Sparse landmark reconstruction [3] (b) Occupancy reconstruction [8]

(c) MVS dense surface reconstruction [9] (d) SDF based surface reconstruction [2]

Figure 2.1: Different map reconstructions. Sparse landmarks (a) and (b) occupancy
maps are used for navigation but they are not appropriate to reason about surfaces.
Dense reconstructions from MVS pipelines (c) and SDFs (d) include richer information
about surfaces.

5

2.2 Map Representation

Depending on the task, different map representations might be used. The main

considerations are: the meaning of the stored information and their computational

efficiency.

− Point Clouds represent points in 3D space by its coordinates and parameters such

as intensity or color (Figure 2.2a). The extensive research on this representation

resulted in many out-of-the-shelf algorithms that ease the processing data,

allowing to extract high-level features such as surfaces and their normals’ or

identifying objects. This representation is common in landmark reconstructions

(SLAM). Point Clouds can quickly become too dense to be computationally

efficient. KD-Trees are used for efficient operations on them such as neighbor

search.

− Occupancy Maps divide the space in a grid and classify each cell as unknown,

occupied or free space (Figure 2.2b). This representation is commonly used in 2D

environments. The extension to 3D environments requires the use of hierarchical

resolution to reduce the computational complexity such as octrees [5] or reducing

the map to a local space around the robot [10].

− Signed Distance Fields (SDF) have recently been applied to robotics as the

implicit representation of surfaces is suited for online reconstructions and

planning. The two most common SDF are Euclidean SDF (ESDF) and Truncated

SDF (TSDF). In both cases, the space is discretized and each cell stores the

distance to the nearest object. The distance is positive outside of the object

and negative inside. Surfaces are represented by the zero crosses in the map.

TSDF differs from ESDF in that the distance measurements are truncated after

some value. One of the established systems in the robotics research community is

Voxblox [11] (Figure 2.2c). This methods iteratively builds a TSDF by integrating

projective depth measurements along the ray between the sensor and the surface.

In this case, each cell of the SDF also include a weight which represents the

confidence about the depth measurement. The distances integrated in the TSDF

are accurate near surface crossings, but accumulates large global errors. In order

to obtain a global accurate representation of the space, the TSDF is processed

to build a ESDF incrementally, which correctly represents the environment.

In the same way of Occupancy Maps, the computational complexity of this

representation also grows fast for 3D environments.

6

− Heightmaps are a great solution to reduce the computational complexity in

very large-scale environments (Figure 2.2d). In this case, the environment

is represented by a 2D grid where each cell stores its height. Additionally,

other measurements such as a weight to represent the confidence of the height

or its color can be stored. Thus, the 3D environment is reduced to a

2.5D representation. The main advantage is the lightweight representations

of large-scale environments but their disadvantage is the loss of structural

information in the vertical dimension of the environment by assuming that all

the volume below the highest detected surface is occupied.

(a) Point Cloud [6] (b) Octomap [5]

(c) Voxblox generated mesh [11] (d) Heightmap 1

Figure 2.2: Different map representations. Point Clouds (a) are sparse but there are
many available processing tools. Octomap (b) is also useful for navigation but it
does not account for the quality of represented surfaces. Voxblox (c) can generate
accurate surfaces in real-time and includes implicit information about them which is
useful to perform planning based on the surfaces in the map. Despite their simplicity,
Heightmaps (d) can be a good solution to scale maps in a computationally efficient
way. However, the structural information in the vertical direction is lost.

Throughout our system, different representations are used. Voxblox is used as the

main representation for it can offer rich information to reason about the geometry

of the scene, which renders the necessary observations to correctly cover the scene

(Section 3.2). Additionally, Point Clouds are used to cluster the environment as

they ease the processing thanks to already existent tools (Section 4.3). Heightmaps

were considered also as an alternative representation to Voxblox to manage large-scale

environments.
1wiki.ros.org/grid_map

7

wiki.ros.org/grid_map

2.3 Sensors for visual coverage

The most common and extended sensor to obtain visual information are monocular

cameras. Their reduced size and low consumption make them suitable to be mounted

on small drones. Despite being able to infer the geometric structure of the scene using

Structure from Motion (SfM), a camera by itself cannot estimate the real-world scale

of a scene [4].

Stereo cameras can obtain this measurement using a real-world prior: the distance

between the two cameras (baseline). However, the depth that these cameras can

estimate is limited by the parallax of the cameras, which increases with the baseline.

The available baseline in small drones is short due to their limited size, limiting the

sensing range of stereo cameras.

(a) Velodyne LiDAR 2 (b) Intel Realsense D435i RGB-D
camera 3

Figure 2.3: Sensors used to reconstruct the real-scale geometry of a scene in order to
reason over it using the time-of-flight of infrared light beams. RGB-D cameras generate
a dense pointcloud but their limited range and low intensity make them unsuited for
outdoor scenarios. LiDARs’ measurements are also dense and in 3D but have high
weight and consumption for small drones.

RGB-D cameras as the one shown in Figure 2.3b have additional sensors such as

infrared to compute ground truth depth measurements to surfaces in the scene by

using the time-of-flight of infrared light beams. These cameras work well in indoor

environments or close to surfaces but they are affected by distance and outdoor light

due to the low intensity of the infrared light compared to the sun and the reflections

that different surfaces cause. LiDAR sensors also apply the idea of time-of-flight with

higher intensity light beams, enabling outdoor use for distances up to 80 m. In order

to obtain dense representations of the environment Velodyne LiDARs’ models rotate

1velodynelidar.com
1intelrealsense.com/depth-camera-d435i/

8

velodynelidar.com
intelrealsense.com/depth-camera-d435i/

a vertical array of 16 or 32 rays to generate a 3D point cloud. These sensors are used

in combination with monocular cameras in autonomous driving applications. Small

drones, however, have low autonomy due to their batteries and can only carry low

payloads which also affect their autonomy. LiDARs have a great consumption and their

weight is well above cameras. Furthermore, the measurements of LiDARs become more

sparse with the distance, reducing the amount of information that can be extracted.

These reasons were the motivation that inspired the appearance of Depth Completion

techniques.

In our system we use an out-of-the-box Deep Learning Depth Completion method

to create an initial rough estimate of the environment flying at high altitude [12]

(Section 3.2). This method is able to estimate dense depth for all the pixels in a

image providing an RGB image and sparse depth measurements. Additionally, we use

a stereo camera to enable navigation (Section 4.5). Finally, as the aim of this thesis is

the acquisition of visual coverage of a scene, the images from a monocular camera are

considered as the last output of the system.

2.4 Clustering the space

Clustering is the task of identifying groups and assigning elements to them. In this

thesis we are interested in clustering regions of the scene to generate tasks that can be

assigned to a team of drones. Two basic methods were considered and modified to fit

our problem. The basic methods are introduced here and the modification explained

in Section 4.3.

− K-Means classifies observations in a number of given clusters, k (Figure 2.4a).

The elements are assigned to clusters according to some metric such as the

Euclidean distance to the centroid of the clusters. The result are Voronoi cells

that separate the space equally.

− Density-based spatial clustering of applications with noise (DBSCAN) [13] is a

density-based clustering. It groups points that are near in space and classifies

isolated points as noise (Figure 2.4b). This algorithms work by iteratively

initializing new clusters and extending them to neighbours if they fulfil the density

criteria (i.e., there are enough neighbors to the point to extend).

9

(a) KMeans (b) DBSCAN

Figure 2.4: Classical clustering methods. KMeans (a) groups points in a pre-defined
number of clusters using the distances between the points. DBScan (b) initializes
clusters and expands them while the density criteria (i.e., min. number of points in
search radius) is fulfilled for the candidate neighbors.

2.5 Vehicle Routing Problem

The Vehicle Routing Problem is a traditional planning method which arose from

logistics and delivery. The problem is the routing of a fleet of one or more vehicles

that have to visit a set of tasks only once, minimizing the total distance traversed

by all the agents. The method models the problem of a set of tasks represented as

nodes, v ∈ V , in a graph, G that have to be visited by a number of agents, k ∈ K.

The nodes are connected by edges, e ∈ E , with an associated weight cij with i, j ∈ V
that represents the possible routes between nodes and the cost to traverse them. The

solution is proposed by means of Integer Linear Programming (ILP). Define X = {xk
ij},

for i, j ∈ V, and k ∈ K, the set of binary variables that indicate whether agent k has

traverse the route from i to j or not. The VRP solves:

min
X

∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij, s.t. (2.1a)

∑
k∈K

∑
i∈V

xk
ij = 1 ∀j ∈ V \ {0} (2.1b)

∑
k∈K

∑
j∈V

xk
ij = 1 ∀i ∈ V \ {0} (2.1c)

∑
k∈K

∑
i∈V

xk
i0 =

∑
j∈V

∑
k∈K

xk
0j = |K| (2.1d)

∑
i,j∈S

xk
i,j ≤ |S| − 1, ∀S ⊂ V \ {0}, S ̸= ∅ (2.1e)

xk
ij ∈ {0, 1} ∀i, j ∈ V (2.1f)

10

where (2.1a) is the cost function, which denotes the sum of all the cost (i.e., traversed

distances) among all the agents for a given assignment, constraints (2.1b) and (2.1c)

indicate that drones only visit each location once. Constraints in (2.1d) impose the

drones to start and end at the initial point. Constraints (2.1e) are the sub-tour

elimination constraints that eliminate all solutions containing tours that return back

to the start, without visiting all the tasks. Finally, conditions (2.1f) impose binary

conditions on the decision variables. Figure 2.5 shows a toy example of this problem

and a possible solution.

8

6

2

5

7

1

43

9 10

16

14

1211

15

13

0

Figure 2.5: Example problem of a VRP problem with a possible solution. The distance
traversed to visit all the nodes once and return back is minimize by using four agents .

In our problem, regions to observe in the scene are represented as tasks and assigned

to the drones that will solve them by observing them in a defined trajectory. However,

basic VRP only considers the minimization of the total distance traversed by all the

drones. Depending on the structure of the scene and initial point (for example, use

as depot node 15 in Figure 2.5), the distance might be minimized by only using one

drone. In order to ensure balanced workload distribution among the available agents,

we use a modified version, the min-max VRP explained in Section 4.4.

3developers.google.com/optimization/routing/vrp

11

developers.google.com/optimization/routing/vrp

Chapter 3

Related Work

Aerial planning for the best path in order to explore a scene has been a topic of extensive

research in robotics and computer vision already due to its wide applicability.

3.1 Scene exploration and coverage

With the robotics literature mainly concentrating on online map construction from

unknown or partially known, environments, the computer vision literature conversely

focuses on highly accurate, but computationally demanding reconstructions. With the

outlook of practicality, robotics approaches often focus on fast scene exploration, by

eliminating the unknown space as quickly as possible. Frontier exploration methods

look for regions, where free and unknown space meet [14]. The exploration is completed

by identifying and pushing frontiers separating known and unknown space until all the

space is explored. There are different criteria used to decide which frontier to explore

next, such as their proximity to the current field of view [15], following a greedy selection

strategy [16] or having global planning dictate their selection [1]. All these methods

focus on volumetric representations of the map, whereas our approach considers

surfaces and their visibility. Other works use Active SLAM in 2D environments for

indoors ground robot navigation using landmarks [17, 18] or learning methods [19, 20].

In comparison, we consider aerial robots in 3D outdoor environments to obtain a

comprehensive visual coverage.

When considering the reconstruction of surfaces of the scene, sampling-based

approaches to address this by proposing a set of configurations (e.g. viewpoints) that

get evaluated with respect to their expected information gain. For example, accurate

surface reconstructions [21] can be achieved in a Next-Best View fashion [22]. In

order to improve the efficiency of the planning, Rapidly-exploring Random Trees are

a common approach [22, 21, 2]. To improve the sampling process, [2] applies informed

sampling of configurations by reasoning over the available reconstructed model. The

12

method in [23] considers voxels lying on the surface at a frontier, near both the unknown

and free space. In general, all of these methods use depth cameras that allow for

exploration or reconstruction in indoor and small scenarios. However, the performance

in large-scale outdoor scenarios as considered in this work, decreases as the sensor

range only allows for observations at a close distance. In [8], it is proposed to use

online Multi-View Stereo (MVS) reconstruction in order to incrementally asses the

surface reconstruction and plan iteratively in order to improve the reconstructed mesh.

In comparison, the proposed approach executes a fast high-altitude reconnaissance

flight to obtain a global coarse map as a prior, to provide an insight of the structure

of the whole scene at once.

3.2 Use of a prior map

Other works used priors for improving the view selection for 3D reconstruction and

generate a global plan. They analyse a prior map obtained from a previous flight in

order to plan views that maximize heuristics for 3D reconstruction as parallax angle

[24] or matchability [25]. These methods propose an initial distribution of views in the

space and optimize them based on the aforementioned heuristics. In [24], the problem

is addressed by using submodular optimization to improve the proposed views in the

free space and obtain the final trajectory by solving an orienteering problem accounting

for a maximum allowed time-budget. Submodular optimization is also used by [9] to

plan views based on volumetric representations in a any-time optimization.

As discussed by [8], many of the previous methods obtain their prior from MVS

pipelines, which is time consuming and might require long waiting times for processing,

which is impractical for time-critical applications. In this work, we obtain a prior map

online using depth completion, which allows us to extract good estimates of the views

to reconstruct the scene. The work in [8] considers individual views without focusing

on the trajectory to connect them, which might generate path redundancies and lower

the efficiency of the global plan. In contrast, here we leverage the fact that many of

these views can be grouped in a single efficient trajectory in order to cover large parts

of the scene, e.g. building facades.

3.3 Multi-robot extension

All of the aforementioned methods assume a single robot. While they can be

extended to multi-robot setups by partitioning the area of interest according to the

number of robots, this does not ensure efficient enough collaboration between them.

13

Cooperative frontier based approaches have also been proposed in a centralized [26] and

decentralized [27] way. These methods address the coordination problem in frontier

based approaches, but suffer from the aforementioned locality problems and do not

use global information until the scene is explored. Relevant is the work in [23], which

is extended to the multi-robot case by greedily assigning the view configurations [28].

Another approach would be to perform partitioning of the area of interest, however,

the complexity of the environment is not known a priori and the load balancing

between the robots would not be accounted for. In this sense, [29] proposes continuous

region partitioning based on Voronoi components for informative path planning. By

considering the whole map and the set of regions to be covered (tasks) as a Vehicle

Routing Problem (VRP), the generalization to multiple drones is straightforward in our

pipeline, easily accounting for collaboration between them and minimizing the overall

mission time.

14

Chapter 4

Method

Our goal is the efficient mapping of a bounded 3D outdoor space using a team of drones

equipped with one monocular camera each. We achieve this by developing a system

that computes smooth and straight flights for the drones to reduce the execution time

of a mission. These trajectories are dubbed sweeps, as the maneuvers can be executed

at higher speeds and do not require to change the flight direction.

In order to follow good practices in MVS reconstruction, we also search for

trajectories that yield fronto-parallel views of the scene surfaces to maximize the scene

coverage and quality of a posterior reconstruction.

4.1 System overview

Our planner is illustrated in Figure 4.2 and the results at different steps of the pipeline

are shown in Figure 4.1. First, an initial down-looking (nadir) flight over the area is

performed by the drones (Figure. 4.1a). The aim of this reconnaissance flight plan is

twofold: to capture a large portion of the top view of the area of interest flying at

high speeds, and to obtain a global overview of the scene online. This enables better

informed reasoning over the subsequent drone trajectories to complete the coverage

due to the detection of missing and poorly observed surfaces in the map (Figure. 4.1b).

These surfaces are then grouped into clusters by a novel perception-aware clustering

algorithm (Figure. 4.1c), favouring the generation of flights that sweep the scene to

better capture these surfaces with efficient maneuvers (Figure. 4.1d). The next step

computes global paths of all drones participating in the mission, aiming to minimize

the distance travelled and the duration of the mission. This is achieved with a

variation of the classical Vehicle Routing Problem (VRP), assigning surface-clusters

to the drones (Figure. 4.1e). The processing of the initial map and the global plan

are performed by a central server that integrates the measurements obtained in the

initial reconnaissance flight. Finally, the flight-plans are assigned to the drones and a

15

(a) Reconnaissance flight (b) Analysis of the map (c) Perception-aware
clustering

(d) Sweep generation (e) Global planning (f) Local trajectory
execution

Figure 4.1: The drones perform a down-looking flight to compute online a coarse initial
map shown in (a), which is used to detect poorly observed or missing areas visualized
in (b); red voxels correspond to surfaces seen from an oblique point of view (i.e., poorly
observed) and blue voxels represent missing areas. Using perception-aware clustering
these missing areas get clustered, shown in different colors in (c). The clusters are used
to compute sweeps, visualized in (d), to observe them efficiently. The orange arrows
represent the surface normals and red lines, the computed sweeps. The global paths of
each drone are shown in (e), as computed by a VRP aiming to minimize the mission
time and favour longer sweeps. These get smoothed out by a local planner to result in
the final drone trajectories seen in (f).

Figure 4.2: Proposed pipeline. The drones send measurements for the initial map
integration to a central server. This processes the information to generate an efficient
plan for the team of drones, which is communicated back to the drones.

16

trajectory planner guides the drones smoothly along the sweeps to obtain new relevant

views of the scene (Fig. 4.1f). This execution is carried out without the need of

exchanging information with the server or between the drones, favoring the deployment

of small and low-powered platforms. In practice, one run of the pipeline is enough to

cover most of the scene. Only complex concave surfaces, galleries and narrow passages

could remain unexplored as they are not detected from the top of the scene. A possible

way to explore them would be to integrate the local plans observations into Voxblox

to repeat the process until the whole scene is covered.

4.2 Initial map

The reconnaissance flight captures top views of the scene to obtain a first approximation

of the map quickly. However, the high altitude, together with the use of monocular

cameras onboard the drones render the generation of this map challenging without the

use of MVS expensive reconstruction methods. To compute it online, we use a depth

completion system [12] onboard the drones that provides dense depth measurements

from a sparse input, e.g., SLAM. [3].

We considered heightmaps and SDFs as the map representation. The first is

more efficient due to the lower dimensionality. However, heightmaps cannot represent

structural variations along the vertical direction. Its lower information would yield

worse successive planning than using a 3D representation. SDFs are better for

representing surfaces and can be used for planning in the successive flights. Increasing

the voxel size for the SDFs proved to adapt the system to larger maps, improving

the efficiency with similar results. The depth measurements from the sensor are

integrated into a common voxel-based Truncated Signed Distance Field (TSDF) map,

that incrementally builds a Euclidean Signed Distance Field (ESDF) map [11], M
(Figure 4.3a). Voxels are organized in a uniform grid, where each voxel, m ∈ M,

contains a distance, dm, to the closest surface and a weight, wm, that contains the

confidence about the depth measurement of that voxel. Moreover, we denote by pm

the centroid of the voxel and nm its normal vector. Voxels that do not have any

measurement have an associated weight equal to w0.

The initial map is analysed in order to detect voxels that require additional

observations. In particular, voxels that belong to a poorly observed surface, Ms, and

voxels without measurements (i.e., are unobserved), Mu (Figure 4.4 and Figure 4.3b).

Surfaces are identified locating the voxels that satisfy

wm > w0 and |dm| < dv , (4.1)

where dv is the voxel size.

17

(a) Reconnaissance flight (b) Analysis of the map

Figure 4.3: Result obtained for the initial map and its analysis. During
the reconnaissance flights, a depth completion system creates a Voxblox coarse
reconstruction in real-time which is analyzed to detect well (green) and poorly (red)
observed surfaces and accessible unorbserved areas (blue).

Aligning the sensor’s depth direction with the surface normal, as shown in

Figure 4.4, is key in enabling accurate and high-quality scene reconstructions. With

this in mind, we identify poorly observed surface voxels, Ms, as

− om · nm > cos(θt) , (4.2)

where om is the observation direction of the camera for the voxel and θt is the threshold

angle to consider the observation of the surface valid. We consider θt = 45◦ as a

good indication that the visibility of a surface is poor. During the initial flight, the

cameras are looking downward (i.e., −Z axis). Thus, vertical and oblique surfaces are

considered poorly observed, while horizontal or low tilted surfaces are considered as

correctly observed.

The second step is the analysis of the unobserved voxels. Out of all the unobserved

voxels in the map, with weight equal to w0, we find those that are accessible (i.e., can

be observed). Unobserved voxels are accessible if they are surrounded by free space

voxels, mf , defined by

wm > w0 and dm > dv. (4.3)

The accessible unobserved voxels, Mu, are then formalized as the voxels, such that

∃mf ∈ N26(m), (4.4)

where N26(m) is the set of 26-connected neighbors, around the voxel m. Finally, the

set of voxels that need further observations is defined as

Mt = Ms ∪Mu . (4.5)

18

MS

MU

Figure 4.4: The analysis the initial map, visualised from a side view on the right with
two down-looking cameras, indicates the quality of the views of the scene seen on the
left, obtained in the reconnaissance flight. Voxels on the left are visualised as dashed
lines on the right, with arrows indicating the estimated surface normals. Red and green
indicate poorly and well captured surfaces, respectively, while blue indicates accessible
unknown areas, whose normals are estimated to point towards free space.

Additional heuristics can be used to improve the reasoning over the map. Some

of the implemented ideas that we did not consider in the final result reason over the

weight value of the voxels. The weight of each voxel is increased with each depth

measurement by a constant value or a weighted value inverse to the distance from the

sensor, as the confidence of measured depth is reduced with respect to the squared of

it distance. Thus, the weight would encode a measurement that informs of surfaces

that were observed few times or from a large distance, which could also require further

observation.

An alternative is to update the weight of the voxel depending on the observation

angle with respect to the current estimated normal direction of the surface. This

adds the criteria of perpendicular observations in the confidence of the map. These

heuristics were not used because the value of the voxel weight is currently designed

for the integration process. More research is required to study its applicability to infer

statistical confidence metrics applicable to our case.

4.3 Perception-aware clustering

This step performs clustering over Mt. Different cluster techniques were studied

in order to split the working environment between the set of agents. Ideally, the

segmentation would generate a balanced workload-distribution among the drones.

First K-Means was studied as a naive segmentation. This technique only considers

19

the distances in the map but ignores the structure of it. Thus, opposed surfaces

are clustered together but they do not allow the generation of efficient trajectory

planning. To improve the generation of meaningful tasks, K-Means was modified to

not only account for the distances in position, but also the angle distance between the

normals of the voxels with respect to the surface they represent. This worked well for

small environments such as simple buildings, separating different facades and assigning

them to different drones that can be covered more efficiently. However, in large-scale

environments several facades will be assigned to each of the robots. Additionally, this

method segments the environment in a fix number of tasks and pushes the problem

of trajectory generation to a lower level in the planning stack. Figure 4.5 shows a

comparison of the clustering alternatives.

(a) KMeans (b) Normals aware KMeans (c) Perception-aware
clustering

Figure 4.5: Alternative clustering methods applied to a ground truth model of a
house. Basic KMeans (a) only considers distances and ignores the structure of the
scene. Normals aware KMeans (b) consider the general structure but only works
for basic structures as the house (notice the the structure is not considered in the
well). The proposed Perception-aware clustering is able to separate surfaces depending
on their proper observation direction. The edges produce individual clusters due to
noisy normals. In our application, the small clusters coming from edges or noisy
measurements are merged with the most similar cluster in their vicinity.

We found that considering the generation of efficient trajectories in the clustering

offered a better environment segmentation and simplified successive planning steps

to a task assignment problem. With this objective, we propose a perception-based

clustering to group voxels together, such that can be observed by a drone in a single

efficient sweep trajectory by considering the distribution of their normals in the cluster

(Figure 4.6a). This clustering also aims at generating a natural partition of the scene

into a set of tasks that can be assigned to a team of drones. In the following, we explain

how the clustering works and how sweep paths are generated from them (Figure 4.6b).

The proposed clustering is based on the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) method [13]. The basic method groups voxels1

1The original method refers to points.

20

(a) Perception-aware clustering (b) Sweep generation

Figure 4.6: Result for the clustering and sweep generation steps. The voxels represented
in (a) are the result of our Perception-aware cluster with each color representing a
cluster. Except for the noise, the clustering models surfaces that can be observed in a
similar direction. We show in (b) the sweep paths generated for each cluster to observe
them in an efficient maneuver.

that are closely together in space and identifies as noise isolated voxels in low density

regions. It works by iteratively expanding clusters, Ci, to neighboring voxels that fulfill

the following density condition:

|Nσ(pm)| > ϵ , (4.6)

where |Nσ(pm)| is the number of neighboring voxels in a radius σ of the voxel’s center,

pm, and ϵ is the minimum number of neighbors to include the voxel in that cluster.

Our goal is to group regions observable from a similar point of view (i.e., surfaces).

Thus, we extend DBSCAN by adding a second condition for expansion. This condition

checks if the normal of a candidate voxel, nm, lies within the distribution of normals

in the cluster. The normals in Ms are estimated from the gradient of distances in the

ESDF initial map. The normals of unobserved voxels are computed as the average of

all the directions that lead from pm to free space voxels in N26(m) (Figure 4.4). We

also smooth the estimated normals using neighboring values to filter noise.

In particular, we focus on the distribution of the cosine distance with respect to

the mean normal of the cluster, nc,

dα(nm,nc) = 1− nm · nc

∥nm∥ ∥nc∥
. (4.7)

We then compute the average µd(Ci), and standard deviation σd(Ci) of the distances
from all the normals of the voxels in the cluster to nc. The normal direction condition

checks that the distance of the normal between the candidate voxel and the cluster’s

distribution is sufficiently small,

dα(nm,nc) < min(µd(Ci) + 2σd(Ci), τ). (4.8)

21

where τ is a fixed value.

We identify µd(Ci)+2σd(Ci) as the relative tolerance to the cluster’s distribution and

τ as the absolute tolerance. The aim of the relative tolerance is to adapt the expansion

of the cluster to the surface in question, e.g., allowing soft curvatures. On the other

hand, the absolute tolerance avoids the cluster to expand through discontinuities such

as edges.

Finally, we perform a merging step that fuses small clusters with the most similar

neighbor. If no neighbor is found, these voxels are discarded.

Considering that each voxel cluster resembles a surface, a sweep is defined as a

linear trajectory that is orthogonal to the normal of the cluster (Figure 4.7). Among

all the possible sweeps, we find the longest one through the inertia moments of the

cluster, li. Then, for each voxel in the cluster, we compute the longest distance from

the center, projected on this axis,

d∗i = max
m∈Ci

∣∣lTi (pm − c̄i)
∣∣ , (4.9)

where pm is the centroid of the voxel and c̄i the centroid of the cluster. The extension

of this distance from the centroid of the cluster in both directions of li generates the

path that traverses the cluster through its length. We name both ends of this path,

the entrance points of the cluster.

In order to guarantee that the whole surface is visible with a single sweep, we

compute its height in the direction of the axis perpendicular to the sweep direction

hi = li × ni. (4.10)

The value of the height is computed in the same way as (4.9) using the axis hi instead:

h∗
i = max

m∈Ci

∣∣hT
i (pm − c̄i)

∣∣ , (4.11)

where h∗
i if the half height of the cluster. Then, we use the relationship between the

field of view (FoV) angle of the camera and h∗
i to compute the distance that is able

to cover the height of the cluster. The observation distance, do, along the normal is

computed as

do =
h∗
i

tan(FoV
2
)

(4.12)

Finally, if the sweep intersects an obstacle we perform a rotation of the observation

direction to refine it (Figure 4.7).

22

li

ni
do

hi

d*i

h*i Ci

Original sweep
intersects with
obstacle

Rotated sweep
to avoid obstacle

Figure 4.7: Sweep definition and refinement scheme (left). The gray area represents a
surface cluster. The dashed red line is the major eigen vector that will be covered by
the sweep (red solid line). The green is the normal. An example in a real map is shown
on the right where the observation direction, ni, was adjusted to avoid an obstacle.

4.4 Global planner

In the next step, the objective is to compute high-level paths for the drones to cover all

the clusters. We want these paths to minimize the total time of the mission and balance

the workload (i.e., traversed distances) between the available drones. We propose to

solve this problem with an adaptation of the min-max Vehicle Routing Problem (VRP).

Originally, this algorithm looks for optimal routes for a set of agents, K, that visit

once all the locations of a given set, V . Denote by cij the cost to go from location i

to location j, which we consider is the same for all the agents, and define X = {xk
ij},

for i, j ∈ V, and k ∈ K, the set of binary variables that indicate whether agent k has

traverse the route from i to j or not. Then, the min-max VRP solves

min
X

max
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij, s.t. (4.13a)

∑
k∈K

∑
i∈V

xk
ij = 1 ∀j ∈ V \ {0} (4.13b)

∑
k∈K

∑
j∈V

xk
ij = 1 ∀i ∈ V \ {0} (4.13c)

∑
k∈K

∑
i∈V

xk
i0 =

∑
j∈V

∑
k∈K

xk
0j = |K| (4.13d)

∑
i,j∈S

xk
i,j ≤ |S| − 1, ∀S ⊂ V \ {0}, S ̸= ∅ (4.13e)

xk
ij ∈ {0, 1} ∀i, j ∈ V (4.13f)

23

where (4.13a) is the cost function, which denotes the largest cost among all the agents

for a given assignment, constraints (4.13b) and (4.13c) indicate that drones only visit

each location once. Constraints in (4.13d) impose the drones to start and end at the

initial point. Constraints (4.13e) are the sub-tour elimination constraints. Finally,

conditions (4.13f) impose binary conditions on the decision variables.

In order to adapt the VRP to the clusters and their sweeps, we propose a definition

of the costs, cij, that considers them. Given two clusters, i and j, we compute the

path between them, as the line that join their closest entrance points with distance,

dij, if there are no obstacles. In case there are obstacles, we consider the same path,

but flying over the top of the scene. This way we guarantee that all the clusters are

reachable from each other, but we favour assignments of the nearby ones. Additionally,

to account for the cost of covering each cluster, we add the distance of the sweep to all

the costs with it as destination. The distance of the sweep generated for Ci is l∗i = 2d∗i ,

with d∗i defined in (4.9). Therefore, the cost cij is defined as

cij = dij + l∗j . (4.14)

Lastly, to compute the solution of (4.13), we consider an implementation with

limited capacities. We simplify the objective to minimize the total cost travelled by all

the drones

min
X

∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij, (4.15)

and we add a capacity constraint for each of them,∑
i∈V

∑
j∈V

cijx
k
ij < cmax ∀k ∈ K. (4.16)

Our solution searches for the minimum value of c∗max that solves the problem using the

bisection method. An example of the obtained global plan is shown in Figure 4.8a.

4.5 Local planner

For the last step of the proposed pipeline, the local planner by Zhou et al. [30] is used to

plan in two stages: an initial kinodynamic A∗ path search based on motion primitives

finds a safe, feasible and minimum-time initial path, and a B-spline optimization

generates smooth and collision-free trajectories that use gradient information from

the ESDF and dynamic constraints.

The kinodynamic A∗ path search generates a graph by extending the state of the

robots with motion primitives that respect the dynamic capabilities of the drone. This

is, possible next states are generated by modifying the current state with different

24

(a) Global plan (b) Local trajectories

Figure 4.8: Global plan and the trajectories executed by the drones. The min-max
VRP solves the routing of a team of drones through the generated sweeps to minimize
the total time of the mission and balance the distances between the drones (a). Then,
a local planner in each drone computes the trajectories to execute the global path
smoothly and avoiding collisions (b).

accelerations, modifying both the position and velocity. The possible accelerations are

bounded by the maximum acceleration and velocity selected. Next states are evaluated

a extended to reach the destination position. Once a path is generated, the intermediate

states are introduced in a B-spline optimization setup that smooth the trajectory and

corrects to avoid obstacles. This optimization leverages the ESDF representation of

the environment, which offers a gradient along the normals of the surfaces to avoid

obstacles and B-splines properties to bound the smooth trajectory within the convex

hull of the control points. The resulting trajectory following the original global plan is

shown in Figure 4.8b.

In order to cover a surface efficiently and effectively, the sweep direction needs to

be orthogonal to the observation vector. To enable safe and efficient navigation, while

obtaining high quality scene observations, we decouple the problems of navigation

and observation. We assume that the observation camera is mounted on an actuated

gimbal, which is able to set the yaw and pitch directions. A second sensor, such as a

laser ranger or a depth camera is used for navigation.

25

Chapter 5

Experiments and results

To assess the performance of the proposed method, the pipeline is implemented in

a simulation setup and run on photo-realistic outdoor scenarios of varying sizes and

difficulty. We run the experiments considering three different algorithms. We name

Ours single and Ours multi the solutions obtained running our pipeline with one and

four drones respectively. In themulti version, we perform an ablation study to show the

difference in visual coverage obtained after the reconnaissance flight and the successive

flights resulting from our pipeline. Even when our pipeline is not directly comparable

in terms of the sensor setup with other exploration methods that use stereo pairs, the

third method uses the planning approach of Kompis et al. [2] for a single and multiple

drones, which is among the state-of-the-art planners with available implementation. In

the version with multiple drones, the environment was segmented equally among the

drones. This comparison is not intended to rank the two methods but to showcase the

potential advantages of the proposed planning approach in terms of efficiency. In the

following, we explain the simulation setup and the results obtained in the execution.

5.1 Implementation details

The system was tested in a simulation setup for drones and photo-realistic scenarios

that include the simulators, the planning methods and control algorithms. It

was implemented in Ubuntu 18.04 using the Robotics Operating System (ROS)

with Melodic version. It was also ported and tested on Ubuntu 20.04 with ROS

Noetic applying changes to ensure libraries compatibility. ROS is based on a

publisher-subscriber pattern with the concept of nodes. These are processes that run

continuously and communicate through topics and services using different message

types 1. A summary of the nodes used in our system and the information flows is

depicted in Figure 5.1

1ros.org

26

ros.org

Figure 5.1: Software stack used for the implementation of the pipeline in a simulated
environment. The boxes represent nodes in the ROS system and the arrows are the
information they communicate. Dashed lines are components only used during the
reconnaissance flights.

The Gazebo RotorS simulator is used with ground-truth odometry of the drones

[31]. During the initial map construction, flying at high altitude enables the use

of accurate RTK GPS systems with small odometry error. The uncertainty in the

successive flights can be alleviated by overestimating the observation distance and

safety radius. As we target our application to consumer platforms, problems such

as aerodynamics or other electrical and mechanical delays are assumed to be solved

by their system. The drones are equipped with a monocular camera mounted on an

actuated gimbal that can rotate independently of the orientation of the drone. Its

resolution is 752× 480 and FoV is 80◦× 55◦. The drones’ linear and angular maximum

velocity and acceleration are set to 2 m s−1 and 0.9 m s−2, respectively, for fairness

with the compared system and to ensure safety at all times. We use a Vulkan Renderer

implemented by the V4RL to generate images of photo-realistic models more efficiently

than Gazebo. The experiments showcase four different environments of varying sizes

and difficulty, namely on the Bunker, Wood Bridge, Loarre Castle, and Zurich, visible

in Figure 5.2. The transfer of this simulation setup to real-world cases was proved in

previous work [12][32].

During the reconnaissance flight, the drones fly at a fixed height over the model

in a grid pattern with their cameras looking downward. A Simple Planner was

implemented to compute a grid path from the dimensions of the bounded volume

to explore. The waypoints in the path are used to compute a continuous trajectory

with polynomial interpolation. The trajectory commands are sent to the low-level

27

(a) Bunker vs : 0.2

[20m× 20m× 11m]

(b) Wood Bridge vs : 0.2

[7m× 30m× 7m]

(c) Loarre castle vs : 0.3

[40m× 30m× 20m]

(d) Zurich vs : 0.5

[55m× 55m× 30m]

Figure 5.2: The models used in the evaluation indicating their size and the voxel size
used in our pipeline (vs). The voxel size used for Kompis et al. [2] is set to 0.1 to obtain
good reconstructions.

control. The controller is composed of: a non-linear Model Predictive Control (MPC)

that optimizes the velocity command and a PID attitude controller which transforms

the commands to thrust inputs for the drones [33]. The low-level controller is the same

used during the successive flights.

From the visual simulator we obtain ground truth depth for the image which is

sub-sampled to simulate the output of a SLAM system. The sparse depth and RGB

image are introduced to the Depth Completion system implemented in Python using

the Deep Learning library Pytorch [12]. The Depth Completion system generate back

dense Point Clouds that is integrated into the Voxblox map. The voxel size used for

the initial map and planning is 0.2 (Bunker and Wood Bridge), 0.5 (Loarre) and 0.7

(Zurich).

The map manager node represents the central server in Figure 4.2. It performs

the analysis, clustering, sweep generation and global planning. The parameters for the

clustering step depend on the resolution of the prior map (i.e., voxel size vs). We set

ϵ = 10vs, σ = 6 (Eq. (4.6)) and τ = 0.4. We also apply an inflation factor over the

coarse map of 20vs to the observation and safety distance for the sweep generation.

The global paths are sent to the Local Planner that generates a smooth and

obstacle-free trajectory and send the commands to the low-level controller. The Local

Planner was modified from [30]. Originally, this system only planned the trajectory

from one point to another. We let the Kinodynamic A∗ to continue the search to

the next waypoint after reaching the current. Continuing the search allows to further

smooth the path after a waypoint is reached. Due to computational resources required

to simulate several drones, the local paths are executed by a single drone sequentially,

which starts from and comes back to the same initial point. The simulation runs until

all the local trajectories have been executed.

28

5.2 Planning efficiency

The times for the execution of the plan are shown in Table 5.1. The time for the

reconnaissance flight and initial map construction with Voxblox is included in the total

and shown below. For the method of Kompis et al., we report the times necessary to

achieve the same coverage as our system.

Tabla 5.1: Execution times to complete a scene coverage mission. The reconnaissance
flight time, in parenthesis, is included in the total time. Ours single refers to our
pipeline using one drone, while Ours multi indicates the time taken by the longest
flight of any drone in a team (four in this case), indicating the end of the mission. For
[2], we report the time to reach the same extent of coverage achieved by each of our
methods (Table 5.3). In lager maps, [2] is not able to achieve our coverage after one
hour of execution and the total coverage by that time is reported. The ‘⋆’ indicates that
the global planner only assigned two drones in this map, as introducing more would
not reduce the total time.

Method Bunker
Wood
Bridge

Loarre
Castle

Zurich

Kompis
et al. [2]

859.71 s 897.08 s
>3600 s
[67.08%]

>3600 s
[13.91%]

Ours
single

491.91 s
(183.06 s)

331.16 s
(122.54 s)

1474.95 s
(329.88 s)

2027.88 s
(588.56 s)

Kompis et
al. multi [2]

214.43 s 405.98 s 1440.59 s
>3600 s
[60.49%]

Ours
multi

126.26 s
(42.04 s)

172.09⋆ s
(53.31 s)

433.74 s
(117.11 s)

741.07 s
(269.53 s)

The results for Ours single and Ours multi validate that our setup can generalize

to an arbitrary number of drones. When using several drones instead of one, times are

a fraction of the number of drones with little overhead. In the case of Wood bridge, the

global planner assigned the tasks to only two drones even if four were available. Due

to the scene structure, adding more drones would not reduce the time of the mission

as drones would have to return to the initial point. Compared to Kompis et al., our

method is able to completely cover the maps faster in every case. For large maps (i.e.,

Loarre Castle and Zurich), [2] is not able to cover the environment after one hour of

execution and we report the amount of coverage obtained at that time.

There are two main reasons for this difference. Firstly, the different approach on

drone dynamics in the planners. Stop-and-go motions are necessary as the exploration

process is incremental. This limits the planning horizon of the system to a local region.

In their approach, the drone has to stop in order to acquire each individual view and

plan the next (see Figure 5.3). In our case, the drone is able to keep moving while

29

observing a whole surface in a sweep. Notice that our system could potentially use

higher velocities and accelerations for large trajectories in free-space, as in the case

of the reconnaissance flight. This would further improve the planning efficiency. The

second reason is that their planner revisits areas in order to obtain thorough coverage,

committing resources to small regions with difficult accessibility. The reason for their

low coverage result in the Zurich map is explained by their viewpoint proposal method,

which leads to larger re-planning times when the scale of the map grows.

We also report the time for the initial map processing. The time for the analysis

and clustering steps depend on the size and resolution of the map. The global planning

step depends on the number of generated clusters and number of agents. We show the

results in Table 5.2 in the smallest and biggest maps: Bunker and Zurich. The time is

always below one minute which is negligible for the total time of the mission.

Figure 5.3: Extract of the moving average for the velocity during the simulation in
Loarre Castle for Ours single and [2]. While traditional methods stop to capture a
view and plan the next goal, our method is able to keep flying at higher speed.

Reconnaissance Reconstructions

Final Reconstructions

a)

b) d)

c) e)

f)

Figure 5.4: Comparison of the coverage quality after the reconnaissance flight (up) and
the successive flights (down). Occluded regions under the Bunker are not reconstructed
(a-b). In addition, even though vertical surfaces such as Loarre’s walls are covered,
their observation yields poor scene reconstructions (c-f).

30

Tabla 5.2: Computation time for the different map processing steps: analysis, clustering
and global planner. Mean and standard deviation for 10 runs.

Bunker Zurich

Analysis - 2.22± 0.082 s 6.96± 1.05 s

Clustering - 1.83± 0.045 s 7.12± 0.297 s

Global
planner

Single 0.99± 0.053 s 15.43± 0.689 s

Multi 0.94± 0.064 s 17.10± 0.737 s

5.3 Coverage and surface quality

Besides the efficiency of our planner, we have also assessed that the coverage and the

quality of the views are correct. The images captured from the monocular cameras of

the drones have been used to generate 3D reconstructions of the scenes using COLMAP.

The reconstructed models are compared with the ground-truth (GT) virtual models.

We consider that a point in the GT surface was covered if the closest distance to a

point from the reconstructed mesh is below a threshold of 0.1m. Our metric is the

percentage of covered points in the ground-truth mesh. We also measure the accuracy

of the reconstruction as the RMSE of the distances from the reconstructed model to

the ground truth mesh. While we are mainly interested in the first two metrics, the

accuracy proves that our method can be used to obtain accurate 3D reconstructions

of the environment. We also report the coverage, its quality and the reconstruction

accuracy from the Voxblox generated mesh of the pipeline in [2]. The voxel size for their

reconstruction is the same they use in their experiments, 0.1, which is the threshold

used for considering a point covered in our setup. The results are reported in Table 5.3.

For Kompis et al., the reported value is the coverage achieved by the completion time

of our plan.

The reconnaissance flight (Recon.) is able to cover large amount of surfaces.

However, the coverage quality is low, yielding poor scene reconstructions (Figure 5.4).

After the execution of our pipeline, we obtain images that ensure good observation of

surfaces. We can see similar coverage for the case of single and multi-drone approaches

as the drones traverse similar sweeps. Compared to Kompis et al., our system is able

to achieve more coverage in less time. Notice how the coverage difference is increased

with the size of the map. Qualitative results are shown in Figure 5.5 for all the maps.

It might be seen that our pipeline misses some areas with difficult accessibility. In

return, it is able to cover the overall scene in a fraction of the time. This demonstrates

that lot of information can be extracted from the map by planning more efficiently and

shows the advantage of using prior knowledge about the scene structure for planning.

31

Tabla 5.3: For each method, we report the RMSE of the reconstructions and the extent
of the coverage for a threshold of 0.1 meters at the completion time of the experiment
as reported in Table 5.1. Recon. indicates the metrics from a reconstruction with only
the reconnaissance flight.

Method Bunker Wood Bridge Loarre Castle Zurich

Kompis

et al.[2]

0.085 m 0.068 m 0.049 m 0.074 m

75.6 % 55.63 % 42.58 % 9.13 %

Ours single
0.027 m 0.043 m 0.048 m 0.09 m

97.35 % 93.23 % 97.92 % 95.96 %

Kompis et

al. multi [2]

0.076 m 0.074 m 0.059 m 0.087 m

89.10 % 60.29 % 50.20 % 20.90 %

Recon.

(ablation)

0.04 m 0.039 m 0.063 m 0.147 m

84.75 % 62.93 % 88.54 % 75.34 %

Ours multi
0.026 m 0.039 m 0.043 m 0.086 m

96.36 % 92.37 % 98.64 % 97.34 %

32

Kompis et al. [2] Ours single Kompis et al. multi [2] Ours multi

Figure 5.5: Qualitative comparison of the coverage obtained for all the maps considering
a fixed time. In green are points in the ground truth (GT) mesh that have been
covered during the mission, while red indicates the opposite. Our planner is able
to obtain more coverage of the overall scene, despite missing some some details
in inaccessible/non-directly visible surfaces. Detailed numbers of the coverage and
accuracy of the reconstructions are provided in Table 5.3.

33

Chapter 6

Conclusion

In order to improve the efficiency in large-scale deployments of drones for visual

coverage, this thesis proposes a multi-stage planner that generates long linear

trajectories (sweeps) that observe a large amount of surface in a continuous motion. We

accomplish this by leveraging a prior coarse map to cluster these surfaces and improve

the posterior coverage trajectories. This approach is generalised to an arbitrary number

of drones, managing the workload distribution between them in order to minimize the

completion time of the mission. Comparison with alternative approaches to exploration

of scenes show the advantages of our pipeline for large scenarios, where the overall

coverage of the scene in a minimal amount of time is necessary. We show that a single

run of our pipeline is able to obtain coverage of scenes faster and with great accuracy.

Future work will explore the integration of the proposed pipeline in a real

platform, including a mapping framework to ensure safe local navigation and

additional coordination systems to deploy a team of autonomous drones in large-scale

environments. Besides, exploring the extension to a team of heterogeneous aerial drones

(i.e., fixed-wing UAVs for the nadir flight) could improve even further the efficiency of

the system by allocating each to different task modalities.

34

Bibliography

[1] Boyu Zhou, Yichen Zhang, Xinyi Chen, and Shaojie Shen. Fuel: Fast uav

exploration using incremental frontier structure and hierarchical planning. IEEE

Robotics and Automation Letters, 6(2):779–786, 2021.

[2] Yves Kompis, Luca Bartolomei, Ruben Mascaro, Lucas Teixeira, and Margarita

Chli. Informed sampling exploration path planner for 3d reconstruction of large

scenes. IEEE Robotics and Automation Letters, 6:7893–7900, 2021.

[3] Carlos Campos, Richard Elvira, Juan J. Gómez, José M. M. Montiel, and Juan D.

Tardós. ORB-SLAM3: An accurate open-source library for visual, visual-inertial

and multi-map SLAM. IEEE Transactions on Robotics, 37(6):1874–1890, 2021.

[4] Richard Szeliski. Computer vision: algorithms and applications. Springer Science

& Business Media, 2010.

[5] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram

Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on

octrees. Autonomous Robots, 2013. Software available at https://octomap.

github.io.

[6] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael

Frahm. Pixelwise view selection for unstructured multi-view stereo. In European

Conference on Computer Vision, 2016.

[7] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d

surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, aug

1987.

[8] Soohwan Song, Daekyum Kim, and Sunghee Choi. View path planning via online

multiview stereo for 3-d modeling of large-scale structures. IEEE Transactions on

Robotics, 38(1):372–390, 2022.

35

https://octomap.github.io
https://octomap.github.io

[9] Benjamin Hepp, Matthias Nießner, and Otmar Hilliges. Plan3d: Viewpoint

and trajectory optimization for aerial multi-view stereo reconstruction. ACM

Transactions on Graphics, 38(1), dec 2018.

[10] Vladyslav Usenko, Lukas von Stumberg, Andrej Pangercic, and Daniel Cremers.

Real-time trajectory replanning for mavs using uniform b-splines and a 3d circular

buffer. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 215–222, 2017.

[11] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan

Nieto. Voxblox: Incremental 3d euclidean signed distance fields for on-board

mav planning. In IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2017.

[12] Lucas Teixeira, Martin R. Oswald, Marc Pollefeys, and Margarita Chli. Aerial

single-view depth completion with image-guided uncertainty estimation. IEEE

Robotics and Automation Letters, 5(2):1055–1062, 2020.

[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In

International Conference on Knowledge Discovery and Data Mining, page

226–231, 1996.

[14] B. Yamauchi. A frontier-based approach for autonomous exploration. In

IEEE International Symposium on Computational Intelligence in Robotics and

Automation, page 146, 1997.

[15] Titus Cieslewski, Elia Kaufmann, and Davide Scaramuzza. Rapid exploration with

multi-rotors: A frontier selection method for high speed flight. In International

Conference on Intelligent Robots and Systems, pages 2135–2142, 2017.

[16] Daniel Duberg and Patric Jensfelt. Ufoexplorer: Fast and scalable sampling-based

exploration with a graph-based planning structure. IEEE Robotics and

Automation Letters, 7(2):2487–2494, 2022.

[17] Henry Carrillo, Ian Reid, and José A Castellanos. On the comparison of

uncertainty criteria for active slam. In IEEE International Conference on Robotics

and Automation, pages 2080–2087, 2012.

[18] Luca Carlone, Jingjing Du, Miguel Kaouk Ng, Basilio Bona, and Marina Indri.

Active slam and exploration with particle filters using kullback-leibler divergence.

Journal of Intelligent & Robotic Systems, 75(2):291–311, 2014.

36

[19] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and

Ruslan Salakhutdinov. Learning to explore using active neural slam. In IEEE

International Conference on Learning Representations (ICLR), 2020.

[20] Georgios Georgakis, Bernadette Bucher, Anton Arapin, Karl Schmeckpeper,

Nikolai Matni, and Kostas Daniilidis. Uncertainty-driven planner for exploration

and navigation. In IEEE International Conference on Robotics and Automation,

2022.

[21] Lukas Schmid, Michael Pantic, Raghav Khanna, Lionel Ott, Roland Siegwart,

and Juan Nieto. An efficient sampling-based method for online informative path

planning in unknown environments. IEEE Robotics and Automation Letters,

5(2):1500–1507, 2020.

[22] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and Roland

Siegwart. Receding horizon ”next-best-view” planner for 3d exploration. In IEEE

International Conference on Robotics and Automation, pages 1462–1468, 2016.

[23] Guillaume Hardouin, Fabio Morbidi, Julien Moras, Julien Marzat, and

El Mustapha Mouaddib. Surface-driven Next-Best-View planning for exploration

of large-scale 3D environments. In IFAC World Congress, July 2020.

[24] Mike Roberts, Debadeepta Dey, Anh Truong, Sudipta Sinha, Shital Shah, Ashish

Kapoor, Pat Hanrahan, and Neel Joshi. Submodular trajectory optimization for

aerial 3d scanning. In International Conference on Computer Vision, 2017.

[25] Neil Smith, Nils Moehrle, Michael Goesele, and Wolfgang Heidrich. Aerial path

planning for urban scene reconstruction: A continuous optimization method and

benchmark. ACM Trans. Graph., 37(6), dec 2018.

[26] Anna Mannucci, Simone Nardi, and Lucia Pallottino. Autonomous 3d exploration

of large areas: A cooperative frontier-based approach. In Jan Mazal, editor,

Modelling and Simulation for Autonomous Systems, pages 18–39, Cham, 2018.

[27] Rafael Gonçalves Colares and Luiz Chaimowicz. The next frontier: Combining

information gain and distance cost for decentralized multi-robot exploration. In

ACM Symposium on Applied Computing, page 268–274, 2016.

[28] Guillaume Hardouin, Julien Moras, Fabio Morbidi, Julien Marzat, and

El Mustapha Mouaddib. Next-best-view planning for surface reconstruction of

large-scale 3d environments with multiple uavs. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1567–1574, 2020.

37

[29] Ayan Dutta, Amitabh Bhattacharya, O Patrick Kreidl, Anirban Ghosh, and

Prithviraj Dasgupta. Multi-robot informative path planning in unknown

environments through continuous region partitioning. International Journal of

Advanced Robotic Systems, 17(6):1729881420970461, 2020.

[30] Boyu Zhou, Fei Gao, Luqi Wang, Chuhao Liu, and Shaojie Shen. Robust and

efficient quadrotor trajectory generation for fast autonomous flight. IEEE Robotics

and Automation Letters, 4(4):3529–3536, 2019.

[31] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. Robot

Operating System (ROS): The Complete Reference (Volume 1), chapter

RotorS—A Modular Gazebo MAV Simulator Framework, pages 595–625. Springer

International Publishing, Cham, 2016.

[32] Fabiola Maffra, Lucas Teixeira, Zetao Chen, and Margarita Chli. Real-time

wide-baseline place recognition using depth completion. IEEE Robotics and

Automation Letters, 4(2):1525–1532, 2019.

[33] Mina Kamel, Thomas Stastny, Kostas Alexis, and Roland Siegwart. Model

predictive control for trajectory tracking of unmanned aerial vehicles using robot

operating system. In Anis Koubaa, editor, Robot Operating System (ROS) The

Complete Reference, Volume 2. Springer, 2016.

38

List of Figures

1.1 Use case of a team of drones for disaster surveying during Gjerdrum

landslide in Norway . 1

1.2 Team of drones that sweep the area of interest by flying paths generated

by the proposed planner to achieve fast coverage 2

2.1 Different map reconstructions: sparse landmarks, occupancy maps,

MVS pipelines and SDFs . 5

2.2 Different map representations: Point Clouds, Octomap, Voxblox and

Heightmaps . 7

2.3 Sensors used to reconstruct the real-scale geometry of a scene: LiDAR

and RGB-D camera . 8

2.4 Classical clustering methods: KMeans and DBSCAN 10

2.5 Example problem of a VRP problem with a possible solution 11

4.1 Intermediate results for the proposed pipeline 16

4.2 Proposed pipeline scheme . 16

4.3 Result obtained for the initial map and its analysis 18

4.4 Scheme for our analysis criteria and the result over the initial map . . . 19

4.5 Alternative clustering methods applied to a ground truth model of a

house: KMeans, Normals aware KMeans and our Perception Aware

Clustering . 20

4.6 Result for the clustering and sweep generation steps 21

4.7 Sweep definition and refinement scheme with an example on a real map 23

4.8 Global plan and the trajectories executed by the drones 25

5.1 Software stack used for the implementation of the pipeline in a simulated

environment. The boxes represent nodes in the ROS system and

the arrows are the information they communicate. Dashed lines are

components only used during the reconnaissance flights. 27

5.2 Virtual models used in the evaluation 28

39

5.3 Extract of the moving average for the velocity during the simulation in

Loarre Castle for Ours single and [2]. 30

5.4 Comparison of the coverage quality after the reconnaissance flight and

the successive flights . 30

5.5 Qualitative comparison of the coverage obtained for all the maps

considering a fixed time . 33

40

List of Tables

5.1 Execution times to complete a scene coverage mission 29

5.2 Computation time for the different map processing steps: analysis,

clustering and global planner . 31

5.3 RMSE of the reconstructions and extent of coverage at the completion

of the experiment . 32

41

Appendix A

Article

42

Sweep-Your-Map: Efficient Coverage Planning for Aerial Teams in

Large-Scale Environments

David Morilla-Cabello, Luca Bartolomei, Lucas Teixeira, Eduardo Montijano, and Margarita Chli

AbstractÐ The efficiency of path-planning in robot navigation
is crucial in tasks such as search-and-rescue and disaster
surveying, but this is emphasised even more when considering
multi-rotor aerial robots due to the limited battery and flight
time. In this spirit, this work proposes an efficient, hierarchical
planner to achieve a comprehensive visual coverage of large-
scale outdoor scenarios for small drones. Following an initial
reconnaissance flight, a coarse map of the scene gets built in
real-time. Then, regions of the map that were not appropriately
observed are identified and grouped by a novel perception-
aware clustering process that enables the generation of contin-
uous trajectories (sweeps) to cover them efficiently. Thanks to
this partitioning of the map in a set of tasks, we are able to
generalize the planning to an arbitrary number of drones and
perform a well-balanced workload distribution among them. We
compare our approach to an alternative state-of-the-art method
for exploration and show the advantages of our pipeline in
terms of efficiency for obtaining coverage in large environments.
Video ± https://youtu.be/V2UIrM91oQ8

I. INTRODUCTION

Recent advances in robot navigation and perception have

enabled the establishment of modern multi-rotor aircraft,

i.e., drones, as the best choice for autonomous 3D recon-

struction or visual coverage of large-scale outdoor scenarios.

Their flexibility allows them to move freely through the

environment and observe areas that are not visible from

the ground. However, time efficiency is critical for using

drones because of their short flight times (due to battery

limitations), usually well under 30 minutes. Therefore, the

efficiency and effectiveness of the planning algorithms is

essential to enable the deployment of drones in large scale

outdoor environments. Similarly, using multiple drones as

advocated in this work promises to boost the efficiency of

the scene-coverage mission.

Deploying drones for mapping a large area from a high

altitude is an effective way to obtain a first estimation, as

collisions with the environment can be more easily avoided.

However, this strategy does not provide informative enough

viewpoints for scene coverage and impacts the quality of

the scene captures. State-of-the-art exploration approaches

[1], [2] often lack in efficiency because of problems such as

over-exploring local regions, and abrupt changes in motion

due to constant re-planning or the need for revisiting areas.

David Morilla-Cabello and Eduardo Montijano are with the Instituto
de InvestigaciÂon en IngenierÂıa de AragÂon, Universidad de Zaragoza, Spain
{davidmc, emonti}@unizar.es

Luca Bartomei, Lucas Teixeira and Margarita Chli are with the Vision
for Robotics Lab, Department of Mechanical and Process Engineering, ETH
Zurich, 8092 Zurich, Switzerland {lbartolomei, lteixeira,

chlim}@ethz.ch

Fig. 1: Team of drones that sweep the area of interest by flying paths generated
by the proposed planner in order to achieve fast coverage. Using a rough prior
map (e.g. captured in a reconnaissance flight) to identify areas that require
further observation, this work generates efficient path planning and workload
distribution for a team of drones (three in this example) to cover the scene.

To overcome these limitations, this paper presents a hybrid

solution that uses the best of both types of strategy in a

synergetic way. In this work, we assume a team of drones

with cameras, each performing a fast, reconnaissance flight

at a high-altitude capturing a rough map of the area of

interest using a coarse real-time mapping pipeline. Based

on this map, the proposed method computes a set of drone

trajectories for subsequent flights in order to efficiently cover

the area of interest in completely. This process aims to

maximize the use of sweep lines to avoid constant changes

of the flight direction, while considering the visibility of

surfaces and, at the same time, managing the workload

distribution amongst the participating drones to minimize

the execution time. The main contribution of this paper is

the overall perception-aware global planning that is capable

of handling the initial, noisy and coarse map as well as

enforcing high-speed trajectories.

II. RELATED WORK

Aerial planning for the best path in order to explore a

scene has been a topic of extensive research in robotics and

computer vision already due to its wide applicability.

A. Scene exploration and coverage

With the outlook of practicality, robotics approaches often

focus on fast scene exploration, by eliminating the unknown

space as quickly as possible. Frontier exploration methods

look for regions, where free and unknown space meet [3].

There are different criteria used to decide which frontier to

explore next, such as their proximity to the current field of

view [4], following a greedy selection strategy [5] or having

global planning dictate their selection [1]. All these methods

focus on volumetric representations of the map, whereas our

approach considers surfaces and their visibility.

Other works use Active SLAM in 2D environments for

indoors ground robot navigation using landmarks [6], [7] or

learning methods [8], [9]. In comparison, we consider aerial

robots in 3D outdoor environments to obtain a comprehen-

sive visual coverage.

When considering the reconstruction of surfaces,

sampling-based approaches propose viewpoints based on

their expected information gain. For example, accurate

surface reconstructions [10] can be achieved in a Next-Best

View fashion [11]. In order to improve the efficiency

of the planning, Rapidly-exploring Random Trees are a

common approach [10], [11]. To improve the sampling

process, [2] applies informed sampling of configurations

by reasoning over the available reconstructed model. The

method in [12] considers voxels lying on the surface at a

frontier. In general, all of these methods use depth cameras

that allow for exploration or reconstruction in indoor and

small scenarios. The performance in large-scale outdoor

scenarios as considered in this work, decreases as the sensor

range only allows for close observations. In [13], online

Multi-View Stereo (MVS) is used to incrementally asses

the surface reconstruction. In comparison, the proposed

approach executes a fast high-altitude reconnaissance flight

to obtain a global coarse map as a prior and provide an

insight of the structure of the whole scene at once.

B. Use of a prior map

Other works used priors for improving the view selection

for 3D reconstruction and generate a global plan. They anal-

yse a prior map obtained from a previous flight in order to

plan views that maximize heuristics for 3D reconstruction as

parallax angle [14] or matchability [15]. In [14], the problem

is addressed by using submodular optimization to improve

the proposed views in the free space and obtain the final

trajectory by solving an orienteering problem accounting for

a maximum allowed time-budget. Submodular optimization

is also used by [16] to plan views based on volumetric

representations in a any-time optimization.

As discussed by [13], many of the previous methods obtain

their prior from MVS pipelines, which is time consuming

and might require long waiting times for processing. In this

work, we obtain a prior map online using depth completion to

extract good estimates of the views to reconstruct the scene.

The work in [13] considers individual views without focusing

on the trajectory to connect them, which might generate path

redundancies. In contrast, we leverage the fact that many of

these views can be grouped in a single efficient trajectory in

order to cover large parts of the scene, e.g., building facades.

C. Multi-robot extension

All of the aforementioned methods assume a single robot.

While they can be extended to multi-robot setups by parti-

tioning the area of interest according to the number of robots,

this does not ensure efficient enough collaboration between

them. Cooperative frontier based approaches have also been

proposed in a centralized [17] and decentralized [18] way.

These methods address the coordination problem in fron-

tier based approaches, but suffer from the aforementioned

locality problems. The work in [12] extends to the multi-

robot case by greedily assigning the view configurations

[19]. The work in [20] distributes the workload through

continuous region partitioning based on Voronoi components.

By considering the whole map and the set of regions to be

covered (tasks) as a Vehicle Routing Problem (VRP), the

generalization to multiple drones is straightforward in our

pipeline, easily accounting for collaboration between them

and minimizing the overall mission time.

III. METHOD

Our goal is the efficient mapping of a bounded 3D outdoor

space using a team of drones equipped with one monocular

camera each. We achieve this by developing a system that

computes smooth and straight flights for the drones to reduce

the execution time of a mission. These trajectories are dubbed

sweeps, as the maneuvers can be executed at higher speeds

and do not require to change the flight direction.

In order to follow good practices in MVS reconstruction,

we also search for trajectories that yield fronto-parallel views

of the scene surfaces to maximize the scene coverage and

quality of a posterior reconstruction.

A. System overview

Our planner is illustrated in Figure 3 and the results at

different steps of the pipeline are shown in Figure 2. First, an

initial down-looking (nadir) flight over the area is performed

by the drones (Figure. 2a). The aim of this reconnaissance

flight plan is twofold: to capture a large portion of the top

view of the area of interest flying at high speeds, and to

obtain a global overview of the scene online. This enables

better informed reasoning over the subsequent drone trajec-

tories to complete the coverage due to the detection of miss-

ing and poorly observed surfaces in the map (Figure. 2b).

These surfaces are then grouped into clusters by a novel

perception-aware clustering algorithm (Figure. 2c), favouring

the generation of flights that sweep the scene to better capture

these surfaces with efficient maneuvers (Figure. 2d). The next

step computes global paths of all drones participating in the

mission, aiming to minimize the distance travelled and the

duration of the mission. This is achieved with a variation

of the classical Vehicle Routing Problem (VRP), assigning

surface-clusters to the drones (Figure. 2e). The processing

of the initial map and the global plan are performed by a

central server that integrates the measurements obtained in

the initial reconnaissance flight. Finally, the flight-plans are

assigned to the drones and a trajectory planner guides the

drones smoothly along the sweeps to obtain new relevant

views of the scene (Fig. 2f). This execution is carried out

without the need of exchanging information with the server

or between the drones, favoring the deployment of small

and low-powered platforms. In practice, one run of the

pipeline is enough to cover most of the scene. Only complex

concave surfaces, galleries and narrow passages could remain

(a) Reconnaissance flight (b) Analysis of the map (c) Perception-aware clustering

(d) Sweep generation (e) Global planning (f) Local trajectory execution

Fig. 2: The drones perform a down-looking flight to compute online a coarse initial map shown in (a), which is used to detect poorly observed or missing areas
visualized in (b); red voxels correspond to surfaces seen from an oblique point of view (i.e., poorly observed) and blue voxels represent missing areas. Using
perception-aware clustering these missing areas get clustered, shown in different colors in (c). The clusters are used to compute sweeps, visualized in (d), to observe
them efficiently. The orange arrows represent the surface normals and red lines, the computed sweeps. The global paths of each drone are shown in (e), as computed
by a VRP aiming to minimize the mission time and favour longer sweeps. These get smoothed out by a local planner to result in the final drone trajectories seen in (f).

Fig. 3: Proposed pipeline. The drones send measurements for the initial map
integration to a central server. This processes the information to generate an
efficient plan for the team of drones, which is communicated back to the drones.

unexplored as they are not detected from the top of the scene.

A possible way to explore them would be to integrate the

local plans observations into Voxblox to repeat the process

until the whole scene is covered.

B. Initial map

The reconnaissance flight captures top views of the scene

to obtain a first approximation of the map quickly. However,

the high altitude, together with the use of monocular cameras

onboard the drones render the generation of this map chal-

lenging without the use of MVS expensive reconstruction

methods. To compute it online, we use a depth completion

system [21] onboard the drones that provides dense depth

measurements from a sparse input, e.g., SLAM.

The depth measurements are integrated into a common

voxel-based Truncated Signed Distance Field (TSDF) map,

that incrementally builds a Euclidean Signed Distance Field

(ESDF) map [22], M. Voxels are organized in a uniform

grid, where each voxel, m ∈ M, contains a distance,

dm, to the closest surface and a weight, wm, that contains

the confidence about the depth measurement of that voxel.

Moreover, we denote by pm the centroid of the voxel and nm

its normal vector. Voxels that do not have any measurement

have an associated weight equal to w0.

The initial map is analysed in order to detect voxels

that require additional observations. In particular, voxels that

belong to a poorly observed surface, Ms, and voxels without

measurements (i.e., are unobserved), Mu.

Surfaces are identified locating the voxels that satisfy

wm > w0 and |dm| < dv , (1)

where dv is the voxel size.

Aligning the sensor’s depth direction with the surface

normal, as shown in Figure 4, is key in enabling accurate

and high-quality scene reconstructions. With this in mind,

we identify poorly observed surface voxels, Ms, as

−om · nm > cos(θt) , (2)

where om is the observation direction of the camera for the

voxel and θt is the threshold angle to consider the observation

of the surface valid. We consider θt = 45◦ as a good

indication that the visibility of a surface is poor. During

the initial flight, the cameras are looking downward (i.e.,

−Z axis). Thus, vertical and oblique surfaces are considered

poorly observed, while horizontal or low tilted surfaces are

considered as correctly observed.

The second step is the analysis of the unobserved voxels.

Out of all the unobserved voxels in the map, with weight

equal to w0, we find those that are accessible (i.e., can

be observed). Unobserved voxels are accessible if they are

MS

MU

Fig. 4: The analysis the initial map, visualised from a side view on the right
with two down-looking cameras, indicates the quality of the views of the scene
seen on the left, obtained in the reconnaissance flight. Voxels on the left are
visualised as dashed lines on the right, with arrows indicating the estimated
surface normals. Red and green indicate poorly and well captured surfaces,
respectively, while blue indicates accessible unknown areas, whose normals are
estimated to point towards free space.

surrounded by free space voxels, mf , defined by

wm > w0 and dm > dv. (3)

The accessible unobserved voxels, Mu, are then formalized

as the voxels, such that

∃mf ∈ N26(m), (4)

where N26(m) is the set of 26-connected neighbors, around

the voxel m. Finally, the set of voxels that need further

observations is defined as

Mt = Ms ∪Mu . (5)

C. Perception-aware clustering

This step performs a novel perception-aware clustering

over Mt. In particular, voxels get grouped together, such

that can be observed by a drone in a single efficient sweep

trajectory by considering the distribution of their normals in

the cluster. This clustering also aims at generating a natural

partition of the scene into a set of tasks that can be assigned

to a team of drones. In the following, we explain how the

clustering works and how sweep paths are generated from

them.

The proposed clustering is based on the Density-Based

Spatial Clustering of Applications with Noise (DBSCAN)

method [23]. The basic method groups voxels1 that are

closely together in space and identifies as noise isolated vox-

els in low density regions. It works by iteratively expanding

clusters, Ci, to neighboring voxels that fulfill the following

density condition:

|Nσ(pm)| > ϵ , (6)

where |Nσ(pm)| is the number of neighboring voxels in a

radius σ of the voxel’s center, pm, and ϵ is the minimum

number of neighbors to include the voxel in that cluster.

Our goal is to group regions observable from a similar

point of view (i.e., surfaces). Thus, we extend DBSCAN

by adding a second condition for expansion. This condition

checks if the normal of a candidate voxel, nm, lies within the

distribution of normals in the cluster. The normals in Ms are

1The original method refers to points.

li

ni

do

hi

d*
i

h*
i Ci

Original sweep
intersects with
obstacle

Rotated sweep
to avoid obstacle

Fig. 5: Sweep definition and refinement scheme (right). The gray area repre-
sents a surface cluster. The dashed red line is the major eigen vector that will be
covered by the sweep (red solid line). The green is the normal. An example in a
real map is shown on the left where the observation direction, ni, was adjusted
to avoid an obstacle.

estimated from the gradient of distances in the ESDF initial

map. The normals of unobserved voxels are computed as the

average of all the directions that lead from pm to free space

voxels in N26(m) (Figure 4). We also smooth the estimated

normals using neighboring values to filter noise.

In particular, we focus on the distribution of the cosine

distance with respect to the mean normal of the cluster, nc,

dα(nm,nc) = 1−
nm · nc

∥nm∥ ∥nc∥
. (7)

We then compute the average µd(Ci), and standard de-

viation σd(Ci) of the distances from all the normals of the

voxels in the cluster to nc. The normal direction condition

checks that the distance of the normal between the candidate

voxel and the cluster’s distribution is sufficiently small,

dα(nm,nc) < min(µd(Ci) + 2σd(Ci), τ). (8)

where τ is a fixed value.

We identify µd(Ci) + 2σd(Ci) as the relative tolerance to

the cluster’s distribution and τ as the absolute tolerance.

The aim of the relative tolerance is to adapt the expansion

of the cluster to the surface in question, e.g., allowing soft

curvatures. On the other hand, the absolute tolerance avoids

the cluster to expand through discontinuities such as edges.

Finally, we perform a merging step that fuses small

clusters with the most similar neighbor. If no neighbor is

found, these voxels are discarded.

Considering that each voxel cluster resembles a surface, a

sweep is defined as a linear trajectory that is orthogonal to

the normal of the cluster (Figure 5). Among all the possible

sweeps, we find the longest one through the inertia moments

of the cluster, li. Then, for each voxel in the cluster, we

compute the longest distance from the center, projected on

this axis,

d∗i = max
m∈Ci

∣

∣lTi (pm − c̄i)
∣

∣ , (9)

where pm is the centroid of the voxel and c̄i the centroid of

the cluster. The extension of this distance from the centroid

of the cluster in both directions of li generates the path that

traverses the cluster through its length. We name both ends

of this path, the entrance points of the cluster.

In order to guarantee that the whole surface is visible with

a single sweep, we compute its height in the direction of the

axis perpendicular to the sweep direction

hi = li × ni. (10)

The value of the height is computed in the same way as (9)

using the axis hi instead:

h∗
i = max

m∈Ci

∣

∣hT
i (pm − c̄i)

∣

∣ , (11)

where h∗
i if the half height of the cluster. Then, we use the

relationship between the field of view (FoV) angle of the

camera and h∗
i to compute the distance that is able to cover

the height of the cluster. The observation distance, do, along

the normal is computed as

do =
h∗
i

tan(FoV
2
)

(12)

Finally, if the sweep intersects an obstacle we perform a

rotation of the observation direction to refine it (Figure 5).

D. Global planner

In the next step, the objective is to compute high-level

paths for the drones to cover all the clusters. We propose

to solve this problem with an adaptation of the min-max

Vehicle Routing Problem (VRP).

Originally, this algorithm looks for optimal routes for a set

of agents, K, that visit once all the locations of a given set,

V . Denote by cij the cost to go from location i to location j,

which we consider is the same for all the agents, and define

X = {xk
ij}, for i, j ∈ V, and k ∈ K, the set of binary

variables that indicate whether agent k has traverse the route

from i to j or not. Then, the min-max VRP solves

min
X

max
k∈K

∑

i∈V

∑

j∈V

cijx
k
ij , s.t. (13a)

∑

k∈K

∑

i∈V

xk
ij = 1 ∀j ∈ V \ {0} (13b)

∑

k∈K

∑

j∈V

xk
ij = 1 ∀i ∈ V \ {0} (13c)

∑

k∈K

∑

i∈V

xk
i0 =

∑

j∈V

∑

k∈K

xk
0j = |K| (13d)

∑

i,j∈S

xk
i,j ≤ |S| − 1, ∀S ⊂ V \ {0}, S ̸= ∅ (13e)

xk
ij ∈ {0, 1} ∀i, j ∈ V (13f)

where (13a) is the cost function, which denotes the largest

cost among all the agents for a given assignment, constraints

(13b) and (13c) indicate that drones only visit each location

once. Constraints in (13d) impose the drones to start and

end at the initial point. Constraints (13e) are the sub-

tour elimination constraints. Finally, conditions (13f) impose

binary conditions on the decision variables.

In order to adapt the VRP to the clusters and their sweeps,

we propose a definition of the costs, cij , that considers them.

Given two clusters, i and j, we compute the path between

them, as the line that join their closest entrance points with

distance, dij , if there are no obstacles. In case there are

obstacles, we consider the same path, but flying over the top

of the scene. This way we guarantee that all the clusters are

reachable from each other, but we favour assignments of the

nearby ones. Additionally, to account for the cost of covering

each cluster, we add the distance of the sweep to all the costs

with it as destination. The distance of the sweep generated

for Ci is l∗i = 2d∗i , with d∗i defined in (9). Therefore, the cost

cij is defined as

cij = dij + l∗j . (14)

Lastly, to compute the solution of (13), we consider an

implementation with limited capacities. We simplify the

objective to minimize the total cost travelled by all the drones

min
X

∑

k∈K

∑

i∈V

∑

j∈V

cijx
k
ij , (15)

and we add a capacity constraint for each of them,
∑

i∈V

∑

j∈V

cijx
k
ij < cmax ∀k ∈ K. (16)

Our solution searches for the minimum value of c∗
max

that

solves the problem using the bisection method.

E. Local planner

For the last step of the proposed pipeline, the local planner

by Zhou et al. [24] is used to plan in two stages: an initial

kinodynamic A∗ path search based on motion primitives

finds a safe, feasible and minimum-time initial path, and

a B-spline optimization generates smooth and collision-free

trajectories that use gradient information from the ESDF and

dynamic constraints.

In order to cover a surface efficiently and effectively, the

sweep direction needs to be orthogonal to the observation

vector. To enable safe and efficient navigation, while ob-

taining high quality scene observations, we decouple the

problems of navigation and observation. We assume that

the observation camera is mounted on an actuated gimbal,

which is able to set the yaw and pitch directions. A second

sensor, such as a laser ranger or a depth camera is used for

navigation.

IV. EXPERIMENTS AND RESULTS

To assess the performance of the proposed method, the

pipeline is run on photo-realistic outdoor scenarios of varying

sizes and difficulty, namely on the Bunker, Wood Bridge,

Loarre Castle, and Zurich models visible in Figure 8. The

transfer of this simulation setup to real-world cases was

proved in previous work [21] [25]. The Gazebo RotorS

simulator is used with ground-truth odometry of the drones.

During the initial map construction, flying at high altitude

enables the use of accurate RTK GPS systems with small

odometry error. The uncertainty in the successive flights

can be alleviated by overestimating the observation distance

and safety radius. As we target our application to consumer

platforms, problems such as aerodynamics or other electrical

and mechanical delays are assumed to be solved by their

system. The drones are equipped with a monocular camera

TABLE I: Execution times to complete a scene coverage mission. The recon-
naissance flight time, in parenthesis, is included in the total time. Ours single
refers to our pipeline using one drone, while Ours multi indicates the time taken
by the longest flight of any drone in a team (four in this case), indicating the end
of the mission. For [2], we report the time to reach the same extent of coverage
achieved by each of our methods (Table III). In lager maps, [2] is not able to
achieve our coverage after one hour of execution and the total coverage by that
time is reported. The ‘⋆ ’ indicates that the global planner only assigned two
drones in this map, as introducing more would not reduce the total time.

Method Bunker
Wood
Bridge

Loarre
Castle

Zurich

Kompis
et al. [2]

859.71 s 897.08 s
>3600 s
[67.08%]

>3600 s
[13.91%]

Ours
single

491.91 s
(183.06 s)

331.16 s
(122.54 s)

1474.95 s
(329.88 s)

2027.88 s
(588.56 s)

Kompis et
al. multi [2]

214.43 s 405.98 s 1440.59 s
>3600 s
[60.49%]

Ours
multi

126.26 s
(42.04 s)

172.09⋆ s
(53.31 s)

433.74 s
(117.11 s)

741.07 s
(269.53 s)

mounted on an actuated gimbal that can rotate independently

of the orientation of the drone. Its resolution is 752×480 and

FoV is 80◦× 55◦. The drones’ linear and angular maximum

velocity and acceleration are set to 2 ms−1 and 0.9 ms−2,

respectively, for fairness with the compared system and to

ensure safety at all times. During the reconnaissance flight,

the drones fly at a fixed height over the model in a grid

pattern with their cameras looking downward. The voxel size

used for the initial map and planning is 0.2 (Bunker and

Wood Bridge), 0.5 (Loarre) and 0.7 (Zurich).

The parameters for the clustering step depend on the reso-

lution of the prior map (i.e., voxel size vs). We set ϵ = 10vs,

σ = 6 (Eq. (6)) and τ = 0.4. We also apply an inflation factor

over the coarse map of 20vs to the observation and safety

distance for the sweep generation. Due to computational

resources required to simulate several drones, the local paths

are executed by a single drone sequentially, which starts from

and comes back to the same initial point. The simulation runs

until all the local trajectories have been executed.

We run the experiments considering three different algo-

rithms. We name Ours single and Ours multi the solutions

obtained running our pipeline with one and four drones

respectively. In the multi version, we perform an ablation

study to show the difference in visual coverage obtained

after the reconnaissance flight and the successive flights

resulting from our pipeline. Even when our pipeline is not

directly comparable in terms of the sensor setup with other

exploration methods that use stereo pairs, the third method

uses the planning approach of Kompis et al. [2] for a single

and multiple drones, which is among the state-of-the-art

planners with available implementation. In the version with

multiple drones, the environment was segmented equally

among the drones. This comparison is not intended to rank

the two methods but to showcase the potential advantages of

the proposed planning approach in terms of efficiency.

A. Planning efficiency

The times for the execution of the plan are shown in Table

I. The time for the reconnaissance flight and initial map

construction with Voxblox is included in the total and shown

below. For the method of Kompis et al., we report the times

necessary to achieve the same coverage as our system.

The results for Ours single and Ours multi validate that our

setup can generalize to an arbitrary number of drones. When

using several drones instead of one, times are a fraction of

the number of drones with little overhead. In the case of

Wood bridge, the global planner assigned the tasks to only

two drones even if four were available. Due to the scene

structure, adding more drones would not reduce the time of

the mission as drones would have to return to the initial

point. Compared to Kompis et al., our method is able to

completely cover the maps faster in every case. For large

maps (i.e., Loarre Castle and Zurich), [2] is not able to cover

the environment after one hour of execution and we report

the amount of coverage obtained at that time.

There are two main reasons for this difference. Firstly, the

different approach on drone dynamics in the planners. Stop-

and-go motions are necessary as the exploration process is

incremental. This limits the planning horizon of the system

to a local region. In their approach, the drone has to stop

in order to acquire each individual view and plan the next

(see Figure 6). In our case, the drone is able to keep

moving while observing a whole surface in a sweep. Notice

that our system could potentially use higher velocities and

accelerations for large trajectories in free-space, as in the case

of the reconnaissance flight. This would further improve the

planning efficiency. The second reason is that their planner

revisits areas in order to obtain thorough coverage, commit-

ting resources to small regions with difficult accessibility.

The reason for their low coverage result in the Zurich map

is explained by their viewpoint proposal method, which leads

to larger re-planning times when the scale of the map grows.

We also report the time for the initial map processing. The

time for the analysis and clustering steps depend on the size

and resolution of the map. The global planning step depends

on the number of generated clusters and number of agents.

We show the results in Table II in the smallest and biggest

maps: Bunker and Zurich. The time is always below one

minute which is negligible for the total time of the mission.

Fig. 6: Extract of the moving average for the velocity during the simulation in
Loarre Castle for Ours single and [2]. While traditional methods stop to capture
a view and plan the next goal, our method is able to keep flying at higher speed.

B. Coverage and surface quality

Besides the efficiency of our planner, we have also as-

sessed that the coverage and the quality of the views are

correct. The images captured from the monocular cameras

of the drones have been used to generate 3D reconstructions

of the scenes using COLMAP. The reconstructed models

are compared with the ground-truth (GT) virtual models.

TABLE II: Computation time for the different map processing steps: analysis,
clustering and global planner. Mean and standard deviation for 10 runs.

Bunker Zurich

Analysis - 2.22± 0.082 s 6.96± 1.05 s

Clustering - 1.83± 0.045 s 7.12± 0.297 s

Global
planner

Single 0.99± 0.053 s 15.43± 0.689 s

Multi 0.94± 0.064 s 17.10± 0.737 s

TABLE III: For each method, we report the RMSE of the reconstructions, the
extent of the coverage for a threshold of 0.1 meters at the completion time
of the experiment as reported in Table I. Recon. indicates the metrics from a
reconstruction with only the reconnaissance flight.

Method Bunker Wood Bridge Loarre Castle Zurich

Kompis

et al. [2]

0.085 m 0.068 m 0.049 m 0.074 m

75.6 % 55.63 % 42.58 % 9.13 %

Ours single
0.027 m 0.043 m 0.048 m 0.09 m

97.35 % 93.23 % 97.92 % 95.96 %

Kompis et

al. multi [2]

0.076 m 0.074 m 0.059 m 0.087 m

89.10 % 60.29 % 50.20 % 20.90 %

Recon.

(ablation)

0.04 m 0.039 m 0.063 m 0.147 m

84.75 % 62.93 % 88.54 % 75.34 %

Ours multi
0.026 m 0.039 m 0.043 m 0.086 m

96.36 % 92.37 % 98.64 % 97.34 %

Recon. Reconstruction Final Reconstruction
Fig. 7: Comparison of the coverage quality after the reconnaissance flight (left)
and the successive flights (right). Occluded regions under the Bunker are not
reconstructed (up). In addition, even though vertical surfaces such as Loarre’s
walls are covered, their observation yields poor scene reconstructions (down).

We consider that a point in the GT surface was covered

if the closest distance to a point from the reconstructed

mesh is below a threshold of 0.1m. Our metric is the

percentage of covered points in the ground-truth mesh. We

also measure the accuracy of the reconstruction as the RMSE

of the distances from the reconstructed model to the ground

truth mesh. While we are mainly interested in the first two

metrics, the accuracy proves that our method can be used to

obtain accurate 3D reconstructions of the environment. We

also report the coverage, its quality and the reconstruction

accuracy from the Voxblox generated mesh of the pipeline in

[2]. The voxel size for their reconstruction is the same they

use in their experiments, 0.1, which is the threshold used

for considering a point covered in our setup. The results are

reported in Table III. For Kompis et al., the reported value

is the coverage achieved by the completion time of our plan.

The reconnaissance flight (Recon.) is able to cover large

amount of surfaces. However, the coverage quality is low,

yielding poor scene reconstructions (Figure 7). After the

execution of our pipeline, we obtain images that ensure good

observation of surfaces. We can see similar coverage for the

case of single and multi-drone approaches as the drones

traverse similar sweeps. Compared to Kompis et al., our

system is able to achieve more coverage in less time. Notice

how the coverage difference is increased with the size of the

map. Qualitative results are shown in Figure 8 for all the

maps. It might be seen that our pipeline misses some areas

with difficult accessibility. In return, it is able to cover the

overall scene in a fraction of the time. This demonstrates

that lot of information can be extracted from the map by

planning more efficiently and shows the advantage of using

prior knowledge about the scene structure for planning.

V. CONCLUSION

In order to improve the efficiency in large-scale deploy-

ments of drones for visual coverage, this article proposes

a multi-stage planner that generates long linear trajectories

(sweeps) that observe a large amount of surface in a continu-

ous motion. We accomplish this by leveraging a prior coarse

map to cluster these surfaces and improve the posterior

coverage trajectories. This approach is generalised to an arbi-

trary number of drones, managing the workload distribution

between them in order to minimize the completion time

of the mission. Comparison with alternative approaches to

exploration of scenes show the advantages of our pipeline

for large scenarios, where the overall coverage of the scene

in a minimal amount of time is necessary. We show that a

single run of our pipeline is able to obtain coverage of scenes

faster and with great accuracy.

Future work will explore the integration of the proposed

pipeline in a real platform, including a mapping framework

to ensure safe local navigation and additional coordination

systems to deploy a team of autonomous drones in large-

scale environments. Besides, exploring the extension to a

team of heterogeneous aerial drones (i.e., fixed-wing UAVs

for the nadir flight) could improve even further the efficiency

of the system by allocating each to different task modalities.

REFERENCES

[1] B. Zhou, Y. Zhang, X. Chen, and S. Shen, ªFuel: Fast uav exploration
using incremental frontier structure and hierarchical planning,º IEEE

Robotics and Automation Letters, vol. 6, no. 2, 2021.

[2] Y. Kompis, L. Bartolomei, R. Mascaro, L. Teixeira, and M. Chli,
ªInformed sampling exploration path planner for 3d reconstruction
of large scenes,º IEEE Robotics and Automation Letters, vol. 6, 2021.

[3] B. Yamauchi, ªA frontier-based approach for autonomous explo-
ration,º in IEEE Int. Symp. on Computational Intelligence in Robotics

and Automation, 1997.

[4] T. Cieslewski, E. Kaufmann, and D. Scaramuzza, ªRapid exploration
with multi-rotors: A frontier selection method for high speed flight,º
in International Conference on Intelligent Robots and Systems, 2017.

Kompis et al. [2] Ours single Kompis et al. multi [2] Ours multi

Fig. 8: Qualitative comparison of the coverage obtained for all the maps considering a fixed time. In green are points in the ground truth (GT) mesh that have been
covered during the mission, while red indicates the opposite. Our planner is able to obtain more coverage of the overall scene, despite missing some some details in
inaccessible/non-directly visible surfaces. Detailed numbers of the coverage and accuracy of the reconstructions are provided in Table III.

[5] D. Duberg and P. Jensfelt, ªUfoexplorer: Fast and scalable sampling-
based exploration with a graph-based planning structure,º IEEE

Robotics and Automation Letters, vol. 7, no. 2, 2022.
[6] H. Carrillo, I. Reid, and J. A. Castellanos, ªOn the comparison of

uncertainty criteria for active slam,º in IEEE Int. Conf. on Robotics

and Automation, 2012.
[7] L. Carlone, J. Du, M. Kaouk Ng, B. Bona, and M. Indri, ªActive slam

and exploration with particle filters using kullback-leibler divergence,º
Journal of Intelligent & Robotic Systems, vol. 75, no. 2, 2014.

[8] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
ªLearning to explore using active neural slam,º in IEEE Int. Conf. on

Learning Representations (ICLR), 2020.
[9] G. Georgakis, B. Bucher, A. Arapin, K. Schmeckpeper, N. Matni,

and K. Daniilidis, ªUncertainty-driven planner for exploration and
navigation,º in IEEE Int. Conf. on Robotics and Automation, 2022.

[10] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto,
ªAn efficient sampling-based method for online informative path
planning in unknown environments,º IEEE Robotics and Automation

Letters, vol. 5, no. 2, 2020.
[11] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,

ªReceding horizon ºnext-best-viewº planner for 3d exploration,º in
IEEE Int. Conf. on Robotics and Automation, 2016.

[12] G. Hardouin, F. Morbidi, J. Moras, J. Marzat, and E. M. Mouaddib,
ªSurface-driven Next-Best-View planning for exploration of large-
scale 3D environments,º in IFAC World Congress, July 2020.

[13] S. Song, D. Kim, and S. Choi, ªView path planning via online
multiview stereo for 3-d modeling of large-scale structures,º IEEE

Transactions on Robotics, vol. 38, no. 1, 2022.
[14] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor,

P. Hanrahan, and N. Joshi, ªSubmodular trajectory optimization for
aerial 3d scanning,º in Int. Conf. on Computer Vision, 2017.

[15] N. Smith, N. Moehrle, M. Goesele, and W. Heidrich, ªAerial path
planning for urban scene reconstruction: A continuous optimization

method and benchmark,º ACM Trans. Graph., vol. 37, no. 6, dec 2018.
[16] B. Hepp, M. Nieûner, and O. Hilliges, ªPlan3d: Viewpoint and

trajectory optimization for aerial multi-view stereo reconstruction,º
ACM Trans. Graph., vol. 38, no. 1, dec 2018.

[17] A. Mannucci, S. Nardi, and L. Pallottino, ªAutonomous 3d exploration
of large areas: A cooperative frontier-based approach,º in Modelling

and Simulation for Autonomous Systems, J. Mazal, Ed., Cham, 2018.
[18] R. G. Colares and L. Chaimowicz, ªThe next frontier: Combining

information gain and distance cost for decentralized multi-robot ex-
ploration,º in ACM Symposium on Applied Computing, 2016.

[19] G. Hardouin, J. Moras, F. Morbidi, J. Marzat, and E. M. Mouaddib,
ªNext-best-view planning for surface reconstruction of large-scale 3d
environments with multiple uavs,º in IEEE Int. Conf. on Intelligent

Robots and Systems, 2020.
[20] A. Dutta, A. Bhattacharya, O. P. Kreidl, A. Ghosh, and P. Dasgupta,

ªMulti-robot informative path planning in unknown environments
through continuous region partitioning,º International Journal of Ad-

vanced Robotic Systems, vol. 17, no. 6, 2020.
[21] L. Teixeira, M. R. Oswald, M. Pollefeys, and M. Chli, ªAerial single-

view depth completion with image-guided uncertainty estimation,º
IEEE Robotics and Automation Letters, vol. 5, no. 2, 2020.

[22] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
ªVoxblox: Incremental 3d euclidean signed distance fields for on-board
mav planning,º in Int. Conf. on Intelligent Robots and Systems, 2017.

[23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ªA density-based
algorithm for discovering clusters in large spatial databases with
noise,º in Int. Conf. on Knowledge Discovery and Data Mining, 1996.

[24] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, ªRobust and efficient
quadrotor trajectory generation for fast autonomous flight,º IEEE

Robotics and Automation Letters, vol. 4, no. 4, 2019.
[25] F. Maffra, L. Teixeira, Z. Chen, and M. Chli, ªReal-time wide-

baseline place recognition using depth completion,º IEEE Robotics

and Automation Letters, vol. 4, no. 2, 2019.

	Introduction
	Objectives and scope

	Frame of Reference
	Scene Reconstruction
	Map Representation
	Sensors for visual coverage
	Clustering the space
	Vehicle Routing Problem

	Related Work
	Scene exploration and coverage
	Use of a prior map
	Multi-robot extension

	Method
	System overview
	Initial map
	Perception-aware clustering
	Global planner
	Local planner

	Experiments and results
	Implementation details
	Planning efficiency
	Coverage and surface quality

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Article

