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Abstract

With the fast development of the railway industry, more and more challenges arise for
the safety and reliability of critical components, among which fatigue is the primary
problem. During service, the rolling stock undergoes extremely complex cyclic loads,
which can lead to a number of fatigue problems. These difficulties seriously threaten
the safety of railway operation and can even cause significant loss of life and property.
Although scientists and engineers worldwide have made extraordinary efforts over
the past centuries, there are still many challenges and uncertainties, especially in
developing the next generation of means of transport.

This thesis intends to tackle a number of issues on the fatigue of railway axles. The
topics include, but are not limited to, analytical, theoretical, and computational
research on: (i) failure mechanisms, fatigue crack growth; (ii) modelling the fatigue
process; (iii) probabilistic assessment methods of application to the railway axle
problem; (iv) strengthening uncertainty propagation methodologies via first and
second-order approximations; (v) fatigue performance and degradation characterized
through stochastic moments and lifespan probability distributions; (vi) fatigue assess-
ment and maintenance by means of periodic inspections; and (vii) identification and
approval of the fatigue performance by means of methods with probabilistic founda-
tions for the determination of inspection intervals and the associated probabilities of
crack detection.

This thesis starts from the early developments of railway axles safety assessment
and its evolution. It continues with an extension of widespread methods for prob-
abilistic analysis of general-purpose especially suitable for the fatigue crack growth
phenomenon in metal components. It then gives an extension of damage tolerance
approaches with identification and particular emphasis on the characterization of its
probabilistic aspects and their effects, resulting in a procedure for the determination
of inspection intervals that is based on a probabilistic description of fatigue lifespan.
And finally, it ends with a thorough illustration of the probabilistic methodology
devised to be applied to the damage tolerance assessment of railway axles. On the
whole, this thesis presents new probabilistic treatments and useful results for the
maintenance planning of railway axles within the frame of damage tolerance.
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In particular, to define inspection intervals that ensure a continuous and safe operation
of a damage-tolerant railway axle, a reliable estimation of its life considering the
potential fatigue crack growth is required. For fatigue life estimation, the NASGRO
crack growth equation is ordinarily used in its deterministic standard form. Due to
the uncertainties involved in the fatigue process, inspections must be devised not
only considering the uncertainties in the performance of the inspection technique,
but also based on a probabilistic lifespan prediction. To this end, the uncertainty
propagation of fatigue crack growth life provides the probability distribution of the
lifespan needed for probabilistic damage tolerance analysis and for structural integrity
assessment and management.

Given these premises, this thesis presents a procedure for the determination of inspec-
tion intervals that uses a fatigue crack growth life estimation based on the lifespan
probability distribution. In the course of the work, a new probabilistic formulation for
fatigue crack propagation based on the NASGRO equation is developed. It provides
a stochastic approach for predicting statistical moments of fatigue lifetime. The
procedure basically uses the full second-order approach to approximate the first four
moments of the fatigue crack growth life. The methodology efficiently estimates the
expected value, first raw moment; the variance, second central moment; the skewness,
third central standardized moment; and the kurtosis, fourth central standardized
moment, of the underlying fatigue crack growth life distribution. These moments are
obtained from the approximation via the Taylor series up to the quadratic terms, full
second-order, of the NASGRO equation with respect to the random input variables
taken into account. Subsequently, the location, scale and shape parameters of the
particular Pearson distribution type automatically determined are estimated, making
the statistical moments of the constructed lifespan distribution match the first four
prescribed moments predicted by the probabilistic equations. Thereafter, the proced-
ure devised extends the current damage tolerance principles in railway axles by means
of improving the relevance of the crack growth simulation, replacing its deterministic
estimation by a probabilistic one. Thereby, the damage tolerance assessment benefits
from a better knowledge of the distribution of fatigue lifespan. As a result, it gives
a more conservative recommendation for the definition of inspection intervals as it
considers the effects of the process variables randomness in the fatigue lifespan, as it
relies on a probabilistic fatigue propagation instead of on a deterministic one. The
procedure developed extends the current state of the art in damage tolerance of
railway axles, considering the fatigue crack growth from a probabilistic point of view.

The proposed reliability-based inspection planning method is discussed through
a numerical example regarding the fatigue crack growth in a railway axle under
stochastic considerations. The validity of the proposed method is verified by taking
into account several input random variables whose variability, distribution type, and
correlations are thoroughly grounded. The inspection intervals are further assessed
in terms of the overall probability of detecting cracks in successive inspections and
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in terms of probability of failure, considering the probability of detection curve
of the non-destructive testing technique. The methodology presented enables an
efficient and accurate quantification of the lifespan uncertainties via its probabilistic
distribution. The probabilistic results are compared with Monte Carlo simulations to
check the goodness of the first four moments predicted, as well as the quality of the
probability density function constructed. It is proven that the probability density
function of the lifespan is properly derived by the methodology, without knowing or
assuming the output probability distribution beforehand. The procedure developed
provides recommendation for the calculation and definition of practical inspection
intervals and the associated inspection techniques that can be used in ensuring the
continued safe operation of railway axles.

In summary, this thesis provides a probabilistic analysis method for fatigue crack
growth in metal components. Moreover, it offers an efficient procedure for the
definition of maintenance inspection intervals of railway axles, considering complex
stochastic scenarios within the damage tolerance assessment. Approaches for the
design and analysis of products with special consideration for the ecological and
economic impacts associated with their manufacture and maintenance, strive for
products which make the lowest possible environmental impact throughout its life
cycle. The method provided is expected to have a positive and comprehensive effect
on the optimization of maintenance intervals, thus promoting an efficient use of
rail transport to carry people and freight. In this sense, it would also reduce the
environmental impact of mankind associated with air pollution caused by transport,
as it helps rail transport to become a more environmentally friendly alternative. As
a final consideration, the novel operational framework in this thesis is expected to be
an asset for a broad range of engineering problems dealing with random variables.

Keywords: Probabilistic fatigue crack growth; Fatigue life prediction; Damage
tolerance; Railway axles; Uncertainty propagation; Statistical moments; NASGRO;
Lifespan probability distribution; Pearson distribution family; Inspection intervals;
Probability of detection.
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Resumen

Con el rápido desarrollo de la industria ferroviaria, surgen cada vez más retos en
la seguridad y la fiabilidad de componentes críticos, entre los cuales la fatiga es el
problema principal. En servicio, el material rodante está sujeto a cargas cíclicas
extremadamente complejas, que pueden dar lugar a una serie de problemas de fatiga.
Estas dificultades amenazan seriamente la seguridad ferroviaria y pueden llegar a
causar importantes pérdidas en términos de vidas y bienes. Aunque científicos e
ingenieros de todo el mundo han realizado esfuerzos extraordinarios durante los
últimos siglos, existen todavía muchos desafíos e incertidumbres, especialmente en el
desarrollo de la próxima generación de medios de transporte.

Esta tesis pretende abordar una serie de cuestiones relativas a la fatiga en ejes
ferroviarios. Los temas incluyen, entre otros, la investigación analítica, teórica y
computacional acerca de: (i) mecanismos de fallo, crecimiento de grieta por fatiga;
(ii) modelización del proceso de fatiga; (iii) métodos de evaluación probabilista de
aplicación en ejes ferroviarios; (iv) refuerzo de las metodologías de propagación de
incertidumbre mediante aproximaciones de primer y segundo orden; (v) rendimiento
y degradación por fatiga caracterizados mediante momentos estocásticos y distribucio-
nes de probabilidad de vida; (vi) evaluación de la fatiga y el mantenimiento mediante
inspecciones periódicas; y (vii) identificación y validación del comportamiento a
fatiga mediante métodos con base probabilista para la determinación de intervalos
de inspección y probabilidades de detección de grieta asociadas.

Esta tesis parte de los primeros desarrollos en la evaluación de la seguridad de ejes
ferroviarios y su evolución. Continúa con una extensión de los métodos habituales para
el análisis probabilista de propósito general especialmente adecuados para el fenómeno
de crecimiento de grieta por fatiga en componentes metálicos. A continuación, ofrece
una extensión de los enfoques de tolerancia al daño con identificación y particular
énfasis en la caracterización de sus aspectos probabilistas y sus efectos, lo que resulta
en un procedimiento para la determinación de intervalos de inspección basado en una
descripción probabilista de la vida a fatiga. Finalmente termina con una ilustración
detallada de la metodología probabilista concebida para ser aplicada en la evaluación
de tolerancia al daño de ejes ferroviarios. En su conjunto, esta tesis presenta nuevos
tratamientos probabilistas y resultados útiles para la planificación del mantenimiento
de ejes ferroviarios en el marco de tolerancia al daño.
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En particular, para definir intervalos de inspección que garanticen un funcionamiento
continuo y seguro de un eje ferroviario tolerante al daño, se requiere una estimación
fiable de su vida considerando un potencial crecimiento de grieta por fatiga. Para la
estimación de la vida a fatiga, normalmente se utiliza la ecuación de crecimiento de
grieta de NASGRO en su forma estándar determinista. Debido a las incertidumbres
en el proceso de fatiga, las inspecciones deben diseñarse no sólo considerando las
incertidumbres en el buen funcionamiento de la técnica de inspección, sino también
basándose en una predicción probabilista de la vida. Para ello, la propagación de
incertidumbre en la vida en crecimiento de grieta por fatiga proporciona la distribución
de probabilidad de la vida necesaria para el análisis probabilista de tolerancia al
daño y para la evaluación y control de la integridad estructural.

Con estas premisas, esta tesis presenta un procedimiento para la determinación de
intervalos de inspección que utiliza una estimación de la vida en crecimiento de grieta
por fatiga basada en la distribución de probabilidad de la vida. Durante el trabajo,
se desarrolla una nueva formulación probabilista para el crecimiento de grieta por
fatiga basada en la ecuación NASGRO. Esta proporciona un enfoque estocástico para
predecir los momentos estadísticos de la vida a fatiga. El procedimiento básicamente
usa un enfoque de segundo orden completo para aproximar los cuatro primeros
momentos de la vida a fatiga. La metodología estima eficientemente el valor esperado,
primer momento; la varianza, segundo momento central; la asimetría, tercer momento
central estandarizado; y la curtosis, cuarto momento central estandarizado, de la
distribución subyacente de la vida a fatiga. Estos momentos se obtienen a partir de la
aproximación mediante serie de Taylor hasta términos cuadráticos, de segundo orden
completo, de la ecuación NASGRO con respecto a las variables aleatorias de entrada
consideradas. A continuación, se estiman los parámetros de localización, escala y
forma del tipo particular de distribución de Pearson determinada automáticamente,
haciendo que los momentos estadísticos de la distribución de vida construida coincidan
con los cuatro primeros momentos estimados por las ecuaciones probabilistas. A partir
de ahí, el procedimiento ideado amplía los principios actuales de tolerancia al daño en
ejes ferroviarios mediante mejoras en la relevancia de la simulación del crecimiento de
la grieta, sustituyendo su estimación determinista por una probabilista. De esta forma,
la evaluación de tolerancia al daño resulta beneficiada por un mejor conocimiento
de la distribución de la vida a fatiga. Como resultado, ofrece una recomendación
más conservadora para la definición de intervalos de inspección dado que considera
los efectos de la aleatoriedad de las variables del proceso en la vida a fatiga, ya
que se basa en crecimiento de grieta probabilista en lugar de uno determinista. El
procedimiento desarrollado extiende el estado del arte actual en materia de tolerancia
al daño en ejes ferroviarios, considerando el crecimiento de la grieta por fatiga desde
un punto de vista probabilista.

El método propuesto para la planificación de inspecciones basado en fiabilidad se
discute mediante un ejemplo numérico relacionado con el crecimiento de grieta por
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fatiga en un eje ferroviario bajo consideraciones estocásticas. La validez del método
propuesto se verifica teniendo en cuenta distintas variables aleatorias de entrada
cuya variabilidad, tipo de distribución y correlaciones quedan exhaustivamente
fundamentadas. Los intervalos de inspección se evalúan además en términos globales
de probabilidad de detección de grieta en inspecciones sucesivas y en términos de
probabilidad de fallo, considerando la curva de probabilidad de detección de la técnica
de ensayo no destructivo. La metodología presentada permite una cuantificación eficaz
y precisa de las incertidumbres en la vida a través de su distribución probabilista.
Los resultados probabilistas se comparan con simulaciones de Monte Carlo para
verificar la bondad de los cuatro primeros momentos estimados, así como la calidad
de la función de densidad de probabilidad construida. Se comprueba que la función
de densidad de probabilidad de la vida es derivada adecuadamente mediante la
metodología, sin conocer ni suponer de antemano la distribución de probabilidad de
salida. El procedimiento desarrollado proporciona recomendaciones para el cálculo
y la definición de intervalos de inspección prácticos y las técnicas de inspección
asociadas que se pueden utilizar para garantizar la operación continua y segura de
ejes ferroviarios.

En resumen, esta tesis proporciona un método de análisis probabilista para el
crecimiento de grieta por fatiga en componentes metálicos. Además, ofrece un proce-
dimiento eficiente para la definición de intervalos de inspección en el mantenimiento
de ejes ferroviarios, considerando escenarios estocásticos complejos dentro del enfoque
de tolerancia al daño. Planteamientos de diseño y análisis de productos con especial
consideración de los impactos ecológicos y económicos asociados a su fabricación y
mantenimiento, se esfuerzan por conseguir productos que tengan el menor impacto
ambiental a lo largo de su ciclo de vida. Se espera que el método proporcionado
tenga un efecto positivo y global en la optimización de intervalos de mantenimiento,
promoviendo así un uso eficiente del transporte ferroviario para mover personas y
mercancías. En este sentido, también disminuiría el impacto medioambiental de la
humanidad asociado con la contaminación atmosférica causada por el transporte, ya
que ayuda a que el transporte ferroviario sea en una alternativa más respetuosa con el
medio ambiente. Como consideración final, se espera que el novedoso marco operativo
en esta tesis sea un recurso para una amplia gama de problemas de ingeniería que
tratan con variables aleatorias.

Palabras clave: Crecimiento de grieta por fatiga probabilista; predicción de vida a
fatiga; Tolerancia al daño; Ejes de ferrocarril; Propagación de incertidumbre; Mo-
mentos estadísticos; NASGRO; Distribución de probabilidad de vida; Distribuciones
de Pearson; Intervalos de inspección; Probabilidad de detección.
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Nomenclature

The following lists collect the main terminology used in this thesis. The meaning of
each symbol is also detailed in the text where the symbol is used.

Acronyms and Abbreviations

C(T) compact-tension
CCDF complementary of the cumulative distribution function
CDF cumulative distribution function
CPOD cumulative probability of detection in successive inspections
CPOF cumulative probability of failure in successive inspections
CPOND cumulative probability of non-detection in successive inspections

Det. deterministic
DTA damage tolerance analysis

e.g. exempli gratia
EPFM elastic plastic fracture mechanics
Eq. Equation
ERA European railway agency
EU-Rail Europe’s rail joint undertaking

FCG fatigue crack growth
FEM finite element method
Fig. Figure
FORM first-order reliability method
FOSM first-order second moment
FSOA full second-order approach

GHG greenhouse gas

xix
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i.e. id est

LCC life cycle cost
LEFM linear elastic fracture mechanics
LPG liquefied petroleum gas

M(T) middle-tension
MC Monte Carlo
MPI magnetic particle inspection
MPP most probable point
MT magnetic particle testing

NDI non-destructive inspection
NDT non-destructive testing

PCC Pearson correlation coefficient
PCE polynomial chaos expansion
PDF probability density function
PIAT putting it all together
POD probability of detection
POND probability of non-detection
Pr. Eq. probabilistic equation
Pr. Eqs. probabilistic equations

r.v. random variable

SF survival function
SIF stress intensity factor
SORM second-order reliability method
SOSM second-order second moment

UT ultrasonic testing

vs. versus
VT visual testing

w/o without



Latin alphabet xxi

Latin alphabet

A crack deepest point
a crack depth / normal semiaxis
a0 El-Haddad’s parameter
a1, a2 real roots of the quadratic equation in the denominator of the integral of

the Pearson solution

B specimen thickness
B crack surface point
b crack width at the surface

C parameter of the crack growth equation in the Paris region
c crack tangential semiaxis
Cm

th parameter for the ∆Kth0–R relationship
Cp

th parameter for the ∆Kth0–R relationship

d random variables number
da/dN crack growth rate

eµ scale parameter of the log-normal distribution

f Newman’s crack opening function
fN probability density function of the random variable fatigue life N

f (x; α, β) probability density function for the standardized beta prime distribution
f (x; σ) probability density function for the standardized log-normal distribution

G energy release rate
Gc critical energy release rate
g,j first partial derivative of g with respect to Xj

(
= ∂g

∂Xj

)
g,jk second partial derivative of g with respect to Xj and Xk

(
= ∂2g

∂Xj∂Xk

)
gµ evaluation of g (X) at P vector

K stress intensity factor
Kc critical stress intensity factor for static unstable crack growth

LogN log-normal distribution

M bending moment
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m (x, a) weight functions

N mileage, number of equivalent km
N normal distribution
N number of applied loading cycles
n exponent of the crack growth equation in the Paris region
ns steps number
ntimes number of times that the crack can be detected before a failure could

occur

o0, o1, o2 zeroth, first and second order terms of the Taylor approximation

P applied load
P mean value vector of X

(
=
(
µX1 , µX2 , . . . , µXd

))
p parameter describing the sigmoidal shape of the crack growth equation

in the threshold region
Pf probability of failure
p (x) Pearson probability density function

q parameter describing the sigmoidal shape of the crack growth equation
in the toughness region

R stress ratio (= σmin/σmax)

Smax maximum applied stress

Tins periodicity of NDT inspections or inspection interval

W specimen width

X set of random variables (= {X1, X2, . . . , Xd})
x radial coordinate direction at the axle surface

Y general shape function for stress intensity factors
Y general multivariate function (= g (X))
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Greek alphabet

α plane stress/strain constraint factor
α, β shape parameters of the beta prime distribution

β reliability index EN 1990:2002
β1Y

square of skewness of Y
(

= Skew (Y )2
)

β2Y
kurtosis of Y

(
= Kurt (Y ) = µY,4

σ4
Y

)
γ1Y

skewness of Y
(

= Skew (Y ) = µY,3
σ3

Y

)
Γ (x) gamma function (= (x − 1) !)

∆a crack depth increment at point a

∆b crack depth increment at point b

∆K stress intensity factor range

E Young’s modulus

λ location parameter of the log-normal and beta prime distributions
λ failure rate

µjk second central moment (= µ2 (Xj , Xk))
µjkl third central moment (= µ3 (Xj , Xk, Xl))
µjklm fourth central moment (= µ4 (Xj , Xk, Xl, Xm))
µY expected value of Y (= E [Y ])
µY3 third central moment of Y

(
= E

[
(Y − E [Y ])3

])
µY4 fourth central moment of Y

(
= E

[
(Y − E [Y ])4

])
ν Poisson’s ratio

σ shape parameter of the log-normal distribution
σ stress
σ0 flow stress
σY standard deviation of Y (= SD (Y ))
σ2

Y variance of Y (= Var (Y ))

Φ (x) cumulative distribution function for the standard normal distribution
ϕ (x) probability density function for the standard normal distribution
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Superscripts

B above σ referring to the bending loading case
B + I above σ referring to the bending plus interference loading cases

I above σ referring to the interference loading case
i step increment

m minus

p plus

Subscripts

a below σ or K, referring to amplitude value

c critical

def below N referring to the definition of inspection intervals

eff effective

fin final

I, II, III below K referring to the cracking mode
#i inspection number
ini initial

j, k, l, m,
r, s, t, u index from 1 to d random variables

m below σ or K, referring to mean value
max maximum
min minimum

n below µ, referring to nth central moment

POD% below a referring to the crack depth at which the selected NDI gets a
POD equal to the detection threshold

th threshold
th0 threshold at R = 0



Background and Outline

Motivation

Nowadays, evidence of climate change is almost everywhere. There is scientific
consensus that the climate is warming and that it is caused by human activities.
Responding to these changes involves taking actions to limit the amount of warming
via increasing energy efficiency, among other actions.

One of the challenges is related to mobility planning and management. To reduce
the environmental impact due to air pollution caused by road vehicles, the entire
transport system needs to be rethought. To tackle this issue, an approach may
be to increase the use of rail transport to carry people and freight. However, the
railway system has to be carefully managed and maintained in order to be a feasible
alternative.

Railway axles have been widely adopted components for some two hundred years.
They have played and still play an important role in scientific research, promoting
the historical development of scientific and engineering knowledge about the fatigue
of materials and structures. The fatigue of components became noticeable mainly as
a result of some dramatic railway axle failures. It is significant to highlight, on one
hand, that they are safety-critical components, whose failure can lead to catastrophic
consequences. On the other one, there is an increasing need for optimizing the
maintenance costs and operations related to the inspections during the railway axle
service life.

Despite the vast amount of technical and scientific studies on the fatigue life prediction
of railway axles, they are nowadays still designed against fatigue limits and mostly
based on progressed experience. As a result of these approaches, although a high
level of safety has been reached, it is difficult to go a step further in the attempt to
optimise the design and the costs associated with their maintenance. For this reason,
new trends in the design and management of railway axles against fatigue are moving
towards damage tolerance assessment. This approach, a trend in the railway field,
considers the progressive degradation and damage to the axle along its lifetime.
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2 Background and Outline

Fatigue and fracture mechanics approaches are frequently used to determine service
life and inspection intervals. Several aspects contribute to reliable estimation of the
fatigue lifetime of railway axles and, consequently, appropriate intervals planing. It
is important to note that much of what happens in the real world, however, is not
predictable with a hundred per cent certainty. There are uncertainties inherent to
materials and components that cannot be quantified, and thus, there is an awareness
that not all factors are well known and characterized. In fact, a structure may
contain a number of flaws of various sizes. There is an inherent scatter in initial
material quality and performance. The nature of the loads may be non-proportional
comprising a spectrum of different amplitudes. In addition, the projected use of
the component in the determination of applied stresses is inaccurate at best and
subject to many discrepancies between predicted and actual usage. Owing to these
complexities, fracture and fatigue crack growth should be viewed probabilistically
rather than deterministically. All these factors have to be taken into account to
determine a potential life distribution based on a combination of the aforementioned
stochastic variables. All the previous aspects leave many points that are still open,
consequently, further efforts are required in this field. In this sense, the development
of advanced high-reliability technologies to maximize the service life, safety and
availability of railway vehicles for its service, is of great importance.

In this context, the work in this thesis focuses on the probabilistic estimation of fatigue
crack growth life to assess the railway axle reliability within the damage tolerance
concept. Following the rigorous progress of previous researchers, it is necessary
to investigate and develop probabilistic methodologies of general applicability in
academia and industry. The quantification of uncertainty as a design strategy will
replace the current design philosophy based on safety margins at least in state-of-
the-art technological fields such as the railway axles.

Additionally, it should be noted that the actions in which this thesis is enclosed, such
as the evaluation of the behaviour of materials and structural analysis of components,
concerning safety, reliability or durability, are aligned with the current social challenge
related to climate neutrality. In other words, the development of methodologies
that help to extend the service life of a product by reducing the energy resources
associated with its manufacture and maintenance, contribute to the protection of
the environment.

In summary, the general motivation of the thesis is to contribute to the compet-
itiveness of the railway sector and its environmental sustainability through the
development of technologies that, through the integration of probabilistic simulation
techniques and damage tolerance analysis concepts, allow predicting the functional
behaviour and the service life of railway axles to improve the final performance of
the products and to extend their life by making efficient use of materials and energy.
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Objectives

The main objective of this thesis is the development of a novel computational
methodology for the probabilistic analysis of fatigue crack growth in metal components
that allows evaluating the reliability of an axle within the damage tolerance concept.

The specific objectives of this thesis are the following:

• Acknowledging the significance of replacing current traditional deterministic
methods by probabilistic approaches for fatigue crack growth life estimation.

• Developing a probabilistic approach for the fatigue crack growth (FCG) in
metal components on the basis of a well-supported deterministic FCG model.

• Determining the stress distribution on the crack by using numerical techniques
based on the finite element method (FEM).

• Optimizing the calculation the stress intensity factor (SIF). Applying numerical
methods based on FEM and SIF estimation based on efficient weight functions.

• Developing an efficient and general probabilistic FCG model. Checking the
results by comparison with Monte Carlo (MC) method.

• Adopting a procedure for probability distribution fit based on the Pearson
distribution family to reconstruct the underlying fatigue lifespan distribution.

• Combining probabilistic developments with reliability principles. Expanding
damage tolerance techniques concerning reliability. Proposing damage tolerance
strategies in relation to probability of detection (POD).

• Addressing the problem of inspection interval definition in the decision-making
process of defining maintenance schedules of railway axles.

• Devising a reliability-based inspection planning that enables the optimization
of maintenance costs selecting an appropriate inspection periodicity for axles.

• Ensuring higher reliability in the determination of the probability of failure by
using the results of a probabilistic fatigue life estimation.

• Presenting different illustrative examples of the application of the devised
probabilistic damage tolerance-based maintenance planning for railway axles
thorough the consideration of different combinations of random input variables.

• Providing a tool that introduces a probabilistic approach to derive the prob-
ability of fatigue crack growth life as an output random property and ensure
transferability from the probabilistic life estimation to real railways axles.



4 Background and Outline

Outline

The outline of the thesis is as follows:

• In Chapter 1 – State of the art, the evolution of safety assessment of railway axles
is briefly introduced. Subsequently, the fundamentals of the damage tolerance
assessment are described. On this basis, probabilistic aspects of damage
tolerance and different probabilistic approaches in mechanical engineering are
reviewed. And finally, some European initiatives related to rail transport are
outlined. Some gaps in our knowledge of the fatigue crack growth in the damage
tolerance assessment of railway axles are identified and the need for optimizing
the definition of inspection intervals of railway axles is emphasised.

• In Chapter 2 – Full second-order approach for the moments of functions of
random variables, the derivation of the general method is presented in detail
both in matrix form and summation notation. It offers a full second-order
probabilistic formulation to predict the statistical moments, expected value,
variance, skewness, and kurtosis, of an arbitrary model or system, using
information about the input random variables distribution.

• In Chapter 3 – Probabilistic fatigue crack growth methodology in the damage
tolerance assessment of railway axles, a novel, simple and stable procedure
is introduced to the definition of inspection periodicities for railway axles.
It is grounded on the use of probabilistic fatigue life estimation, considering
the NASGRO equation and using weight functions for stress intensity factor
evaluation. The procedure redefines the fatigue crack growth process from a
deterministic to a probabilistic point of view. The overall procedure follows the
steps of the damage tolerance analysis considering the probabilistic fatigue crack
growth life adjusted using the Pearson distribution family. The distribution fit
is done from prescribed moments provided by the full second-order approach
derived in the previous chapter. In the end, the methodology provides a
reliability-based inspection interval definition that is appropriate for scheduling
the non-destructive inspection techniques frequently used in railway axles.

• In Chapter 4 – Application examples, the validation of the methods is done. The
example considers a metal railway axle with an initial crack. The probabilistic
analyses of the fatigue process consider several input random variables whose
variability, distribution type, and correlations are thoroughly grounded when
exemplifying the calculation workflow, promoting a deep understanding of their
effects. Finally, all the ideas presented in the chapters of this thesis are put
together, illustrating the course of reasoning for building a link between the
full second-order approach applied to the fatigue crack growth process and the
damage tolerance analysis of railway axles to define inspection intervals.
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• In Chapter 5 – Conclusions and Outlook, the general conclusions of this study
are drawn, the original contributions introduced in this research are stated and
interesting possibilities for future work are discussed in the field of probabilistic
fatigue. Special emphasis is placed on the major findings, consequential conclu-
sions and open questions, as well as the need for further research. In summary,
it is a celebration of my cumulative work and puts an end to this thesis.

Scientific production

The research developed in this thesis has been disseminated by the PhD candidate
through the following journal articles and oral presentations in conferences.

• Journal publications indexed in the Science Citation Index Expanded (SCIE),
included in the Journal Citation Reports (JCR) with Impact Factor (IF):

1. C. MALLOR, S. Calvo, J. L. Núñez, R. Rodríguez-Barrachina and
A. Landaberea. Full Second-Order Approach for Expected Value and
Variance Prediction of Probabilistic Fatigue Crack Growth Life. Interna-
tional Journal of Fatigue, 133: 105454, 2020.

2. C. MALLOR, S. Calvo, J. L. Núñez, R. Rodríguez-Barrachina and
A. Landaberea. Uncertainty Propagation Using the Full Second-Order
Approach for Probabilistic Fatigue Crack Growth Life. International
Journal of Numerical Methods for Calculation and Design in Engineering
(RIMNI), 36: 37, 2020.

3. M. Sánchez, C. MALLOR, M. Canales, S. Calvo and J. L. Núñez.
Digital Image Correlation Parameters Optimized for the Characterization
of Fatigue Crack Growth Life. Measurement, 174: 109082, 2021.

• Journal publications indexed in the Emerging Sources Citation Index (ESCI):

1. C. MALLOR, S. Calvo, J. L. Núñez, R. Rodríguez-Barrachina and
A. Landaberea. A Probabilistic Fatigue Crack Growth Life Approach
to the Definition of Inspection Intervals for Railway Axles. Frattura ed
Integrita Strutturale - Fracture and Structural Integrity, 59: 359–373, 2022.



6 Background and Outline

• Journal publications indexed in INSPEC and Scopus:

1. C. MALLOR, S. Calvo, J. L. Núñez, R. Rodríguez-Barrachina and
A. Landaberea. Propagation of Uncertainty in Fatigue Crack Growth for
Probabilistic Life Estimation. Procedia Structural Integrity, 28: 619–626,
2020.

2. C. MALLOR, S. Calvo, J. L. Núñez, R. Rodríguez-Barrachina and
A. Landaberea. On the Use of Probabilistic Fatigue Life Estimation
in Defining Inspection Intervals for Railway Axles. Procedia Structural
Integrity, 33: 391–401, 2021.

• International conferences:

1. Oral presentation “Propagation of Uncertainty in Fatigue Crack Growth
for Probabilistic Life Estimation”. In: 1st Virtual European Conference on
Fracture (VECF1), European Structural Integrity Society (ESIS), on-line,
29th of June 2020.

2. Oral presentation “On the Use of Probabilistic Fatigue Life Estimation in
Defining Inspection Intervals for Railway Axles”. In: 26th International
Conference on Fracture and Structural Integrity (IGF26), Italian Group
of Fracture (IGF), on-line, 26th of May 2021.

• Iberian conferences:

1. Compilation of proceedings “Uncertainty Propagation Using the Full
Second-Order Approach for Probabilistic Fatigue Crack Growth Life”.
In: 1th Virtual Iberian Conference on Structural Integrity (VIbCSI1),
Portuguese Structural Integrity Society and the Spanish Group of Fracture,
Coimbra (Portugal), 2020.

• National conferences:

1. C. MALLOR, R. Rodríguez-Barrachina, J. L. Núñez, A. Landaberea
and S. Calvo. Enfoque de Segundo Orden Completo para la Predicción
del Valor Esperado y Varianza de la Vida a Fatiga en el Crecimiento de
Grieta Probabilista. Anales de Mecánica de la Fractura. 36: 27-33, 2019.
Presentación oral. En: Congreso del grupo Español de Fractura (GEF)
edición 36, Sevilla, 3 a 5 de abril de 2019.

2. M. Sánchez, S. Calvo, M. Canales, C. MALLOR and R. Rodríguez-
Barrachina. Método de Correlación Digital de Imágenes (DIC) para
Medidas de Crecimiento de Grieta en Probetas No Estándar. Anales
de Mecánica de la Fractura. 36: 46-51, 2019. Presentación oral. En:
Congreso del grupo Español de Fractura (GEF) edición 36, Sevilla, 3 a 5
de abril de 2019.



Scientific production 7

• Universidad de Zaragoza conferences:

1. Presentación oral “Metodología para el Análisis Probabilista del Creci-
miento de Grieta por Fatiga en Componentes Metálicos. Avances y
Resultados Provisionales”. En: VI Jornada de Doctorandos del Programa
de Doctorado en Ingeniería Mecánica (PDIM), Zaragoza, 18 de junio 2019.

2. Presentación oral “Metodología para el Análisis Probabilista del Crecimi-
ento de Grieta por Fatiga en Componentes Metálicos. Avances y Resulta-
dos”. En: VII Jornada de Doctorandos del Programa de Doctorado en
Ingeniería Mecánica (PDIM), Zaragoza, 18 de diciembre 2020.



8



1
State of the art

1.1 Evolution of safety assessment of railway axles

Modern railway axles are highly stressed safety-critical components, which are costly
to maintain in service due, among other things, to the lack of adequate information
on which to base rational inspection intervals. Railway axle failures may result in
derailments, with serious damage for the rolling stock, the infrastructure, injuries
to passengers, and it can lead to casualties in the most dramatic cases. Therefore,
railway axle resistance to failure is a key issue in designing and properly maintaining
railway wheelsets, to ensure high safety levels and, at the same time, to optimize life-
cycle costs from an overall point of view. Railway axles are designed, manufactured
and maintained so that they should not fail in service, typically targeting a lifetime
up to 30–40 years of service what involves a mileage within the range 106–107 km
depending on the usage, such as, freight, commuter or high-speed trains. The vast
amount of km involves many wheelset turns, and therefore many reversals in the loads
on the axle what clearly induces fatigue stress in the component due to the repetition
of loading cycles. The increasing demand for higher axle loads at the turn of the
21st century presents quite new challenges with regard to safety issues that require
further developments in operation, technology and regulation. The previous figures
at a glance give the idea that there is room for improvement and optimization of
such inspection intervals for railway axles maintenance. The design of a maintenance
plan must maximise operational safety levels while minimising management costs.

In this section, an overview of the rise of the use of railways is given. Then,
some remarkable examples of railway accidents involving axle failure in-service are
described. Next, the fundamental research on early fatigue cracks in railway axles
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that promoted the development and research on fatigue theories, is summarized and
put into the contemporary context. Afterwards, the prevailing principles regarding
design, manufacture and maintenance of wheelsets is broadly explained. Finally, the
different safety assessment levels for railway axles are introduced to give the reader
insight into the leading-edge railway safety technology.

1.1.1 The rise of railways

The development of railways has been an important driving force for technological
progress. From the mid-eighties a dense rail network initiated from Europe, spread
all over the world. It is definitely a milestone in human development. Railway
systems steadily increased the volume of goods and number of passengers, becoming
the predominant transport system within few decades. The speed of travel suddenly
increased, leading to a significant reduction in travel times and immense benefits for
trade and social interaction. The development of the railways was accompanied by
influential advances in many fields, such as steel production and metal components
manufacturing. However, the impressive progress involved for the first time, large
metal components subjected to high stresses that changed cyclically over a long
period of time in the case of axles. The characteristics of these cyclic loads and their
effects on the initiation and propagation of cracks in a material, nowadays known as
fatigue phenomenon, were completely unknown by that time.

The railway axle, simple component at first glance, has played a key role in the
development of the understanding of fatigue. An example of a steel railway axle in a
raw manufacturing stage and in a finished stage is shown in Fig. 1.1.

(a) Raw axle. (b) Finished solid axle.

Figure 1.1. Railway axle [1].

A pair of wheels mounted rigidly on a railway axle such that both rotate in unison is
a wheelset, as the one presented in Fig. 1.2.
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Figure 1.2. Wheelset for a freight wagon [2].

According to the European commission data [3], European countries have deployed,
on an average, around 450 km of rail network per 1 million people and about 50 km
of rail network per 1000 km2. Spain in particular has developed about 350 km of
rail network per 1 million people and around 30 km of rail network per 1000 km2. The
European railway density in km of railway per 1 million people population and the
railway density in km of railway per 1000 km2 of territory are presented in Fig. 1.3.

(a) km of railway per 1 million people population. (b) km of railway per 1000 km2 of territory.

Figure 1.3. Railway density [3, 4].

It is possible to distinguish several networks in the Spanish railway system considering
management or administration criteria. The most extensive and with most traffic
corresponds to the general interest railway network, i.e. red ferroviaria de interés
general (RFIG). In addition, there are regional rail networks, which run entirely
through a certain region. The Spanish railway network is presented in Fig. 1.4.
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Figure 1.4. Spanish railway network according to its characteristics and managers (31-12-2019) [5].

The evolution of freight transport by rail in Spain in the period 1963-2019, is presented
in Fig. 1.5 in million of tons. The freight transport in Spain reached 26 million tons in
2019. It is worth highlighting the growth over the last years in the freight transport
carried out by private companies, as a result of the liberalization of the sector.

Figure 1.5. Evolution of freight transport by rail in Spain (1963-2019) [million tons] [5].

With the aforementioned figures in mind, is it possible to infer the importance of
the rail transport as one of the most suitable forms, where the operation done by a
railway company, provides service between train stations or freight customer facilities.
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Railway axles are commonly operated over a service life of about 30 years or more
which means a high number of loading cycles in the order of 109 cycles Smith [6] and
Zerbst et al. [7]. The vast amount of cycles involves fatigue stresses due to the
repetition. Therefore, railway axles are designed for a long term of operation.

The axles are one of the most essential components of rail systems, as their failure
can lead to derailment and, potentially, a major loss of functionality and human
casualties. Therefore, axle resistance to failure is a key issue in designing and
adequately maintaining railway vehicles, to ensure high safety standards and, at the
same time, to optimize life-cycle costs from a railway system point of view. In order
to maintain the safety of rail systems, extensive research and experiments have been
carried out in a prominent way, and many improvements have been made in the
design method, manufacturing, and inspection techniques.

1.1.2 Railway accidents involving axle failure

Breaking railway axles, wheels and rails cause accidents with disastrous consequences
for life and property. Axles are historically the weakest component of the wheelset.
As aforementioned, railway axles are mechanical components whose failure may
produce catastrophic consequences. The following accidents are examples of railway
axle failures for which fatigue failure was the main mechanism.

The Versailles accident, France, on the 8th of May 1842. A train crashed
between Versailles and Paris. The train was travelling to Paris when it derailed after
one of the axles of the leading locomotive broke, and the carriages behind piled into
it and caught fire from the engine. Many passengers, ranging between 60–100 or even
more as reported in Smith [6] and Smith and Hillmansen [8], died in the fire. It
was the deadliest train accident in the world at the time. It was the first railway
accident in which major loss of life occurred, and therefore the bad news spread all
around the globe. The Versailles railway accident is graphically represented in the
lithograph of Fig. 1.6.

It was recognised that the fracture, which caused the railway axle to break, was
unusual. The fracture surface was described as being significantly different from
the usual appearance of broken iron by slow bending, acknowledged at that time.
Nevertheless, it was clearly recognised that the failure occurred after a period of
satisfactory service. Metal fatigue was poorly understood these days. This major
accident caused by a broken railway axle was one of the key events, and perhaps the
most important one, which initiated systematic research into the problem of strength
and failure of engineering components.
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Figure 1.6. Versailles derailment accident. Courtesy of Bibliothèque nationale de France [9].

The Viareggio accident, Italy, on the 29th of June 2009. A tragic derailment
occurred in the Viareggio station. A freight train carrying tank wagons with liquefied
petroleum gas (LPG) derailed after a sudden break of the leading axle of the first
wagon. After the derailment, the tank wagon overturned and was ripped open by a
sharp-edged object and leaked LPG which caught fire, burning a large area around
the railway station and killing 32 people Bracciali [10]. This accident is one of the
most tragic railway disasters which happened in Europe in the last decades.

An impressive picture of the Viareggio railway accident is shown in Fig. 1.7. From
the image it is possible to conceive of the magnitude of the disaster.

Figure 1.7. Viareggio derailment accident [10].

As mentioned, this accident was caused by the fracture of an axle induced by fatigue.
An image of the railway axle broken is shown in Fig. 1.8. In the close-up of the
broken axle cross-section in Fig. 1.8b, the typical macroscopic progression marks
on a fatigue fracture surface are clearly perceivable. These marks are result of the
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successive positions of the advancing crack front. Note that these crescent-shaped
marks radiate outward from the origin of the crack until the final fracture. The crack
origin is approximately located at 4 o’clock of the axle, using as analogy the axle
cross-section as a clock. Note also that the marks are often referred to as progression
marks, marker bands, or beach marks.

(a) Broken axle. (b) Close-up of the fracture.

Figure 1.8. Cause of the Viareggio accident [10].

Despite almost two hundred years of development, statistics say that broken axles
still represent a quite common event. Very interesting reports prepared by the
European railway agency (ERA) [11] over the past years provide insight into number
of broken axles. These statistics can be found in the reports of ERA on railway
safety regarding railway safety performance in the European Union. The data of
broken axles collected from 2006 to 2014 is shown in Fig. 1.9.
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Figure 1.9. Precursors to accidents (EU-28, 2006-2014) [11].

As accidents on railways are rare, the monitoring of all events occurring on railways
is an essential tool. Despite gradual improvements in the broken axle data quality,
the data may not yet be fully comparable between member states, so certain caution
should be exercised when interpreting these data. In any case, it gives insight into
the relevance of broken axles in Europe. Note that Fig. 1.9 accounts for all types of
train usage, that is, freight, commuter, high-speed trains, etc.
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Focusing on freight wagons only, the European Commission set up a Task Force (TF)
to discuss the aforementioned axle failures and propose measures on maintenance
of freight wagons and in particular of wheelsets. The TF was made up of experts
in the field of freight wagon maintenance and railway axles. The population of
freight wagon axles at these years was estimated to be 1.6 million in service, running
50 billion km/year what implies an average of 30 000 km/year as the typical travel of a
freight axle. The TF released a deliverable [12], which collected the information of a
survey about the situation of freight axles failures in the European Union considering
the period 2006-2009. A total of 38 cases were reported as shown in Table 1.1.

Table 1.1. Causes and number of axle failures on freight wagons.

Cause Number Percentage
Hot axle boxes 30 79 %
Fatigue and corrosion 2 5 %
Fatigue and metallurgic fault 3 8 %
Fatigue (with no further information) 3 8 %

For the sake of clarity, hot axle box is the term used when an axle bearing overheats
on a piece of railway rolling stock. Analysing the collected data, the failures caused
due to hot axle boxes represent about the 80 % of all failures while fatigue is the other
identified cause representing about the 20 %. Moreover, fatigue seems to appear in
conjunction with factors such as corrosion or a metallurgic default. Therefore, to
improve the previous figures, ensuring that maintenance is adequate is one of the
main aspects that must be systematically evaluated.

The axle failure records a number of episodes per year that is still too high. Although,
a minor of the total traffic intensity is attributable to freight transport, it has an
important portion on the axle failures. Therefore, research actions must focus on
the freight sector with particular reference to the transport of dangerous goods. The
essential question posed by the recent accidents concerns not only the identification
of the cause of the failure in the axle but also the reasons why the progression of the
fatigue crack was not discovered during non-destructive inspection (NDI) before the
catastrophic failure.

Since railway wheelsets are safety critical components and their failures can cause
derailments, deaths and injuries, as mentioned, and since wheelsets cannot be
duplicated, safety can only be obtained through a rigorous and adequate inspection
plan with the use of NDI. These maintenance schedules must complement the best
operating practices already adopted in the railway sector, providing a higher level of
safety. Wheelset maintenance is expensive, time-consuming, complex to organize,
involves large capital and human resources, but it has been done for almost two
hundred years and there seems to be no other way to ensure rolling stock safety.
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1.1.3 Research on fatigue cracks in railway axles

The historical development of scientific and engineering knowledge about fatigue of
materials and structures, dates back from the early decades of the 19th century. The
fatigue of components became noticeable over the industrial revolution, mainly as
a result of the development of the railway industry and some dramatic failures as
described in the Subsection 1.1.2. Fatigue failures were frequently associated with
steam engines, locomotives and pumps as this type of failure was rather commonplace.
Over that period, fatigue was recognized as a fracture phenomenon occurring after
numerous loading cycles where a single load of the same magnitude would not cause
any damage.

A synopsis of the timeline of fatigue research is provided below [13, 14]. The following
provides a brief, not exhaustive overview on the most important milestones and their
relevance in railway axles in order to form the necessary background and knowledge
of the fatigue phenomenon.

• In 1837, Albert published the first article on fatigue, including the first known
fatigue test results of conveyor chains used in mines which had failed in service.

• In 1842, Rankine recognised the importance of stress concentrations in his
investigation of the strength of railway axle failures.

• In 1843, Glynn reported the fatigue of an axle of a locomotive tender, that is,
a rail vehicle hauled by a steam locomotive containing its fuel, being coal very
often. A sketch describing the fracture surface was included in the investigation,
and reproduced in Fig. 1.10. At that time the fracture shown was described as
an annular smooth zone produced by a constant process, extending for some
mm in depth all round the axle. The drawing clearly shows a circumferential
crack surrounding the final brittle fracture.

Figure 1.10. Glynn’s drawing of a fatigue failure in an axle.

• In 1848, James and Galton published results of tests on large iron bars
subjected to alternating loads as there were known from railway axles. In the
series of experiments, it was shown that the repeated application and removal
of a load could cause failure at loads well below of the static breaking load.
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It can be observed that by the middle of the century, engineers knew of the effects of
fluctuating stresses on the strength of metals. Over these years, many disastrous rail
accidents due to fatigue occurred, for instance, the well-known Versailles accident in
1842 were the axle of a locomotive broke as described in Subsection 1.1.2. A broader
insight into the phenomenon of fatigue was gained in the following years:

• In 1854, Braithwaite reported on common service fatigue failures such
as railway axles. The term fatigue was mentioned for the first time in the
investigations, and from then on, the term fatigue was coined and widely used.

• In the 1858-1870 period, Wöhler conducted a series of experiments concerning
fatigue in railway axles. In order to know the loads magnitude and character-
istics, the service loads of railway axles were measured with original deflection
gages as diagrammed in Fig. 1.11.

Figure 1.11. Whöler’s device for recording deflections of axles in service [14].

Then, knowing the magnitudes of the maximum forces acting, the strength of
axles under constant reversal of the stresses was investigated. The experiments
were conducted on small-scale axle-like specimens, loaded by steady rotating
bending in the purpose-built machine shown in Fig. 1.12. This test-rig repro-
duced the stress fluctuations previously measured. For a detailed description
of the measuring device and the testing machine, the reader is referred to [14].

Figure 1.12. Whöler’s fatigue testing machine [14].

Wöhler drew the following conclusions regarding the fatigue of materials
from the systematic studies performed. The material can be induced to fail
by many repetitions of stresses, even if all of them are lower than the static
strength. The stress amplitudes are decisive for the destruction of the cohesion
of the material, so, it was concluded that cyclic stress range is more important
than peak stress. The concept of endurance limit was also introduced, thus
making an essential contribution to fatigue avoidance by design. This implicitly
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suggested design for finite fatigue life, taking into consideration even the scatter
of fatigue life, or in other words, the probability of failure. The effect of the
stress concentration of sharp corners was studied. This scenario takes place in
axle transitions where different diameters in different sections are used. It was
observed that the use of transition radii mitigated the effect. It is important
to note that this practice is still in use in the railway axle manufacturing.
Additionally, the discontinuity of stiffness between the axles and the wheels
press-fitted, was identified as an important region in fatigue assessment.

It can be concluded that these early investigations were of a fundamental nature. For
each kind of test, several machines and measuring instruments were envisioned and
designed ad-hoc. Over these years, failure of railway axles was a matter of concern
and also a design challenge that drove a continuous motivation. Works of the time
proposed many theories and ideas on the cause of the failure of railway axles, and
the matter was widely discussed in scientific gatherings. It was during these debates
when the term fatigue was coined to describe the sudden fracture of a component
which, at least visibly, was performing properly, right up to the moment of failure.
It can be stated that these early investigations on railway axles formed the basis of
knowledge on which fatigue in materials science is grounded.

The problems of the early days of railway technology were overcome long ago.
However, increasing demands and higher axle loads aimed nowadays account for
quite new challenges with respect of material and technology as well as safety issues.

1.1.4 Design, manufacture and maintenance of wheelsets

Nowadays, the general structural reliability analysis of components when applied
to the particular case of railway rolling stock is supported on three main pillars:
(i) design, (ii) manufacture, and (iii) maintenance. They are included in the diagram
of Fig. 1.13 for having a better view.

Design
(Geometry, Dimensioning,
Loads, Stresses, Fatigue) 

Manufacture
(Material, Quality

Assessment, Protection)

Maintenance
(Fracture mech., Inspections,

Experience, Repair)

Figure 1.13. Reliability of structural components.

The continued efforts, research and development carried out on rolling stock, show
that the developments are fundamentally driven and governed by three factors:
(i) operation, (ii) technology, and (iii) regulation. These are shown in Fig. 1.14.
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Operation
(Inspection intervals, Defects,
Higher axle-loads, speeds, ...) 

Technology
(New Assesment procedures,

Materials, Vehicles, ...)

Regulation
(Establish a EU maintenance,

 Compliance product-needs, ...)

Figure 1.14. Current developments in the railway field.

In this framework, the reliability of structural components can be further invest-
igated in the different lines of research associated to the design, manufacture and
maintenance as presented in the exploded view in Fig. 1.15, that shows the reciprocal
relationships among the various parts.

Design
(Geometry, Dimensioning,
Loads, Stresses, Fatigue) 

Manufacture
(Material, Quality

Assessment, Protection)

Maintenance
(Fracture mech., Inspections,

Experience, Repair)

Calculation
(Analytical beam theory, FEM, 

  Magnification factors, ...)

Stresses
(F and M from Vehicle mass,
Inertia, Traction, Braking, ...)

Fatigue criteria
(Fatigue limit ~ Solid/hollow,
Critical section, Corrosion, ...)

Material
(Resistance to tensile loads,

Fatigue, Toughness, ...)

Quality control
(Flaws internal or external, 
Low metallic inclusions, ...)

Protection
(Ballast Impacts, Corrosion, 
axle Coatings or Shields, ...)

Fracture mechanics
(Better adapt the frequency

 of maintenance operations, ...)

NDT Inspections
(Qualification of VT, UT, MT,
POD, Operating procedure, ...)

Experience feedback
(Service of historical railways,

 Maintenance, Repair, ...)

Figure 1.15. Exploded view of reliability of the wheelsets: design, manufacture, and maintenance.

Design. The design of rolling stock is based on three fundamental parameters:
(i) calculation, (ii) stresses, and (iii) fatigue limits. Railway axles are designed
to have a theoretically infinite life according to EN 13103-1:2017 standard [15],
considering that fatigue limits are derived at 107 cycles of load. For axles, the
design calculations currently employed are based on the beam theory and nominal
stress method following the procedure thoroughly described in EN 13103-1:2017
standard [15] that is of application for both non-powered axles and powered axles.
The schematic of forces for the calculation of the bending moment is shown in
Fig. 1.16. The forces and moments considered include the mass of the vehicle, global
bending given a defined distribution of loads acting at the bearing journals and at the
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contact points between wheels and rails, inertia of masses when cornering, bending
plus axial load, and from traction and braking actions, torsion. Briefly, there are
different specific permissible stresses at various locations on the axle associated with
the different steel grades. The stress thresholds, derived from uni-axial fatigue tests
done in the laboratory on test pieces representative of the component and the material,
are set with generous safety factors. The axle is divided into sections bounded by
geometrical discontinuities and at each end of those sections, the calculated stresses
must be below the permissible stresses. Additionally, fatigue stress concentration
factors are considered and included in nomograms according to geometrical ratios.
On the other hand, wheels are calculated by the finite element method in order to
determine the principal stresses under conventional loads following the procedure
described in EN 13979-1:2020 [16] and CEN-TS 13979-2:2011 [17] standards.

Figure 1.16. Forces for calculation of bending moment in a railway wheelset (in blue) [15].

Manufacture. The manufacture of rolling stock is based on three fundamental
aspects: (i) material, (ii) quality control, and (iii) protection. The wheelset production
process involves the wheel production, the axle production and the assembly of both.
The wheel and axle production processes are quite similar, consisting in four main
steps: (i) forging, (ii) heat treatment, (iii) machining, and (iv) finishing. The
differences are basically related on the particularities of each component.

Among the different wheel types, solid wheels are the standard for freight applications.
The wheel production process can be summarized as follows:

• forging: press-forming press, wheel rolling, dishing press,

• heat treatment: rim chilling where after the austenization of the wheel, a rapid
local cooling-down affecting only the tread of the wheel is performed to increase
the tread hardness, which is the area subjected to wear in service,

• machining: turning, boring,
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• optionally shot-peening or cold-rolling of the web area in order to increase its
strength against fatigue,

• inspection and verification: dimension control, MPI, UT,

• finish: painting, protection.

Railway axles are produced according to following particular process:

• forging: press-forming press,

• heat treatment: depending on the steel grade, railway axles can be normalized or
double normalized, to obtain a fine pearlitic-ferritic structure or can be quenched
and tempered, to obtain a bainitic/annealed martensitic fine structure,

• rough machining: centring, turning, drilling,

• finish machining: turning, grinding,

• optionally, cold rolling of seats or whole axle to increase the fatigue strength,
molybdenum coating in the seats to improve the fretting fatigue resistance, or
sand blasting which is also used in maintenance, to remove painting,

• inspection and verification: dimension control, MPI, UT,

• finish: painting, protection.

Then in wheelsets production, wheels are mounted on to the axle seats by an
interference fit. The most extended method for the assembly is by using a press. An
alternative method is via shrink fit by heating the wheel before the assembly.

Regarding the materials in use for rolling stock, according to EN 13260:2020 stand-
ard [18], the steels grades EA1N, EA1T and EA4T are the standard materials, being
EA1N (normalized) and EA1T (tempering quenched) low strength carbon steels
while EA4T (tempering quenched) is a low-alloyed steel of fairly medium to high
strength. The chemical composition of these steel grades is defined through the
maximum percentage contents of the various elements as described in EN 13261:2020
standard [19].

Additionally, the verification of the fatigue characteristics is essential in order to
have a wheelset designed correctly. The performance of a railway axle in service
depends upon these characteristics. The fatigue limit values defined for wheelsets in
EN 13260:2020 standard [18], are used for the calculation of the maximum permissible
stresses that are referred to in the design rules in EN 13103:2017 standard [15] as
explained above in the first main pillar of reliability, i.e. design.

For the axle product, the fatigue limits are assessed in tests made on full size test
pieces, in order to predict the behaviour of the axle under in-service stresses. These
fatigue limits apply to different axle areas. The limits applying to the wheelsets that
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depend mostly on the assembly, are defined in EN 13260:2020 standard [18], and the
fatigue limits applying to the axle body are included in EN 13261:2020 standard [19].
In the case of body axle, a fatigue limit F1 is defined on the body surface for solid
axles, and F2 on the bore surface in the case of a hollow axle. In the case of assembly
related aforementioned, it is necessary to define one fatigue limit for solid axles,
F3 under the press-fit surfaces, and two fatigue limits for hollow axles, F4 under
the press-fit zone, excluding the connecting rod, and F5 under the connecting rod
press-fit. These fatigue limits shall be tested in three test pieces verifying that there
is no crack after 107 cycles of load. The values to be achieved are given in Table 1.2.

Table 1.2. Fatigue limits values in [MPa] from standards [18, 19].

F1

EA1N/EA1T

Steel	grade

EA4T

F2 F3 F4 F5

200 80 120 110 94

240 96 145 132 113

Maintenance. The maintenance of railway axles relies on three main concepts:
(i) fracture mechanics, (ii) non-destructive testing (NDT) inspections, and (iii) ex-
perience feedback. Nowadays, inspection intervals can be carried out both during
service and during maintenance steps. Those inspections, based on return of limited
experience, are not entirely ruled by any international standard since there is little or
no standardisation of maintenance operations. However, prescriptions have been es-
tablished, mainly for freight rolling stock. Particularly, EN 15313:2016 standard [20],
related to the wheelset maintenance, implements special maintenance actions for
freight wagon axles of type A and B as a function of their loading. Table 1.3 shows the
maintenance intervals and maintenance actions that have to be applied to guarantee
safe operating conditions for these type of axles according to axle load.

These values have been derived from the experience gained by users in European
applications. The axle integrity shall be assessed by NDT in compliance with the
requirements specified in the maintenance plan. For type A axles, the mileage
is limited to 400 000 km or equivalent time in service, between medium or heavy
maintenance. For type B axles, inside design limits, but its use must be checked case
by case considering wagon parameters and permitted infrastructure axle load.

The periodicity of NDT of the axle must be defined taking into account the design,
the type of application, and the service experience. The informative Annex J of
EN 15313:2016 standard [20] presents a general rule applicable to axles. It states
that the general rule for axles conforming to the requirements of European standards
is to perform NDT during medium or heavy maintenance of railway wheelsets. This
represents the highest level of security. Additionally, the standard itself remarks that
the inspection interval can be further adapted based on service experience, and more
specifically on the results of the NDT, and may result in an increase or a decrease of
the inspection interval. From here, it can be observed that this is an open point in the
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Table 1.3. Special maintenance actions for freight wagon axles according to axle load [20].

Axle type Axle load M (t) Additional criteria 

Corresponding 
additional 

maintenance 
action 

For type A-I; A-II; A-III(1) axles operated 
from 20 t up to 21 t axle load in standard 
maintenance plan and re-classified back to 
20 t operation: 

Re-integrate axle in standard maintenance plan with UT of the 
wheel seat at the next reprofiling, medium or heavy 
maintenance level of the wheelset 

Type A-I; A-II; A-III(1) 21 < M Not covered by this EN Scrap 

Type A-III (2) 20 < M ≤ 20,6 Inside design limits, validated by service No special 
requirements 

Type A-III (2) 20,6 < M ≤ 21 Limited mileage between medium or 
heavy maintenance: 400,000 km or the 
equivalent time in service 

NDT with mounted 
wheels 

UT at 
wheel seat 

UT or MT at 
  transition  radii

Type A-III (2) 21 < M ≤ 22 Limited mileage between medium or 
heavy maintenance: 200,000 km or the 
equivalent time in service 

Type B 22,5 < M ≤ 23,5 Inside design limits but use to be checked 
case by case in accordance with wagon 
parameters and permitted infrastructure 
axle load 

No special 
requirements 

standards, and therefore the responsibility of setting the specific values of inspection
intervals lies in the maintenance service. Consequently, the axle inspection processes
are aimed at an ad-hoc approach identifying appropriate NDT practices. Annex J
further details that for type A or B axles mounted on freight wagons, the following
requirements apply: (i) to perform NDT on all the axle sections during medium
maintenance, and (ii) to perform NDT by magnetic particle inspection (MPI) on the
full axle surface during heavy maintenance.

For clarity, the previous maintenance actions on wheelsets are enclosed in Table 1.4,
where the acronyms stand for, visual testing (VT), ultrasonic testing (UT), and
magnetic particle testing (MT).

Table 1.4. Main maintenance actions of wheelsets.

Type Action NDT
Wheels reprofiling off-vehicle maintenance VT
Medium maintenance off-vehicle maintenance

w/o changing wheels
UT and/or MT
on axle sections

Heavy maintenance off-vehicle maintenance
w/ changing wheels

MT on the full axle surface
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In summary, the EN 15313:2016 standard [20] contains general instructions but does
not provide sufficiently clear guidance on how to implement maintenance activities at
a practical operational level. It is worth keeping in mind that wheelset maintenance
is expensive, time-consuming, complex to organize and involves large capital and
human resources.

As mentioned, the current design and operation of rolling stock is based on many
years of experience. Designers establish design cases based on practice and customer
specifications without explicitly establishing any link of these studied cases with
actual system behaviour. At the same time, current standards do not rigorously
specify how to determine the material properties used in the design, but rather use
empirical methods based on experience with traditional materials. The subjective
nature of this approach, however, leads to satisfactory results since over the past years
the safety of these systems has been proved. The limitation of this design methodology
lies in the fact that the wheel and axle design and its associated maintenance strategy
and inspection periods involve such uncertainties that it is almost impossible to
optimize them. The new design requirements aim to a reduction of weight and life
cycle cost (LCC) for a given level of safety. The first condition can be met reducing
the level of dynamic loads and should be done through an optimization process, the
second of them involves the increase in service life, what can be achieved through the
proper exploitation of the materials used and the optimization and improvement of
non-destructive inspection practices. A scientific approach to the inspection interval
definition complementary to the empirical approach is required in order to establish
the highest level of safety. These new challenges in the design strategy of rolling
stock give way to the development of new numerical and experimental methodologies
based on fracture mechanics and non-destructive inspection techniques within the
approach of damage tolerance analysis (DTA).

No unique scheme exists on how to apply fracture mechanics to different components.
One of the most important aspects is the time taken for a detected crack to extend
to its critical size. If this time is known, and it is sufficiently large, a design concept
based on inspection intervals can be applied in a viable way. If it is rather small,
the concept has to aim at avoiding crack initiation. Below, a number of different
options of fracture mechanics application in design according to Zerbst et al. [21]
are enumerated. These are:

(i) damage tolerant design;
(ii) fail-safe design (redundant design, crack arrest, leak-before-break);
(iii) periodic proof testing;
(iv) periodic removal of cracks; and
(v) durability design using a fracture mechanics based fatigue endurance curve.
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In a railway axle, knowing that the time for a crack to nucleate and grow should
be sufficiently large Zerbst et al. [22], a design concept based on damage tolerance
seems reasonable. Damage tolerance, as its name suggests, entails allowing subcritical
flaws to be in a structure for a certain period. Note that damage tolerance does not
mean that a crack detected during an inspection is considered acceptable even when
its size is far from being critical. In some cases this is a possible option, but it must
be handled with care in safety relevant components as it is the case of railway axles.

As mentioned, the fatigue fracture of materials is caused by the nucleation and
propagation of cracks under cyclic loading. The crack size scale for initial and final
cracks is illustrated in Fig. 1.17. However, structures can withstand a considerable
load in presence of cracks or yet failed parts are considered to be damage tolerant.

Initial defect Life Final crack

Natural
initiation

Flaws, pores, 
inclusions, pits

Slag,
debris

Low
toughness

High
toughness

Short cracks Long cracks

1µm         10µm       100µm       1mm         10mm       100mm       1m

Figure 1.17. Several initial and final crack sizes delimiting crack propagation life.

The initial defect length can vary from 1 µm to ≈1 mm, depending on the defects
existing in the material. The final crack length is usually of some millimetres. The
distinction between short and long cracks is sometimes taken as ≈1 mm in length.

The general stages within the lifetime of a component are illustrated in Fig. 1.18.

Whole lifetime of a component

Lifetime until noticeable initial crack       remaining lifetime

No crack           Crack initiation phase             Crack growth phase

Inspection phase

Crack nucleation                          Macro crack growth
µcrack 
growth

Failure
or rejection

Noticeable 
initial crack

Initial conditions
without failure

Initial conditions
with failure

Figure 1.18. Stages of lifetime.
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The ideal initial conditions would be to not have a single failure, but in reality
components have initial defects that arise naturally. From the initial defect, flaws,
pores, inclusions, pitting, etc., the crack nucleates and initiates until it reaches a
certain size that is considered to be noticeable. This process consists of the crack
nucleation phase and the micro-crack growth phase. The lifetime up to this stage
is referred to as the lifetime until the initial crack is noticeable. The next phase,
often referred to as crack growth or crack propagation, spans from the initial crack
under consideration to the final crack size for failure, or rejection of the component.
The process is the macro-crack growth and the length of this phase is known as the
remaining lifetime, as it is the lifetime that the component can be inspected by non-
destructive techniques within a damage tolerance assessment scheme. As introduced
above, the determination of inspection intervals is possible by combining methods
of structural durability together with fatigue approaches and fracture mechanics
concepts. In the following sections, some of the most important aspects regarding
this evolving approach, are further revised.

The very aim of fatigue crack propagation is then to establish the relationship of crack
propagation as a function of a loading parameter under complex service conditions.
Some factors that influence the crack propagation rate are: (i) the component size
and geometry; (ii) loading conditions; and (iii) the microstructure of materials, aside
from environmental aspects such as corrosion and temperature.

1.1.5 Safety assessment levels for railway axles

The existing design and operation of railway axles is based on a two-stage safety
concept comprising safe life and damage tolerance approaches. These safety levels
are illustrated in Fig. 1.19, which is taken from an extended review on safe life and
damage tolerance aspects of railway axles by Zerbst et al. [22]. It also includes an
additional stage in-service damage indication systems with further options that offer
potential for establishing a third stage safety concept. For completeness, Fig. 1.19
also indicates the maturity of the technologies in the three stages, by using a two-level
scale as follows: (*) state of the art, and (**) present and future development.

Primary safety level: Safe life design. In Europe, railway axles are designed
according to EN 13103-1:2017 standard [15] for trailing, i.e. non-powered and for
driving, i.e. powered axles. Summarizing, the design is based on the static stresses
with dynamic effects being included as magnification factors in a way that the
resulting loading represents the worst possible case-scenario. This differs from the
reality because all loads are assumed to act simultaneously. The maximum permissible
stress in the axle is given by fatigue limits of the material under consideration, and
also it additionally depends on the type of axle, solid or hollow, and the axle section,
that is, under press-fits, body axle, etc. Moreover, if the axle is exposed to corrosion
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Figure 1.19. Components of a safety assessment system for railway axles [22].

reductions of the allowable stress is indicated. The main problem in designing railway
axles is the incompatibility between the two targets: low wheelset mass, and low
design stress. Both are wanted, but each can only be obtained to the detriment of the
other. This design issue is sometimes addressed using smaller wall thickness in hollow
axles, mass reduction, and using higher-strength steel, obviously, with higher stress
properties. This is, however, problematic in terms of crack susceptibility and crack
propagation. Additionally, changes in the dimensions of a railway axle also depend
on the overall geometry of the boogie. The existing methodology in railway axle
standards is discussed by Grubisic and Fischer [23] and Sonsino [24] where its
replacement by a methodology taking into account damage accumulation is suggested.
The approach proposed by Beretta and Regazzi [25] for railway axle design, is
based on the FKM guidelines [26], where the fatigue assessment considers the damage
sum criteria derived from the concepts of damage accumulation originally proposed
by Miner [27]. In particular, two approaches are proposed by the guidelines: (i) the
Haibach model, similar to the original Miner’s rule but with two regions of the
fatigue curve defined, the finite life region and the infinite life one; and (ii) the
Miner-Konzequent method. The discussion on the allowable damage sum indexes
relative to the safe life assessment of railway axles is still open.

Secondary safety level: Damage tolerance design. The primary safety level
based on a traditional safe life design, has several limitations as it is unable to take
into account the deterioration of the axles during service, such as paint detachment,
pitting from corrosion or damage from ballast impacts. These issues are discussed
in depth in the following sections. All these types of damage could act as fatigue
crack initiation mechanisms, causing final fracture of the component. Although, the
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existence of such cracks in railway axles is not acceptable, it seems that it is not
possible to totally avoid them, at least based on the current technology. To overcome
these limitations, a secondary level of safety is introduced in the railway axle safety
assessment, based on periodic in-service inspections. The very aim of the damage
tolerance approach is to detect potential cracks before they become critical.

There are several alternatives to determine the appropriate inspection periodicity
that are: (i) based on feedback experience, and (ii) based on fracture mechanics
principles. The former alternative uses the limited knowledge of the inspections
periodicities performed so far by the different managers for the different applications.
In addition, the current regulations and recommendations regarding the distance
between inspections described in Section 1.1.4 are considered. It is worth to remark
here, that there is a lack of standards regarding specific inspections of railway axles,
but only guidelines about the freight wagons. Moreover, the applicable standards are
generic and open to interpretation when it comes to damage and repair procedures.
In consequence, the responsibility is totally demanded to the constructor and the
maintenance service. Given this scenario, it is trivial that it is not possible to
determine an optimal inspection interval beforehand since there is not any information
that relates the actual state of the component and the likely crack propagation until
the next inspection. The latter alternative based on fracture mechanics approach,
assumes that a crack is present in the axle, and it can grow during service. The
primary result is the crack depth versus time or number of loading cycle characteristics
and, based on this, the residual lifetime, i.e. the time or number of loading cycles
the assumed initial crack would need to become critical. By an appropriate analysis,
the residual lifetime can be calculated, and consequently, an adequate inspection
plan can be defined, in order to ensure safety. It provides an assured level of safety
for the axles of a fleet of trains by quantifying in-service inspection intervals. This
approach is commonly used in aerospace engineering, mechanical engineering, and
civil engineering as exemplified by Jones [28], to manage the extension of cracks
in structure through the application of the principles of fracture mechanics. The
sustainment tools needed to assess in-service cracking issues in rolling stock are similar
to those needed for aircraft structures in that both need to address issues related
to the growth of cracks from small material discontinuities in complex geometries
and under complex variable amplitude load spectra. It is worth noting here that
crack nucleation and early crack propagation are not an issue of damage tolerance
analysis. Instead, the presence of a sufficiency large crack size is postulated. What
matters is the largest crack that could escape detection under in-service conditions.
The details of the current state-of-the-art methodologies developed within the frame
of damage tolerance assessment applied to railway axles are given in the next section.
Note that the discussion of this relatively new methodology when compared with
what is prescribed by the current standards, safe life design, and with the damage
accumulation alternative, is still open.
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It is envisioned that inspection periods should not be established only on the basis
of experience but also on the basis of a given fracture mechanics methodology.
However, it should be kept in mind that fatigue, fracture and in general any material
degradation process, are inherently stochastic phenomena. Randomness in the
microstructure and in the properties of the material, in the in-service loads or in the
manufacturing process itself, considerably affect the dispersion over the lifetime of
the component. In practice, the effects inherent to these uncertainties are covered by
the use of safety factors and the use of conservative assumptions. Such approaches
are therefore deterministic and aim to ensure an acceptable level of safety in the
structure by keeping the probability of failure low enough to meet industry standards.

Deterministic analyses in the field of damage tolerance unfortunately cannot help in
assessing the degree of conservatism of a given structural design subjected to so many
sources of uncertainty in service. This type of analysis also seems inappropriate for
assessing the contributions of each of these random parameters from a stochastic
point of view and, of course, is insufficient when scheduling a maintenance plan.

In an effort to overcome these limitations, probabilistic approaches to fracture
mechanics have received increased attention in recent years in the field of damage
tolerance. One of the objectives of this thesis is to tackle the limitations on the current
state of the art by establishing a stochastic approach to the problem, quantifying the
uncertainties associated with it and providing the probabilistic lifespan knowledge
that would be an essential asset for a precise calculation inspection periodicities
according to the damage tolerance point of view.

Tertiary safety level: In-service damage indication systems. For complete-
ness, in the extended review on the safety levels of railway axles by Zerbst et al. [22],
is added that there is also some work in progress on a tertiary safety level in order
to detect axles containing fatigue cracks during train operation. The challenge is to
detect the crack when the train is moving or during stops. These types of initiatives
are often classified as condition monitoring processes, where a certain parameter
is controlled representing the condition of the component in order to identify a
significant change which is indicative of a developing fault. The principles which are
under investigation include inspections based on high energy laser pulse ultrasonics as
in Morgan et al. [29] and Ngigi et al. [30], monitoring the vibration characteristics
of the axle described by Verhelst [31], and based on new sensor systems adapted to
rotating axles in hollow or solid axles to inspect online during service as investigated
in Prager and Grzeszkowski [32]. All these recent ideas for a third safety level
are, as mentioned, in early stages of development and as one of the main drawbacks
is that they are nowadays only capable of detecting fairly large cracks.

The existing and potential innovative safe life and damage tolerance methods applied
to railway axles has been summarized. In the following, aspects such as damage
tolerance or probabilistic considerations are discussed in detail.
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1.2 Fundamentals of damage tolerance

Damage tolerance is the ability of a component or structure to sustain constant
and/or varying loads in the presence of fatigue cracks, corrosion defects, impacts,
metal inclusions, or any damage induced by accidental loads until such damage is
detected through inspections. In this section, the focus will be on fatigue cracks.
Damage tolerance analysis for fatigue cracks uses fracture mechanics to describe
the fatigue crack growth process, the residual strength or life, and combined with
the definition of a periodic inspection plan, provides a certain level of safety. That
means that fatigue cracks are allowed to appear as long as they can be detected
with a certain probability before they reach their critical size. The rationale of the
basic elements of damage tolerant methodology are introduced below. The concept
of crack growth behaviour, from an initial flaw to failure, is introduced. The basics
of fracture mechanics, stress intensity factors, material characterization, and life
prediction methodology are presented. Finally, the general scheme for a damage
tolerance analysis of railway axles is reviewed and summarized.

1.2.1 Damage concepts, behaviour and effects

A schematic of the typical crack growth behaviour in a structural component is
shown in Fig. 1.20. It illustrates the crack evolution from an initial damage size
aini to a damage size that causes structural failure and loss of safety. The x-axis
measures the number of loading cycles applied, N , or the equivalent elapsed time
during which loading is applied, or an equivalent distance travelled, for instance,
mileage in km. The y-axis measures the corresponding length or depth of a crack, a,
in the given component, typically in mm. It is inferred from Fig. 1.20, that when the
crack is short, it grows very slowly. As the crack becomes longer, the crack growth
rate increases until the crack reaches the critical size, when fracture of the structural
element occurs. While the sub-critical crack growth process occurring may take a lot
of years of service, e.g. 20–30 years, the fracture process is almost immediate.

The crack grows as a result of the cyclic loading that is applied to the structure. Any
crack will grow a given increment ∆a in a given number of loading cycles ∆N . Such
process is driven by the crack growth rate da/dN . When the crack length reaches
a critical value, the growth becomes unstable, thereby inducing failure. When the
crack reaches the critical length, the number loading cycles reach the structural life
limit. The structural life limit is a measure of the maximum allowable service time,
or number of accumulated service cycles or distance travelled, associated with driving
the crack from its initial length to the critical length. The main aim of the damage
tolerant approach is to ensure that cracks do not reach levels that could impair the
safety of the component during the expected lifetime.
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Figure 1.20. Schematic of crack growth behaviour for a typical crack.

There are several parameters observed that have an effect in the crack growth life as
summarized by Miedlar et al. [33]. The most important of these are: (i) geometrical
properties of the structure and the initial crack size aini and shape, (ii) the loading
history, and (iii) the material properties.

Geometrical properties - a measure of quality. The effects of the properties
of the structure, component dimensions and expected crack location are signific-
ant in crack growth behaviour. The structural properties involve such things as
crack configuration, load transfer through joints, holes size, parts thickness, etc. A
substantial amount of experimental work is required to characterize some of these
geometrical effects on life. Moreover, the effect of initial crack size is notable. Given
a configuration and loading, the smaller the initial crack size, the longer the life.

Stress history - a measure of usage and location. The magnitude and sequence
of loadings are noted to have a significant effect on the rate at which cracks grow. The
stress history describes the magnitude and sequence of stresses at one location that
results from the sequence of loadings acting on components. For instance, as a railway
travels different missions and different manoeuvres such as curves, over crossovers,
through switches, rail joints, etc, it experiences different amplitude loadings.

Material properties - a measure of material resistance to cracking. It is
shown experimentally that for the same loading condition, i.e. the same number and
amplitude of stress cycles, cracks grow faster in certain metal alloys than in others.
The crack growth rate da/dN for each material can be measured experimentally
through testing. Given the same load and geometric conditions, the material having
the slower growth rate characteristics will have a longer life.

To sum up, these main parameters are in the realm of: geometry, quality, and
initial crack size; usage, varying loading history; and material properties. Given this
concepts, the crack length will be the measure of damage and the crack growth rate
will define the rate of damage accumulation.
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1.2.2 Basics of fracture mechanics

Fracture mechanics is the field of mechanics which studies the propagation of cracks
in a material. This discipline uses methods of analytical solid mechanics to calculate
the driving force on a crack and those of experimental solid mechanics to characterize
the resistance of the materials to fracture.

A comparison of the traditional approach to structural design with the fracture
mechanics approach is presented in the diagrams of Fig. 1.21. In the traditional
approach in Fig. 1.21a, the calculated design stress is compared with the flow
properties of likely suitable materials. A material is assumed to be appropriate if
its strength is greater than the expected stresses. Frequently, this approach uses
safety factors on stress, combined with assuming a minimum tensile property of the
material, to prevent brittle fracture. The fracture mechanics approach in Fig. 1.21b
has three variables, rather than the two in the traditional approach. In this case, the
flaw size is an additional structural variable, the fracture toughness replaces strength
as the critical material property, and the consideration of the applied stress remains.
This approach quantifies the critical combinations of these three basic variables.

Applied
stress

Yield or tensile
strength

(a) Strength of materials.

Applied
stress

Flaw
size

Fracture
toughness

(b) Fracture mechanics.

Figure 1.21. Traditional strength of materials approach and fracture mechanics approach [34].

There are two alternative approaches to fracture analysis [34]: (i) the energy criterion,
and (ii) the stress intensity approach. These two approaches are equivalent in certain
circumstances. Both are discussed below, but the focus will be on the SIF approach.

The energy criterion. The energy approach states that crack extension occurs
when the energy available for crack growth is enough to overcome the resistance of
the material. The material resistance may include the surface energy, plastic work,
or other types of energy dissipation associated with a propagating crack.

Griffith [35] was the first to propose the energy criterion for fracture, but Irwin [36]
is primarily responsible for developing the current version of this approach. The
energy release rate G is defined as the rate at which energy is transformed as a
material undergoes fracture. At the moment of fracture G = Gc, which is the critical
energy release rate, that is related to the fracture toughness.

A crack in an infinite plate subjected to a remote tensile stress is shown in Fig. 1.22.
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Figure 1.22. Through-thickness 2a crack in an infinite plate subjected to a remote tensile stress.

For that configuration, the energy release rate is given by Eq. (1.1), where E is
Young’s modulus, σ the remotely applied stress, and a is the half crack length.

(1.1)G = πσ2a

E

At fracture, the critical combinations of stress and crack size for failure are described
in Eq. (1.2), where G = Gc, ac is the critical crack size, and σf is the failure stress.

(1.2)Gc =
πσ2

f ac

E

The energy release rate, G, is the driving force for fracture, while Gc is the resistance of
the material to fracture. To draw an analogy to the strength of materials approach of
Fig. 1.21a, the applied stress can be viewed as the driving force for plastic deformation,
while the yield strength is a measure of the material’s resistance to deformation.

The tensile stress analogy is also useful for illustrating the concept of similitude. A
yield strength value measured with a test specimen should be applicable to a large
structure knowing that the yield strength does not depend on specimen size as long
as the material is homogeneous. One of the fundamental assumptions of fracture
mechanics is that fracture toughness, Gc in this case, is independent of the size and
geometry of the cracked body. Therefore, a fracture toughness measurement on a
specimen should be applicable to a structure. Provided that this assumption is valid,
all configuration effects are taken into account by the driving force G. The similitude
assumption is valid when the material behaviour is predominantly linear elastic.

The stress intensity approach. The stress intensity factor (SIF), K, is used in
fracture mechanics to predict the stress state, i.e. stress intensity, near the tip of a
crack caused by a remote load or residual stresses [34]. The SIF, is a measure of the
severity of a crack in an elastic solid and is closely related to the stress field in the
vicinity of the crack front. In linear elastic fracture mechanics (LEFM) there is a
direct relationship between the SIF and the G which governs the criticality of a crack.
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The magnitude of K depends on specimen geometry, the size and location of the
crack, and the magnitude and the distribution of loads on the material. It can be
written as in Eq. (1.3), where f(a/W ) is a specimen geometry dependent function of
the crack length, a, and the specimen width, W , and σ is the applied stress.

(1.3)K = σ
√

πa f(a/W )

Theoretically, the stress ahead of a sharp crack tip becomes infinite and cannot
be used to describe the state around a crack. When the plastic zone at the tip
of the crack is small relative to the crack length the stress state at the crack tip
is the result of elastic forces within the material and is termed LEFM and can be
characterised using the stress intensity factor K. The stress intensity factors have the
bizarre units of stress × length1/2, e.g. MPa

√
m. Although the load on a crack can be

arbitrary, Irwin [37] found that any state could be reduced to a combination of three
independent stress intensity factors for the various modes illustrated in Fig. 1.23.

(a) Mode I: opening. (b) Mode II: in plane shear. (c) Mode III: out-of-plane shear.

Figure 1.23. The three modes of loading that can be applied to a crack.

The three modes are described as follows:

• Opening mode I in Fig. 1.23a: a tensile stress normal to the plane of the crack,

• Sliding mode II in Fig. 1.23b: a shear stress acting parallel to the plane of the
crack and perpendicular to the crack front, and

• Tearing mode III in Fig. 1.23c: a shear stress acting parallel to the plane of
the crack and parallel to the crack front.

An element near the tip of a crack in an elastic material is shown in Fig. 1.24.
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(a) Sharp crack. (b) Components of stress.

Figure 1.24. Ideally sharp crack in a linear elastic domain.

Linear elastic theory predicts that the stress distribution σij near the crack tip, in
polar coordinates (r, θ) with origin r = 0 at the crack tip, has the form in Eq. (1.4),
where K is the stress intensity factor and fij is a dimensionless quantity that varies
with the load and geometry.

(1.4)σij(r, θ) = K√
2πr

fij(θ) + higher order terms

Detailed expressions for the singular stress fields for the three types of cracking mode
are gathered in Table 1.5. Note that in these expressions ν is the Poisson’s ratio.

Table 1.5. Stress fields ahead of a crack tip in a linear elastic, isotropic material.

σij Mode I Mode II Mode III
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The corresponding equations for the displacement relationships for modes I, II, and
III can be found in [34]. Note that each stress component is proportional to a single
constant, K. If this constant is known, the entire stress distribution at the crack
tip can be computed with the equations in Table 1.5. This constant, i.e. the SIF,
completely characterizes the crack tip conditions in a linear elastic material.

If the material fails locally at some critical combination of stress and strain, then
it follows that fracture must occur at a critical value of stress intensity, Kc. Thus
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Kc is an alternate measure of fracture toughness. For instance, in mode I, failure
occurs when KI = KIc. In this case, KI is the driving force for fracture and KIc is a
measure of material resistance. As with Gc, the property of similitude should apply to
KIc. That is, KIc is assumed to be a size-independent material property. Comparing
Eqs. (1.1) and (1.3) results in the relationship between KI and G in Eq. (1.5).

(1.5)G = K2
I

E

This same relationship holds for Gc and KIc. Thus the energy and stress intensity
approaches to fracture mechanics are essentially equivalent for linear elastic materials.

Similarly, small flaws may result in crack growth when subjected to cyclic loading,
i.e. fatigue. For long cracks, the rate of growth is largely governed by the stress
intensity factor range ∆K from the maximum and minimum K, i.e. Kmax and Kmin,
experienced by the crack due to the applied stress range ∆σ. The cyclic stress range
∆σ (= σmax − σmax) and the cyclic stress intensity factor range ∆K (= Kmax − Kmax)
are illustrated in Fig. 1.25 for a growing crack. Note also that the figure represents
the amplitude and the mean values for the stress, σa and σm respectively, and for
the corresponding SIF, Ka and Km accordingly. Fast fracture will occur when the
stress intensity exceeds the fracture toughness of the material. The prediction of
crack growth is at the heart of the damage tolerance mechanical design discipline.
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Figure 1.25. Definition of several σ and K values for a growing crack a under cyclic fatigue loading.
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In railway applications, the fracture mechanics approach has not yet become a
standard procedure. Nevertheless, to switch from an experience-based approach, as
defined in current axle design standards, to a safe planning of maintenance inspections
as well as for a damage-tolerant design for railways axles, fracture mechanics seems
to be a mandatory tool to be taken into account.

1.2.3 Stress intensity factor evaluation

Regarding crack growth prediction, an accurate determination of the SIF is a key
factor. For this purpose, the initial crack size and shape must be defined first. It
is well established that in railway axles the cracks nucleated on the surface have
a semicircular or semielliptical shape Zerbst et al. [22]. This type of cracks are
among the most common ones found in several structural components, thus widely
investigated and documented in the literature. Since the SIF is a key parameter to
estimate stress and displacement fields ahead of a crack tip, various alternatives have
been explored to calculate it for any given geometry and load combination. The
SIF at the crack tip, as commonly defined by Eq. (1.6), contains σ, which is the
characteristic stress, a, that is the characteristic crack dimension, and the geometry
factor Y which is a dimensionless constant that depends on the geometry and the
mode of loading. Note that Y can be a function of crack length a as well as other
geometrical features and is also known as shape function.

(1.6)K = σ
√

πa Y

The careful estimation of the SIF, which is a crucial operation in the frame of the
damage tolerant assessment, is so related to an accurate evaluation of the shape
function Y , given the shape and dimension of the crack relatively to the component.
It is possible to estimate the Y factor through the application of available ready-made
solutions, by extensive stress analysis using the FEM or by adopting the so-called
weight functions. Below, the focus is on the ready-made solutions given an example
for the sake of understanding while the other methods are tacked further on.

There are collections of ready-made Y factor solutions such as [38, 39]. The most
widely used solutions for obtaining the SIFs for semi-elliptical surface cracks in plates
of finite-thickness were obtained using the FEM by Raju and Newman [40] and
Shiratori and Miyoshi [41]. The former obtained data for tensile and bending loads
and presented their results through an empirical equation. The latter obtained results
for constant, linear, parabolic, and cubic crack surface stress distributions. However,
the solutions presented in those works are limited to specific loading conditions, and
therefore they have limited applicability.
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For illustrative purposes, the well-known standard test specimen for the measurement
of fatigue crack growth rates is the compact-tension (C(T)) specimen defined in the
ASTM E647 standard [42] and reproduced in Fig. 1.26.

(a) Geometry and main dimensions.
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(b) Three dimensional view and applied load.

Figure 1.26. Compact-tension C(T) specimen for measurement of fatigue crack growth rates [42].

The SIF solution for standard C(T) specimen under tension loading is shown in
Eq. (1.7), according to Bower [39], where P is the applied load, B is the thickness
of the specimen, a is the crack length, and W is the width of the specimen.

(1.7)KI = P
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( a
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]

As an example of the weight functions approach, Shen and Glinka [43] used the
results of Shiratori and Miyoshi [41] to generate weight functions for semi-elliptic
surface cracks in finite-thickness plates. Similar works for different crack geometry
ratios were developed by Wang and Lambert [44, 45].

The works carried out for the determination of SIF in railway axles is noteworthy.
Carpinteri et al. [46, 47] analysed the propagation of a surface crack in a cylindrical
axle subjected to rotational bending using a two-parameter theoretical model and
assuming that the crack front presents a semi-elliptical shape. In Carpinteri
et al. [48] the SIF is determined in axles under tension and bending. Subsequently,
Madia et al. [49, 50] based on the research of Carpinteri et al. [47] developed a
new approach to include the effect of axle-wheel interference fit in the crack growth
analysis because of its negative effect on the remaining life estimation. These studies
also investigated the FCG in different axle geometries and crack positions.
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The FEM methodology applied for the evaluation of SIF provides really accurate
results, but with a high computational cost. It should not be forgotten that these
factors have to be constantly re-evaluated as the crack size and shape evolves, so the
FEM methodology seems inflexible when it comes to easily generalize the results in
geometry. Therefore, it is necessary to generate faster and more flexible numerical
tools, which can be based on the weight functions developed by the aforementioned
authors. These functions are first-order tensors that depend only on the cracked body
geometry and by using the superposition principle any loading configuration can be
represented by considering the application of the corresponding tensile, compressive,
shear, stresses directly on the crack faces.

1.2.4 Material characterization

A key factor in the damage tolerance analysis is the material characterization in
fracture. Fracture mechanics analyses rely on crack growth material data curves as
the ones presented in Fig. 1.27, where Fig. 1.27a shows the crack growth curve in
terms of crack size a vs. the number of cycles N , and Fig. 1.27b shows the crack
growth rate da/dN vs. the stress intensity factor range ∆K in a double logarithmic
scale. Both curves are explained below in detail. This figure consists of two different
but related representations of synthetic crack growth data with example units for
the sake of better illustration.
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Figure 1.27. Typical experimental fatigue crack growth data.
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The da/dN–∆K curve. Fatigue crack growth models require a significant amount
of basic experimental material characterization. Raw fatigue crack growth datasets
come in the form of the a–N relationship as in Fig. 1.27a. The compact-tension
(C(T)) or middle-tension (M(T)) specimens defined in the ASTM E647 standard [42],
tested under constant amplitude loading are the most frequently used geometrical
configurations to map the relationship between the crack length, a, and the number of
loading cycles, N . In order to use such data for subsequent fatigue life predictions, the
set of [N, a] points from the fatigue crack growth experiments has to be transformed
into the set of [∆K, da/dN ] pairs as it is represented in Fig. 1.27b. Therefore, the two
curves presented in Fig. 1.27 show the original and transformed fatigue crack growth
data sets measured in a given experimental campaign. It is clear that the conversion
technique is relevant for further fatigue crack growth analysis, and therefore it is
standardized. Note that the lifespan, that is, the period of time that the crack takes
to grow until final fracture, mainly depends on the first stages of crack propagation,
while final regime plays a minor role as its growth rate da/dN is really fast.

The fracture toughness, Kc. Fracture toughness is a mechanical property that
measures the resistance of a material to fracture. It is the critical stress intensity
factor of a sharp crack where propagation of the crack suddenly becomes rapid and
unlimited, i.e. the final regime. This parameter characterizes the intensity of stress
field in the material local to the crack tip when rapid crack extension takes place.
As in some other microstructurally sensitive material properties, fracture toughness
is strongly dependent on the plane stress or plane strain conditions of the crack tip
constraint due to component thickness. The typical thin and thick plates thickness
effects on fracture toughness are illustrated in Fig. 1.28. The critical value of stress
intensity factor in mode I loading measured under plane strain conditions is known
as the plane strain fracture toughness, denoted KIc.

Specimen thickness B

plane stress (thin plate)

plane strain (thick plate)

Figure 1.28. Variation of fracture toughness with specimen thickness.

The threshold stress intensity factor range, ∆Kth. The threshold stress
intensity factor range, or also referred to as fatigue crack growth threshold, is
defined as the asymptotic value of the stress intensity factor range ∆K at which the
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fatigue crack growth rate da/dN of long cracks approaches zero. The experimental
determination of fatigue crack growth threshold values is measured by reducing
gradually the load until the crack growth rate reaches a very small value. Notice
that only one threshold value per specimen can be determined for a given stress ratio.
For instance, the ∆Kth0 is the threshold SIF range measured using a stress ratio of
R = 0. Thus, the complete characterization of the threshold behaviour of a material
is time-consuming and expensive.

The determination of the da/dN–∆K curve by experimental tests is addressed in
the ASTM E647 standard [42] and in the ASTM E399 standard [51]. The ASTM
E647 standard [42] is the standard which currently governs the fatigue crack growth
test procedure covering the determination of fatigue crack growth rates from near-
threshold to controlled instability providing results defined by the theory of linear
elasticity, and transformation methods such incremental polynomial and secant
methods, while the ASTM E399 standard [51] describes the determination of the
fracture toughness KIc of metallic materials under predominantly linear-elastic plane-
strain conditions. Innovative methodologies that do not need extensometers are
becoming more and more frequent nowadays. One such example is obtaining the
fatigue crack growth curve by using experimental full-field non-contact measurement
techniques like the digital image correlation presented in Sánchez et al. [52] in
combination with numerical post-processing methods.

Recently, some authors have investigated the effect of specimen geometry and
loading conditions on the da/dN–∆K curve. Varfolomeev et al. [53], investigating
EA4T railway steel, found different da/dN–∆K curves in region II, and even more
pronounced differences in Region I for different types of specimens. The reason for
these discrepancies in the results was considered to be due to plasticity-induced
crack closure phenomenon. Beretta et al. [54] studied the effects of scale on the
fatigue limit and crack growth rate for high strength steels used in the manufacture
of high speed axles. The tests performed on micro-cracked specimens were compared
with tests performed on full-scale axles showing that the results obtained on axles
are less conservative. It is also pointed out in Beretta and Carboni [55] that
the inspection intervals of safety-critical components should be calculated based on
algorithms capable of describing the crack growth rate under service loads.

There are some other relevant aspects that have an effect in fatigue crack growth such
as the importance of the stress ratio, mean stress effects, overloads, crack opening-
closure mechanisms, and also some important practices such fatigue precracking
before testing. Since this subsection is devoted to giving a brief overview of the
fundamental material characterization in fracture mechanics, the reader is referred
to [34] where all the aforementioned topics are broadly explained. The use of both
the fracture toughness and the crack propagation threshold within the fatigue crack
grow models is addressed in the next subsection.



1.2. Fundamentals of damage tolerance 43

1.2.5 Stable fatigue crack propagation

When the crack dimensions are larger than the plastic radius at the crack tip, the
LEFM is applicable, otherwise, the elastic plastic fracture mechanics (EPFM) is
required [34]. The former case is referred to as long cracks, and the latter case
is referred to as short cracks. In the railway axles case, the focus is only on the
LEFM approach briefly described in Subsection 1.2.2, since, in general, the dimension
considered, for cracks included in a railway axle, corresponds to long cracks, with
dimension of a few millimetres Zerbst et al. [56].

The earliest hypothesis that the fatigue crack growth rate, da/dN , was related to the
stress intensity factor range of a load cycle, ∆K, was postulated by Paris et al. [57].
The typical plot of the crack growth rate with respect to the stress intensity range,
da/dN–∆K, is presented in Fig. 1.29 on log scales. This curve would fit the typical
experimental fatigue crack growth in Fig. 1.27b.
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Figure 1.29. Typical crack growth rate vs. the stress intensity range.

At intermediate ∆K values, the curve is approximately linear, but the crack growth
rate deviates from the linear trend at high and low ∆K levels. The three distinct
regimes that are present in the previous sigmoidal curve can be explained as follows.

• Region I: At low growth rates, near the ∆Kth the growth is slow. Below this,
there is no growth.

• Region II: At mid-range of growth rates, the behaviour corresponds to a linear
zone where there is stable or steady growth.

• Region III: At high growth rates, there is a fast unstable growth until final
fracture.
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Paris and Erdogan [58] approximated the intermediate crack growth region II
with a power law relationship, presented in Eq. (1.8), where a is the crack length,
da/dN is the fatigue crack growth rate for a single load cycle N , n is an empirical
constant representing the slope on a log-log scale, C is an intercept constant, and
∆K is the SIF range from the maximum and minimum K, i.e. Kmax and Kmin.

(1.8)da

dN
= C (∆K)n

Paris and Erdogan were pioneers in proposing such an empirical expression to
solve FCG problems fitting the intermediate linear region or regime II. The Eq. (1.8)
is known nowadays as the Paris and Erdogan equation. The approach developed
is based on a similarity concept: if the stress state at the crack front and its shape
matches at a given time period for two different geometries and loading conditions,
then the crack growth rate observed for the two cracks should be the same for that
time period. This assumes that the crack growth rate of the material is a function of
the SIF. The concept of similitude, when applicable, provides the theoretical basis
for fracture mechanics. Similitude implies that the crack-tip conditions are uniquely
defined by a single loading parameter, the SIF.

A variety of empirical FCG equations similar to the Paris-Erdogan equation were
developed to represent all or some of the regions of the fatigue crack growth rate
curve. Over the years, several improvements have been done in order to obtain a
better accuracy and to include a variety of factors that represent effects that affect
the crack growth rate such as the stress ratio, overloads, or the crack opening-closure
phenomenon. Some of these crack propagation equations are collected in Table 1.6.
Note that the material constants C, n, p, q, in the set of equations do not have the
same numerical values or even units.

Table 1.6. Proposed fatigue crack growth rate models based on the stress intensity factor range.

Author reference Region(s) / Effect(s) Equation

Paris and Erdogan [58] II da
dN = C(∆K)n

Allen et al. [59] I, II da
dN = C(∆K)n

(
1 − ∆Kth

∆K

)p

Forman et al. [60] II, III / Stress ratio R da
dN = C

(
∆Kn

(1−R)Kc−∆K

)
McEvily and Groeger [61] I, II, III da

dN = C (∆K − ∆Kth)2
(

1 + ∆K
Kc−Kmax

)
Walker [62] II / Stress ratio R da

dN = C
(

∆K
(1−R)1−p

)n

Elber [63] II / Crack opening-closure da
dN = C (Kmax − Kop)n

Forman and Mettu [64]
(NASGRO†)

I, II, III / Most generalized da
dN = C

(
1−f
1−R ∆K

)n

(
1− ∆Kth

∆K

)p(
1− Kmax

Kc

)q

† NASGRO or also known as Forman-Newman-De Koning (FNK) [65].
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The state-of-the-art and most common expression to describe fatigue crack growth
in all three regions is the NASGRO equation [34]. It is a general equation that
covers the lower growth rate near the threshold ∆Kth and the increased growth
rate approaching the fracture toughness Kc, as well as allowing for the mean stress
effect by including the stress ratio R and also the crack closure via the Newman’s
crack opening function f . The different elements of the crack growth rate NASGRO
equation were developed by Forman and Newman of NASA, Shivakumar of
Lockheed Martin, de Koning of NLR and Henriksen of ESA and was initially
documented by Forman and Mettu [64]. The three different regimes differentiated
in Fig. 1.29 are denoted on the NASGRO equation presented in Eq. (1.9).

(1.9)da

dN
= C

(
1 − f

1 − R
∆K

)n

︸ ︷︷ ︸
Regime II

Regime I︷ ︸︸ ︷(
1 − ∆Kth

∆K

)p

(
1 − Kmax

Kc

)q

︸ ︷︷ ︸
Regime III

The NASGRO equation contains six material constants: C, n, p, q, Kc and ∆Kth.
It should be noted here that the ∆Kth is not an actual material constant since it
depends on the R ratio. According to the NASGRO formulation, for a particular
material, the fatigue crack growth rate depends only on the loading parameters
∆K and R. Thus, all the above expressions assume elastic similarity of the growing
crack, none of these equations incorporate a history dependence and are therefore
strictly valid only for constant stress intensity loading [34]. However, many of these
equations were developed with variable amplitude loads in mind. Although there are
many situations where similarity is a good assumption for variable amplitude loading,
the potential for history effects must always be taken into account. The NASGRO
equation is adopted in the most recent research carried out on railway axles, e.g.
Beretta and Carboni [55], Zerbst et al. [66] and Beretta and Villa [67].

These equations can be integrated to infer the fatigue life. It means integrating
numerically the da/dN curve in order to estimate the number of cycles N , for the
propagation of a crack from an initial defect size at to the final crack size at fracture.
The integration is done numerically, especially when the fatigue problem deals with
random load sequences or a sequence of loading blocks. In the case of a three-
dimensional body, such as a railway axle, the integration of the FCG curve is carried
out separately at the surface crack tip and at the deepest point of the crack front in
order to predict the change in crack shape, usually keeping a semi-elliptical shape.
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1.2.6 Damage tolerance assessment of railway axles

The basic ingredients for damage tolerance analysis are described in the previous
subsections. This subsection will show how fatigue crack growth is considered in a
damage tolerance analysis of an actual structure, a railway axle. The general scheme
for a damage tolerance analysis of railway axles is given in the form of a stepwise
procedure. Thereafter, the various options of the target information pursued are
summarized. Finally, a number of typical inspection intervals for different railway
applications are reviewed and presented to illustrate the application of damage
tolerance analysis.

According to Zerbst et al. [66], the aim of a damage tolerance analysis of railway
axles is either:

• to specify requirements for NDI which crack size has to be detected with high
probability when the inspection interval Tins is fixed by an existing maintenance
scheme, or

• to determine inspection intervals, Tins, according to a certain cumulative
probability of detection in successive inspections (CPOD).

The input parameters and the working steps of a damage tolerance analysis of railway
axles are shown schematically in Fig. 1.30.

cylinder with stepwise graded outer diameters along its length. Fatigue cracks in axles are known to

develop either at the wheel seat or at the geometric transitions at the outer surface of the axle. For the

present demonstration a surface crack was assumed at the position shown in the figure. Here, the outer

diameter was about 130 mm and the inner diameter was 65 mm. Note, that the chosen crack position is

rather untypical and was chosen as a simplification for the case study. The more complex problem of an

axle crack initiated at the shrink fit is subject of the ongoing project.

Fatigue cracks develop at the location of the highest local stresses. The exact position has to be

ascertained by finite-element analysis if it is not otherwise known from simple considerations or in-service
experience. Usually, the plane perpendicular to the maximum principal stress direction has to be chosen

as the plane of the potential fatigue crack extension. Note, however, that the principal stress directions

may change in thickness direction causing the crack to curve during its extension. In such cases individual

judgement on how to define the crack plane for the further analysis is required. As a principle, the

growing direction of the extended crack rather than the initial growth direction of the shallow crack

should define the crack plane for the analysis. However, if the subsequent analysis reveals that the

shallow crack is already critical this has to be reconsidered. In addition, in particular shallow cracks, e.g.,

at wheel treads and running surfaces of rails but also at axle press fits significant shear stresses

Fig. 1. General scheme of a damage tolerance analysis.
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Figure 1.30. General scheme of a damage tolerance analysis of a railway axle [66].
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As result of this procedure, it is possible to obtain the two aforementioned results:

• requirements for NDI for a fixed inspection interval, Tins, or

• overall CPOD as a function of the inspection interval, Tins.

The input parameters and basic steps of a damage tolerance analysis of railway axles
are presented in detail in Fig. 1.31. They comprise the initial crack depth and shape,
the applied loading including the bending, the load spectra, and the press-fit stresses,
material properties, primary the da/dN–∆K curve describing FCG process.

Figure 1.31. Inputs and basic steps of a damage tolerance analysis of a railway axle [7, 22].

There are two basic options of a damage tolerance analysis and both use the fatigue
crack growth life results from the procedure in Fig. 1.31. What differentiates the
two assessment options is the target information as shown in Fig. 1.32. Note that
the two options aforementioned are denoted as option A and option B.

As it is thoroughly explained by Zerbst et al. [7, 22], the aim in option A is to specify
the crack size which has to be detected by NDT with high probability. Starting from
the number of loading cycles at failure, one inspection interval is subtracted. This
way a crack depth ad is determined which has to be found in an inspection. On the
other hand, the aim in option B is to specify the overall probability of detection,
CPOD as a function of the inspection interval. This option is based on the residual
lifetime within which a number of inspections will be carried out depending on the
inspection interval. When more than one inspection is planned within the residual
lifetime, the instantaneous probability of detection (POD) increases from inspection
to inspection due to the crack extension.
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Figure 1.32. Two options of a damage tolerance analysis of a railway axle [7, 22].

The typical inspection intervals for different railway applications are collected and
compared in terms of distance run and time in Table 1.7. Although operators tend
to minimise the maintenance costs, they are required to operate in a way that should
follow the indication of the standards, where applicable, e.g. the EN 15313:2016
standard [20] outlined in Subsection 1.1.4. Standards provide the operator a minimum
requirement to follow in order to guarantee the safe service of the train. Operators
should assure that, the method followed is as effective, and no less safe, than the
method that is recommended in the requirements of the standard.

Table 1.7. Typical basic inspection and service frequency for railway wheelsets [68, 69].
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Focusing on freight train application, the NDT inspections are typically carried out
in about 200 000–600 000 km or equivalently around 48–96 months. These figures at a
glance give the idea that there is room for improvement and optimization of such
inspection intervals, Tins, for freight railways.

The general point of view conveyed by all authors who are advancing the development
of damage tolerance methodologies is the importance of objectively quantifying the
level of reliability of new designs in a way that ensures high component safety.
It is clear that one hundred percent reliability and safety cannot be guaranteed,
however a deterministic analysis cannot help in the assessment of design reliability
since it does not take into account the different sources of uncertainty that have an
effect in the crack growth process. There is some progress along these lines for the
development of stochastic models in the railway sector. For example, the works by
Beretta and Carboni [55] and Beretta and Villa [67] use approaches based on
Monte Carlo simulations in order to obtain the life distribution, or the investigations
by Zerbst et al. [7] that analyse the influence of the material parameter C on
fatigue life by quantifying how its variation affects the fatigue dispersion. These
investigations are usually time-consuming because, among other things, of the use
of MC simulations. However, some interesting investigations proposed numerical
methods based on the probabilistic finite element method, that is more efficient
than the MC method. For instance, it is worth highlighting the works by Bea [70],
Núñez [71], Grasa [72], Calvo [73] and Prados-Privado [74] that investigated
different damage models regarding fatigue cracks. Therefore, it seems relevant to
investigate these new perspectives when applied to the damage tolerance assessment
of railway axles.

In general, it is important to highlight the multidisciplinarity of this field, which
involves: (i) numerical activities for probabilistic evaluation of fatigue crack growth
in railway axles and the sensitivity of the random variables that affect the growth
process, (ii) experimental campaigns in order to characterize the fracture mechanics
behaviour of the materials and components, (iii) the design and optimization of
non-destructive testing methodologies that improve the probability of crack detection,
and (iv) an overall new approach to establish inspection intervals in railway axles.
Therefore, to improve the component LCC, huge research efforts on these lines are
required to improve the reliability and to reduce component and maintenance costs.
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1.3 Probabilistic aspects of damage tolerance

In addition to many highly technical writings on both pure and applied mathematics,
Laplace published a popular work entitled A Philosophical Essay on Probabilities [75]
in 1814. In its introduction, Laplace states: ‘Strictly speaking it may even be
said that nearly all our knowledge is problematical, and in the small number of
things which we are able to know with certainty, even in the mathematical sciences
themselves, the principal means for ascertaining truth, induction, and analogy, are
based on probabilities.’ For centuries, the importance of uncertainties in making the
right decisions to solve a problem has been acknowledged. Indeed, engineering, like
other aspects of life, is about making the right decisions based on data that may
not be sufficiently well defined. The proper management of uncertainties makes the
difference between a profitable and sustainable product and an ordinary one. In this
context, it is necessary to develop applications and analysis tools that consider the
stochastic nature of engineering problems, following Laplace, since its essay struck
a chord in the concluding chapter stating: ‘the theory of probabilities is, essentially,
only common sense reduced to calculation and thereby it supplements most happily
the ignorance and the weakness of the human mind.’

When applying the laws of mechanics to practical design and damage tolerance
assessment problems, other considerations than those of pure mechanics often appear.
In many cases, neither the fatigue laws, material data, loading conditions, crack size
and shape, nor the probability of crack detections are known with any precision.
Traditionally in mechanical engineering this is addressed by applying safety factors.
Depending on the particular conditions and how safety-critical the component is,
the safety factor is chosen in such a way as to ensure enough safety. In some cases
this is prescribed by norms and standards, but this is not the case in the context
of fracture assessments of railway axles. There are, however, further issues with
this deterministic design philosophy. In the case when the input parameters and
the output parameters are variable, the problem of selecting a representative safety
factor value arises. In some standards the values are prescribed while in other
cases the choice is left to the engineer. Therefore, in some advanced applications, a
probabilistic approach is preferred, as supported in the following subsections.

In the context of liberalization of rail in Europe, more and more initiatives are
promoted for the assessment of safety standards to determine the levels of safety,
reliability and availability of rolling stock and in particular associated with railway
axles. Thanks to the opening of the railway market and competition, the reduction of
total life cycle cost of the whole wheelset became a driving topic for railway research.
This also requires the optimization of axle inspection intervals, which in some cases
involves a very high cost. To this aim, the different parameters explained above,
involve aspects such as fatigue laws in crack propagation, material parameters, service
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load cases, impacts, NDT techniques, etc., that due to their inherent uncertainties,
they have to be addressed from a probabilistic perspective, and therefore they must
be expressed in probabilistic terms.

Even when the traditional approach is used, probabilistic considerations are of help.
Whilst probabilistic modelling has been used extensively in design, reliability, and
safety considerations in many branches of engineering, this is not generally the
case for most structures and components in damage tolerance assessment. To some
extent this issue highly depends on tradition. Deterministic analyses in the field of
damage tolerance unfortunately cannot help in assessing the underlying degree of
conservatism of a given structural design with many sources of uncertainties, under
operational conditions which are themselves known with some degree of uncertainty.
Such analyses also appear inappropriate to assess the contributions of the many
parameters involved in such problems, from a stochastic view point. In addition, they
are insufficient to assist the decision-making process of scheduling the maintenance
of structures as it is the case of a railway axle.

In the following, some of the most remarkable probabilistic features in damage
tolerance are discussed. The revision and summary focuses on the probabilistic
nature of fatigue crack growth, on material variability during crack propagation, on
variable loading conditions in service, on damages produced by impacts, and finally
on reliability issues of detection of flaws when using non-destructive techniques.

1.3.1 Probabilistic fatigue crack growth

As the initial flaws and cracks in structural materials result from manufacturing
and environmental effects, they are inherently random. In addition, the cracks
propagate in and between material grains boundaries, which are highly random due
to the processes that initiate them. The scatter of the material fatigue resistance to
cyclically applied loads, fatigue crack growth, is stochastic in nature. The scatter
is often the reason for the differences between a deterministic prediction of fatigue
lives and those observed in tests or in service. Therefore, it is necessary to develop
probabilistic analyses even if the macrostructure is considered deterministic. Scatter
in the microstructure, in the crack nucleation and small crack growth, in long crack
growth, as well as uncertainties in service loads and material properties, considerably
affect the fatigue crack growth life dispersion. When evaluating the reliability under
fatigue crack growth, these random factors and uncertainties must be considered.

The inherently stochastic character of fatigue crack growth is clearly justified with
the experimental tests, where the measurements quite naturally exhibit statistical
variations. The scatter in fatigue data was discussed as early as 1926 by Mayer [76,
77], but it was only after the large replicate experiments at constant amplitude
loading performed in 1979 by Virkler et al. [78] that the intrinsic stochasticity of
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fatigue crack growth was investigated in detail. The geometry of the specimen used
in Virkler’s investigation was a 25.4 mm thick Center-Cracked-Tension (CCT) panel of
2024-T3 aluminium alloy. Nowadays, it is known as middle-tension (M(T)) specimen
as described in ASTM E647 standard [42]. Its geometry is shown in Fig. 1.33.

Figure 1.33. Virkler’s M(T) test specimen [78].

The fatigue crack growth results for the 68 identical specimen tested by Virkler at
constant amplitude loading are shown in Fig. 1.34.
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Figure 1.34. Virkler’s experiments [78]: the 68 curves of crack length vs. number of cycles.

As can be observed from the data, the behaviour of crack growth is random, even
when very carefully controlled experiments are performed with identical specimens.
The curves of different specimens intermingle, and it is result of the two main random
effects that can be distinguished Ortiz and Kiremidjian [79]: (a) each curve has an
irregular shape, high frequency stochasticity; and (b) the mean crack growth curve
of each experiment is different, low frequency stochasticity. This intrinsic stochasti-
city of fatigue crack growth is due to variability of material properties, material
inhomogeneities, and also due to the inherent variability of the manufacturing process.
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It was hypothesized that the collection of the final number of cycles, Nfin, for a final
crack size, afin, is best described by the log-normal distribution. Thus, the histogram
of ln (Nfin) follows a bell-shaped curve. To demonstrate it, the experimental fatigue
crack growth results (Nfin, afin) from the Virkler experiments are considered at the
final crack size, that is at afin ≈ 50 mm. The resultant histogram obtained and the
fitted log-normal probability density function (PDF) are shown in Fig. 1.35.
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Figure 1.35. Histogram and probability density function fit from the Virkler’s data [78].

The concept of a random phenomenon can be explained considering a repetitive
experiment with a set of possible outcomes, such as the final number of cycles above.
If the experiment is performed repeatedly with all conditions controlled and identical
results are obtained, the phenomenon observed is called deterministic. If, on the
other hand, the results are not identical, it is called random and a real value known as
probability of the event can be associated with each of the results of this experiment,
so that: the probability is related to the relative frequency of occurrence of the event
for a large number of realizations of the experiment, it is bounded between zero and
one, the sum of the probabilities of all possible events in a particular experiment is
equal to one, all possible outcomes of an experiment are contained in the sample
space, and any real variable defined in this space is known as a random variable.

As shown in the previous literature, fatigue crack growth is stochastic in nature. The
randomness in components such as railway axles under fatigue conditions is inherent
to at least three aspects. Firstly, it is clearly justified with the experimental tests,
where the measurements quite naturally exhibit statistical variations as shown in
Cervello [80], Novosad et al. [81], Beretta and Carboni [82] and Mädler
et al. [83]. Secondly, the railway axles are under variable loading and a many cycles
during their operation which means scattering of loads as shown in [84] and in
Pokorný et al. [85] and Pokorný et al. [86]. The third reason is the fact that
geometrical dimensions may have some variations that could significantly affect the
functioning of a component as discussed by Traupe and Landaberea [87]. These
aspects determine the complexity and the way to address any calculation, estimation
or experimental analysis related to the fatigue process in railway axles application.
This is one of the reasons why fatigue crack growth is difficult to predict as it involves
intrinsically model parameters that are subject to uncertainty.
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In the current state of practice the effects of these inherent uncertainties are mostly
covered by the use of empirically based factors sometimes called safety factors and
by the use of conservative assumptions. Such approaches are therefore most often
deterministic. They are expected to ensure an acceptable safety level for the structure
of interest, e.g. the probability of occurrence of individual lives shorter than the
target life, albeit undefined, needs to be kept small enough to meet standards and
requirements. The next subsections give an even deeper understanding of the main
sources of uncertainties in railway axles applications.

1.3.2 Material scatter

The series of fatigue crack growth experiments performed by Virkler introduced in
the previous Subsection 1.3.1, revealed that no matter how precise the experimental
measurements are, the final number of cycles required for a crack to propagate from
the precisely determined initial length to the final size, vary significantly.

A reason for the above problem is the dispersion of material fatigue resistance to
cyclically applied loads, which is related to the scatter in the microstructure, in the
crack nucleation and that is why the growth of small and long cracks may differ from
one specimen to another. Therefore, one of the main obstacles to full probabilistic
modelling is the difficulties in obtaining data of sufficient statistical quality.

To use the NASGRO equation, all the involved empirical constants must be estimated
as described in the ASTM E647 standard [42] and in the ASTM E399 standard [51],
as explained in Subsection 1.2.4. Firstly, the least square fit of the threshold data
is carried out for the considered material to estimate the values of the material
constants ∆Kth, Cp

th, and Cm
th. The same statistical technique is applied to crack

propagation curves at R = 0 to estimate parameters C, n, p, q of the NASGRO
equation. Besides, the Kc is measured according to the aforementioned methodology.
It is important to highlight that the fitting procedure is statistical in essence on top
the fact that all the experimental measurements are stochastic themselves.

It is well-known that the amount of crack extension per number of applied load
cycles, i.e. the crack growth rate da/dN , fluctuates around the least-squares regression
line. However, in the NASGRO model, several parameters are used to fit the
experimental data accurately. The set of empirical constants in the NASGRO model
are able to represent the scattered FCG data. It is assumed that the intra-specimen
variability can be described by the probability distributions of these crack propagation
parameters that at the same time are obtained via statistical fitting. Statistical
analysis of various sets of fatigue crack growth data from experiments have been
published in the literature such as in the section II of [88]. It should be noted that
the availability of experimental data results in the railway axles field is quite limited.
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In terms of application to railway axles, overloads and small loads influence on the
fatigue crack growth are investigated in detail by Maierhofer et al. [89], where
an improved NASGRO fatigue crack growth approach is calibrated for two common
material grades for railway axles, namely EA4T and EA1N. These two effects are
overlaid by statistical scatter and variability, which may be attributed to scatter
within a single batch, inter-batch variability and inter-laboratory variability.

The investigation carried out by Maierhofer et al. [89] is based on experiments on
small-scale fracture mechanics specimens from dedicated test bars. Depending on the
purpose of each experiment, different parameters were obtained: the threshold stress
intensity factor range at R = 0, ∆Kth0 for long cracks, Cp

th, and Cm
th; the parameter C

using the natural logarithm ln (C), n, and p; the statistical variability of the crack
growth parameters of individual specimens during the experiments characterized via
their statistical moments, empirical mean value and the empirical standard deviation;
and the Pearson correlation coefficient (PCC) and statistical confidence for the pairs
of parameters, n-ln (C) and n-∆Kth0. Note however that an experimental full-scale
validation of the previous results adopting real load spectrum is still missing.

Despite the importance of the richness of the parameters characterized, it is important
to highlight the paramount relevance of the correlations investigated between the
model parameters. It turns out that n and ln (C) are highly correlated, while no
statistically significant correlation is found for n and ∆Kth0. Especially the former is
indispensable for probabilistic crack growth assessment. The random variables n and
C can be thought as a bivariate Normal–Log-normal distribution as they are highly
correlated. The Pearson’s correlation coefficient obtained by Maierhofer et al. [89]
is PCCn,ln(C) = −0.968 for EA1N steel grade.

The probabilistic FCG model presented by Wei [90] considers several input paramet-
ers of the NASGRO model for the EA1N and EA4T steels. For instance, the ∆Kth0

is considered to belong to a normal distribution, C is assumed to follow a log-normal
distribution while n is considered as constant. It is important to remark here that
this consideration is bad practice as it is clearly discussed by Annis [91]. As the
author argues, fixing either n or C seems at a glance like a reasonable solution, and
it does reduce the over-prediction of scatter. While this is an obvious improvement,
the error remains wildly unacceptable because the standard deviation of C or n is
arbitrarily adjusted, i.e. manipulated until a believable result is achieved.

A statistical distribution for the sigmoidal crack growth rate function is presented
in Paolino and Cavatorta [92]. It proposes a statistical description of crack growth
rate curves considering: C as a log-normal distribution, n as normal distribution,
log C and n as jointly normal distribution using a correlation coefficient PCC, ∆Kth0

belonging to a log-normal distribution, and KIc as a log-normal distribution. It also
states that the above assumptions are not the only ones possible, and therefore
alternative statistical distributions can be adopted and their suitability evaluated.
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Beretta and Carboni [55] proposed an approach based on Monte Carlo simulations
in order to obtain the life distribution of solid round bars. Two sources of scatter
are considered: (i) the dispersion of ∆Kth0 data in the near-threshold regime, and
(ii) the scatter along the Paris region. Considering the first source of scatter, i.e. the
threshold region, two assumptions are made. One considers that the ∆Kth0 belongs
to a normal and the other assumes a log-normal distribution. The second source of
scatter is considered as the parameter C as belonging to a log-normal distribution,
while the slope parameter n is kept constant. It is important to remark here that
this consideration is bad practice as aforementioned explained based on Annis [91].
Note also that the parameters log C or n with ∆Kth0 are considered as independent.

Regarding the random variable threshold stress intensity factor range at R = 0,
∆Kth0, there is not a clear consensus about what probability distribution is most
suitable. As shown, it is considered normal in Wei [90], log-normal in Paolino and
Cavatorta [92] and both normal and log-normal in Beretta and Carboni [55].

A random variable approach for the analysis of fatigue crack growth is presented
by Beretta and Villa [67]. The article deals with the analysis of a probabil-
istic description of crack growth based on the NASGRO equation. It addresses a
description of Virkler’s crack growth data, which shows a correlation between the
parameters n, log C, and ∆Kth0, but unlike Maierhofer et al. [89], in this case
only the PCC is looked at, not whether the correlation is statistically significant
or not. In contrast to Maierhofer’s paper, it indicates that there is a two-to-two
correlation between the three variables. The analysis is then applied to a set of crack
growth data obtained from a steel applied in the manufacturing of railway axles.
The same kind of analysis was performed and in this case, the parameters n and
log C show a very high correlation, while ∆Kth0 shows a weaker dependence on the
other parameters. The authors conclude that a reasonable approximation could be
obtained by assuming a bi-variate Gaussian distribution for n and log C, considering
∆Kth0 as an independent variable.

As for the correlation between the parameters n, C, and ∆Kth0, there is clear consensus
on the correlation of the first two, i.e. n and C, but there is not so clear consensus
on the significance of the correlations of these with the third ∆Kth0.

To better understand the correlation between the parameters n and C, it is advisable
to review an article on probabilistic life prediction by Annis [91]. Many analysis tackle
probabilistic life prediction by replacing constants with probability distributions. The
problem arises when the statistical relationships among the parameters are ignored
or given little attention. The simple substitution of distributions for constants will
indeed produce a non-deterministic result, but the corresponding probabilities are
sometimes inaccurate. The article claims that probabilistic life prediction is not as
easy as it looks at first glance. It explores the Paris equation to illustrate many
statistical realities that are often ignored by otherwise careful engineers.
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One such important issue is that the Paris law parameters behave in tandem. A
schematic plot of crack growth rate vs. stress intensity on a log-log grid is shown
in Fig. 1.36. It shows why C and n are jointly distributed. When the slope, n, is
shallow the intercept, C, must be larger for the resulting line to go through the data.
Similarly, a steeper slope requires a smaller intercept. Note that in this schematic
the intercept is C = log (da/dN) = −10, at log (∆K) = 0.
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Figure 1.36. Schematic showing why C and n parameters are correlated. [91].

The main outcome of the article is that in the event of a fatigue crack growth
equation used for a probabilistic analysis, the key to obtaining realistic predictions
is to consider the correlation between the parameters C and n. Therefore, these
calculations should correctly model and implement the multivariate joint probability
distribution of the two parameters.

The discussion by Zerbst et al. [7] provides damage tolerance options applied to
railway axles and factors influencing the residual lifetime as well as the required
inspection interval. These comprise material properties such as the scatter of the
da/dN − ∆K curve, the fatigue crack propagation threshold ∆Kth and the toughness
of the material.

It analysed the influence of the material parameter C on fatigue life by quantifying
how its variation affects the fatigue dispersion. Usually an upper bound curve to the
da/dN − ∆K data is applied. The authors found that considering 95 % upper to a 5 %
lower bound of C corresponded to a variation in residual lifetime of a factor of three.
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It is worth highlighting the dispersion found in the ∆Kth parameter and its dependence
on the experimental characterization technique used. This effect is relevant because
the scatter in the fatigue crack propagation threshold if taken into account will
introduce a significant dispersion in the residual lifetime analysis. Additionally, the
paper provides an example of how the difference between threshold values can have
an effect on the predicted residual lifetime of an axle. The ∆Kth value including
scatter was identified to be problematic for the analysis because the residual lifetime
sensitively responded to even small variations in threshold.

These studies among others, constitute the first steps for subsequent approaches for
the analysis of the variability in the fatigue crack growth process in railway axles.
Statistical fatigue crack growth data is rare and thus should be obtained from new
scheduled tests, which are costly and time-consuming. Another limitation of the
available statistical fatigue crack growth data is the fact that the materials tested
often come from a single production batch, while in practice, the materials used by
manufacturers come continuously from different suppliers. Therefore, the resistance
of material to fatigue crack propagation will vary from batch to batch. On the other
hand, the same by nomenclature material tested in different laboratories by using
a standard experimental set-up comes from variety of suppliers and therefore, it is
more representative in terms of batch to batch variability.

The statistical variability of the parameters among specimens during the experiments
can be characterized via their statistical moments as the empirical mean value, the
empirical variance, etc. In addition, these parameters can be tested for possible cor-
relations. In any crack growth prediction or simulation methodology, it is important
to consider the relationships among the random parameters in terms of probability
in addition to the statistical moments of the parameters individually. Notice that
disregarding the inherent correlations between random parameters could lead to
incorrect results. In consequence, taking account of the correlations between para-
meters is of major importance for a proper probabilistic analysis. Taking advantage
of the previous experimental material scatter measurements, inspection intervals for
railway axles may be determined on the sound basis of probabilistic fatigue crack
growth calculations.

1.3.3 Variable amplitude loading

The methods for analysing constant amplitude fatigue loading conditions are fairly
well established, although a number of uncertainties remain. Constant amplitude
loading refers to either constant stress amplitude, σa, or constant stress intensity
amplitude, Ka, as depicted in Fig. 1.25. Variable amplitude fatigue loading introduces
additional difficulties that are not fully understood. Some relevant aspects of variable
amplitude loading are discussed below.
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Similitude of crack tip conditions, which involves a unique relationship between
da/dN , ∆K, and R, is usually valid for constant amplitude loading. Real structures,
however, seldom fit to this ideal. A typical structure experiences a spectrum of
stresses over its life. In such cases, the crack growth rate at any moment depends
on the current loading conditions. Accordingly, only cyclic stresses levels where
da/dN > 0 contribute to fatigue, and therefore are considered for the crack growth
extension. Cyclic stress levels where da/dN = 0 do not contribute to fatigue crack
growth, however, the total number of cycles should include all cycles, even those
that do not contribute to fatigue damage. Of course, the da/dN is also a function of
crack size, so it must be continually recomputed during the life calculation.

Several researchers have addressed the question of whether variable amplitude loading
effects may play an important role in railway axles, but the results are still unclear.
The effect of variable amplitude load is tackled in Zerbst et al. [66] using the
NASGRO equation and a real loading sequence, not finding a clear load interaction
effect. Similar results are obtained by Beretta and Carboni [93] for a high speed
traffic loading sequence. However, Sander and Richard [94] disagree with this
conclusion based on their own investigations of railway axles with block loading
sequences. In a study by Beretta and Carboni [82], a negligible interaction effect
for EA1N steel test specimens is found, but significant crack growth retardation in
full-scale axles which experienced the same loading sequence is inferred. This result
might be the consequence of a different crack closure behaviour due to a different
constraint situation shifting the threshold ∆Kth to higher values in the axles, i.e.
the variable amplitude effect, by its nature, would be a ∆Kth effect. Another result
that points into this direction is provided by Luke et al. [95], where a negligible
load history effect at high ∆K levels but strong retardation at lower ∆K is observed.
Notice that in the investigation by Zerbst et al. [66], any loading sequence effect
was found in calculations performed with threshold values equal to zero, what implies
that the linear region II is extrapolated for ∆K < ∆Keff . However, for different ∆Kth

values, this investigation shows some sequence effects that depend on the ∆Kth used.
To sum up, there are still challenges to be investigated in the research area of variable
amplitude loading in order to objectively quantify the reliability of wheelsets.

The current state of the art of FCG analysis of railway axles seems to neglect any
load sequence effect but uses stress spectra obtained by cycle counting methods, e.g.
a rainflow algorithm. It is important to acknowledge that railway axles are subjected
to load sequences of varying amplitude, so these complex loads must be considered
when determining the evolution of the SIF during the crack growth process in order
to calculate a reliable prediction of fatigue life. Although in the railway sector there
is no standard defining the random load supported by axles under service conditions,
different research efforts have attempted to quantify the effects of the randomness of
the load on fatigue life. Several examples of railway axle load spectra, which are a
key part of variable amplitude fatigue analysis, are provided below.
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The load spectrum in a freight train from the UIC B 169/RP 36 report [84] is shown
in Fig. 1.37. The stress collectives from representative traffics with heavy loads were
measured in Germany on wheelsets with an axle load of 22.5 t. The amplitude and
frequency values scaled for 660 000 km and for 15 000 km are shown in tabular form.

Sai Hi hi Hi hi
[MPa] [-] [-] [-] [-]

90,9 25848167 14185186 587458 322391
105,3 11662981 7448788 265068 169291
119,6 4214193 2963908 95777 67362
134,0 1250285 1062888 28416 24157
148,3 187396 170002 4259 3864
162,7 17394 14291 395 325
170,0 3103 3103 71 71
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Figure 1.37. Stress spectrum in a freight train [84].

An exhaustive list of stress spectra in railway axles can be found in the following
investigations: Beretta and Regazzi [25], Mädler et al. [83], Pokorný et al. [86],
Beretta and Carboni [93], Luke et al. [95], Beretta et al. [96], Watson and
Timmis [97], Regazzi et al. [98] and Traupe et al. [99].

1.3.4 Flying ballast impacts

The phenomenon of flying ballast is especially important in high-speed rail operations.
Nonetheless, ballast particles away from the track bed might cause damage to freight
axles. This subsection briefly identifies the potential and hazard consequences of
ballast impacts in the current railway system.

According to Zerbst et al. [22] and Watson [100], the occurrence of impact damaged
axles can be estimated to be 5 % for freight axles. As shown in Fig. 1.38, the mean
value depth of the detected impact notches is about 0.8 mm. The distribution of
impact craters is described by a Weibull distribution but can also be approximated
by a log-normal distribution. A 2 mm crack corresponds to the 95 % percentile of
the Weibull fit. That is, the upper bound approximates to depth a of 2 mm. Ballast
impacts are a rather typical issue but are found to be larger than those of typical
corrosion pits. Of course a ballast-induced notch is not a crack, although there is
some chance of developing small fatigue cracks from these sharp edges.
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Figure 1.38. Depth of impact craters and comparison with corrosion pits [100].

The histogram of impact depths is as shown in Fig. 1.39 according to Watson [100]
and Gravier et al. [101].
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Figure 1.39. Typical histogram of impact depth [102].

Despite the infinite life methodology adopted for railway axles design, notable
accidents have occurred in the past as shown in Subsection 1.1.2. The current
methodology is unable to consider the deterioration of the axles during service, such
as paint detachment shown in [103], pitting from corrosion as by Beretta et al. [104],
or damage from ballast impacts such investigations by Gravier et al. [101, 105].
Some examples of these are damages shown in Fig. 1.40.

(a) Impact or scratch marks. (b) Paint damage and oxidation.

Figure 1.40. Different damages of an in-service railway axle [103].
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These initial flaws can act as the initiation of a fatigue crack that could become
similar to the transition crack shown in Fig. 1.41, causing final fracture of the axle.

Figure 1.41. Transition fatigue crack [103].

In damage tolerance analysis, the initial crack size is usually defined by the NDT
detection limit. However, railway service experience has also to be taken in consider-
ation. Ballast impacts occur particularly on high speed tracks in snowy seasons, in
tunnels and after a track renewal. That impacts are seldom but when they occur
they can leave sharp angled notches of up to 2 mm in depth as described in Gravier
et al. [101]. Because such an incidence could happen right after a maintenance
inspection, seems reasonable to consider this size as likely initial crack size even if
the NDT methods in use were able to detect cracks smaller than 2 mm.

1.3.5 Reliability of probability of detection

Railway axles are subjected to deterioration during service such as contact fatigue,
friction fatigue, thermal fatigue, fatigue caused by rotating bending and/or torsional
oscillations, abrasion wear and tear, corrosion and loss of paint, damage from ballast
impacts, or impacts during maintenance. To detect such damages and prevent
catastrophic failures of the safety-critical axles, it is necessary to perform periodic
NDI of the vehicle in service. This issue dates back to the steam age when a railway
worker checked the integrity of train wheels and axles via tapping them with a
hammer and listening to the sound made to determine the integrity of them. The
worker was able to tell from the note heard whether the wheelset was fine or not. The
rudimentary role of the wheeltapper was quite common and of crucial importance
in the 19th century. This tap test was the first way to inspect wheelsets in service,
and it can be thought to be the precursor of ultrasonic testing. Nowadays, the most
common methods for inspecting railway axles are: visual testing (VT), ultrasonic
testing (UT), and magnetic particle testing (MT). Such inspections are planned at
predetermined intervals, and so far are based on the experience of the operators or
the manufacturers. Determining the inspection interval based on the experience is a
clear inconsistency when aiming for the highest safety at the lowest cost.
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The NDT performance is a statistical matter Zerbst et al. [56], and the characteristic
adopted for evaluating its performance is the POD vs. crack size curve, commonly
referred to as POD curve. The probability of detection (POD), as the name suggests,
is stochastic in nature. The probability of detection that is typical of a given
methodology and test method shows the capacity of detection of an inspection
technique in regard to discontinuity size. However, in real situations, POD curves do
not have an ideal behaviour. The typical shape of the POD vs. crack size curve is
shown in Fig. 1.42.

100

80

60

40

20

0
Crack Size, a

P
ro

ba
bi

li
ty

 o
f 

D
et

ec
ti

on

Figure 1.42. Probability of crack detection POD as a function of crack size a.

Commonly, such a curve is explicitly expressed as a function of a characteristic linear
dimension of the flaw, for instance: diameter, crack length, crack depth, etc. However,
it is important to note that it is also function of many other physical and operational
parameters such as: the NDT method, the particular material, the complexity of
the geometry, the flaw shape, and environmental and human influence. This, in fact,
means that the POD curve obtained in laboratory when using certain fixed conditions
and operators, is of limited application to other cases due to its intrinsic variability.

The statistical nature of NDT derives from the experimental evidence that repeated
inspections of same flaws do not necessarily result in consistent indications. The
probability of detecting a flaw increases with its size and may not reach a 100 %, or it
would refer to an unrealistically large crack size. Note also that the scatter of POD
values for a given size can be significant. Because of the high effort and cost involved
in this kind of characterizations, only a few curves are available. The POD vs. crack
size relationships for various NDT methods widely adopted in the railway axle field
were obtained by Benyon and Watson [106]. Additional POD curves can be found
in the following investigations: Wei [90] and Watson et al. [107]. Some examples of
investigations that rely on these curves are the following: Zerbst et al. [22, 56, 66,
108], Pokorný et al. [86] and Carboni and Beretta [109].

In the damage tolerance context, non-destructive inspection refers to the in-service
testing which besides the performance of the NDT method used, refers to a number
of additional variable factors aforementioned such as the automation, the operator
skills with respect to the test method and the complexity of component inspected.
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1.4 Probabilistic approaches in mechanical engineering

It is currently recognised that the statistical nature of the mechanical properties
of solid materials, the scattering of loads and uncertainties inherent to geometrical
parameters, affect their structural behaviour, and therefore probabilistic numerical
approaches for reliability assessment and durability prediction are needed. Prob-
abilistic analyses are a useful complement to deterministic analyses that can be
used in the design of components or structures and to support the decision-making
process of defining maintenance inspections. Those applications still deserve some
developments via the extension of the prevailing numerical methodologies. One such
area is damage tolerance in the railway sector, where no systematic and detailed
probabilistic analysis is provided so far, especially to define in service inspection
intervals in train axles for crack detection.

Nowadays, probabilistic methods are of great importance in research and develop-
ments in engineering, which is challenged by new technologies and rapidly changing
needs and values in the society. Contemporary needs related to, for example, life
cycle analysis, product optimization, assessment of existing structures, etc., still give
room to new developments in order to establish accurate and practically applicable
probabilistic engineering methods to support them.

This section provides a description of methods dealing primarily with probabilistic
and statistical approaches to contemporary structural problems encountered in
diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear
engineering. The description aims to maintain a healthy balance between generality
of techniques and discussion of problem-specific alternatives, presenting a number of
ideas among different probabilistic approaches in mechanical engineering.

Essentially, probabilistic analyses focus upon the quantitative characterization and
reduction of uncertainties in both computational and real world applications. They
try to determine how likely certain outcomes are if some aspects of the system are
not exactly known, i.e. predicting the effects of random variability. There are two
major types of probabilistic approaches. The first one is the forward propagation of
uncertainty, where the various sources of uncertainty are propagated through the
model to predict the overall uncertainty in the system response. The second one is
the inverse assessment of model uncertainty and parameter uncertainty, where the
model parameters are calibrated simultaneously using test data.

There have been a number of investigations on the first approaches and a majority
of uncertainty analysis techniques are developed for it. On the other hand, the
second approaches are gaining attention in the engineering design community. Many
methods are being researched or are currently in use to predict the random variability
of an output variable. Some of these methods include the following:
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• Methodologies for forward uncertainty propagation:

– Simulation-based methods:

∗ Monte Carlo (MC) simulations;

∗ importance sampling;

∗ adaptive sampling; and

∗ Latin hypercubes.

– Local expansion-based methods:

∗ Taylor series;

∗ perturbation method; and

∗ first-order second moment (FOSM) method.

– Functional expansion-based methods:

∗ Neumann’s expansion;

∗ orthogonal or Karhunen-Loeve expansions;

∗ polynomial chaos expansion; and

∗ wavelet expansions.

– Most probable point-based methods:

∗ first-order reliability method (FORM); and

∗ second-order reliability method (SORM).

• Methodologies for inverse uncertainty quantification:

– Frequentist;

– Bayesian:

∗ modular Bayesian approach; and

∗ fully Bayesian approach.

Although this thesis focuses on local expansion-based methods via Taylor series
and checks its performance by comparison with simulation-based methods, namely
the Monte Carlo method, the other probabilistic approaches listed are also briefly
described in the following subsections. Due to the complex mathematical calculations
in probabilistic approaches, in fact, sometimes intractable when handled in detail,
the target here is to promote a deeper understanding of the methods considered
rather than to provide a collection of equations.
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1.4.1 Simulation-based methods

As it can be inferred from its name, simulation-based methods are probabilistic
methods that rely on a simulation modelling and analysis. This is a broad class of
computational algorithms where a system is mathematically modelled, and therefore
computer-based simulations are able to provide information about its behaviour. Ex-
isting probabilistic simulation-based methods include Monte Carlo (MC) simulations,
importance sampling, adaptive sampling, Latin hypercubes, etc. Below, the MC
method is briefly summarized.

The MC method is well known and used in many fields of engineering for solving
problems of random variables providing a probabilistic interpretation [110]. The
essential idea consists of generating input variability via repeated random sampling
and to evaluate a deterministic model obtaining many deterministic results that
interpreted as a whole, form a probability distribution. Afterwards the response
can be analysed in the desired statistical terms, e.g. expected values and variances.
Using MC, the failure probability can be estimated when there are multiple random
variables. This analysis is easy to perform, since it merely involves incorporating a
random number generator into a deterministic model. Each MC simulation is referred
to as a realization. Notice that, MC analysis is very inefficient, however, as numerous
trials are required for convergence. In short, it provides non-deterministic results
via brute force. Nevertheless, MC simulations are often improved by importance
sampling. In this case, samples are not generated based on their distribution function,
but on some arbitrary function and then weighted with their probability. For example,
sampling techniques like Latin hypercube sampling can be used in order to ensure
that the whole random space is captured.

There are some attempts to obtain the life distribution in the railway sector based on
the MC method such as in the works by Beretta and Carboni [55], Beretta and
Villa [67] and Giannella [111]. The accuracy of the statistical moments calculated
in this thesis are checked by comparison with MC simulations.

1.4.2 Local expansion-based methods

Local expansion-based methods are probabilistic methods based on the local ap-
proximation of a function of random variables using math expansions such as the
well-known Taylor series. In general, the function has to met some conditions such as
being sufficiently differentiable in the vicinity of the objective, or having certain finite
quantities as statistical moments. This is a broad class of methods where a function is
approximated, thus representing its behaviour in the vicinity of the evaluation point.
These linear or linearised methods have advantages when dealing with relatively
small input variability and its accuracy tend to be better in cases when outputs
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that do not have high non-linearities. Well-established probabilistic local expansion-
based methods include Taylor series, the perturbation method, the first-order second
moment (FOSM) method etc. Below, the FOSM method is outlined.

Generally, it may not be feasible to calculate the expected value and the variance of
the response by means of the direct use of the expectation operator on the function
which relates the random input and output variables if that function is not simple.
In such cases, approximation techniques such as the FOSM are resorted to address
the stochastic problem. The FOSM method is a probabilistic method to determine
stochastic moments of a function with random input variables by using Taylor
expansions, provided that the function is sufficiently differentiable and that the
moments of the input variables are known. The objective is to determine the effect
of the input random variables on the randomness of the function based on them.

The simplest version of the FOSM is illustrated in Fig. 1.43. It represents a function
Y = g (X) with only one random input variable X assumed to be normally distributed
and the first-order Taylor series approximation of g (X), that is, a linear equation,
that is used to map the input randomness onto the y-axis.

Figure 1.43. FOSM on a function with one random input variable.

The real output shape mapped on y-axis would be in some extent distorted and the
distribution would be asymmetric, certainly not normal. When using a first-order
Taylor series, the linear mapping provides a normal distribution for Y as represented.
In order to enable the estimation of a non-symmetric or non-normal symmetric form
that takes into account the effect of the non-linear function, a second-order Taylor
approximation is thoroughly investigated in this thesis.

The FOSM method derives its name from the fact that it uses a first-order Taylor
approximation of the function and uses only the first and second moments of the
random input variables to determinate the expected value and the variance of the
response. As a curiosity, it is worth mentioning that the term moment in statistics
comes from physics. Pearson [112] adopted the word for probability distributions
as an allusion to moment of inertia, a term common in physics, which describes
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the mass distribution of a body in terms of its resistance to changes in angular
momentum. Using the physical analogy, if the probability density function indicated
the density of a beam, the expected value would be the position of its center of mass,
and the variance would be its moment of inertia. However, this physical analogy is
less intuitive for higher order moments.

Once the FOSM has been applied, it is common practice to check its results against
the MC. Both methods are approximations in their essence, which one is more suitable,
will depend on the requirements of problem considered. Probabilistic structural
analysis is conditioned mainly by two characteristics, the efficiency and the accuracy.
The FOSM method is a low-cost technique in terms of computation time while the
MC is an expensive method. If the differences between the results provided are small
enough, both methods are considered to be equally accurate and thus the use of
the FOSM is recommended for applications that require fast estimations such as
technical tools used in design or as an aid to the decision making process of defining
periodic inspections of maintenance.

There are several examples in the literature where the Taylor series, the perturbation
method, and the FOSM methods are employed to estimate stochastic distributions in
the fatigue-related problems such as in the remarkable works by Bea [70], Núñez [71],
Grasa [72], Calvo [73] and Calvo et al. [113].

1.4.3 Functional expansion-based methods

Functional expansion-based methods are probabilistic methods that rely on repres-
enting the r.v.s using a polynomial basis that is orthogonal to the distribution of the
random vector. Depending on the distribution of the random vector, different types
are distinguished. Existing probabilistic functional expansion-based methods include
Neumann’s expansion, orthogonal or Karhunen-Loeve expansions, polynomial chaos
expansion (PCE), wavelet expansions, etc. Below, the PCE method is described.

The PCE method is an approach for representing a random variable in terms of
a polynomial function of other random variables. The polynomials are selected to
be orthogonal with respect to the joint probability distribution of these random
variables. PCE is able to estimate the evolution of uncertainty in a dynamical system
when there is probabilistic uncertainty in the system parameters.

An example where the PCE is used to estimate fatigue crack propagation in structures
with random parameters is the work by Qiu and Zhang [114].
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1.4.4 Most probable point-based methods

Most probable point (MPP)-based methods are probabilistic methods that use a
response function that depends on the probabilistic distributions of the input variables.
Each particular combination of input variables values has certain probability of
occurrence based on the input distributions. Since each input variable combination
gives a particular response value, the probability of obtaining a target response is
equal to the probability of obtaining the associated input combination. Existing
probabilistic MPP-based methods include the first-order reliability method (FORM)
and the second-order reliability method (SORM). Below, these methods are addressed.

For FORM and SORM, the limit state function, which is a condition of a structure
beyond which it no longer fulfils a relevant criteria, is approximated at the MPP. The
limit state function divides the random space into a safety and a failure regions. The
MPP is the point on the function with the highest probability density and with the
smallest distance to the expected values of the inputs. The MPP is searched, then
the limit state function is approximated at the MPP by a linear, first-order function
FORM, or a quadratic, second-order function SORM, and finally the probability of
failure is obtained. The MPP is calculated using optimization techniques.

An example of a univariate approximation at MPP for higher-order reliability analysis
for predicting fatigue failure probability of components subject to random loads,
material properties, and geometry is presented in Rahman and Wei [115].

1.4.5 Frequentist

Frequentist methods are probabilistic methods of inverse uncertainty quantification
that use frequentist inference and probability, which treats “probability” in equi-
valent terms to “frequency” and draws conclusions from sample-data by means of
emphasizing the frequency or proportion of findings in the data. Frequentist methods
are considered to be the philosophical rival of Bayesian statistics. Well-established
frequentist methods include statistical hypothesis testing and confidence intervals.

Given some experimental measurements of a system and some simulation results
from a model, inverse uncertainty quantification estimates the discrepancy between
the experiment and the model, often called bias correction, and estimates the values
of unknown parameters in the model if there are any, frequently called parameter
calibration. In regression analysis, the standard error of parameter estimates is
readily available, which can be expanded into a confidence interval. This method is
of great importance since it is typically implemented in a model updating process.

An example of frequentist statistical modelling technique for analysis of in-service
stresses for fatigue life analysis in railways is given by Wang [116].
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1.4.6 Bayesian

Bayesian methods are probabilistic methods of inverse uncertainty quantification
in which Bayes’ theorem is used to update the probability for a hypothesis as
more evidence or information becomes available. Whereby the probability that
a hypothesis is true is inferred based on both observed evidence and the prior
probability that the hypothesis was true. They combine common-sense knowledge
with observational evidence to eliminate complexity in a model by considering only
meaningful relationships and disregarding the influences of all other variables on
outputs. Prevailing Bayesian methods include modular and fully Bayesian approaches.

Several methodologies for inverse uncertainty quantification exist nowadays under
the Bayesian framework. It is result of the use of Markov chain-based techniques.
Bayesian methods allow to satisfactorily combine various sources of information into
a common complex model.

There are many examples in the literature where Bayesian approaches are used, for
instance, a comparison of frequentist and Bayesian methods for analysis of in-service
stresses for fatigue life analysis in railways is given by Wang [116]. An additional
example of a probabilistic estimation in a cyclic loading fatigue crack propagation
application for the failure forecast method using Bayesian inference is provided
by O’Dowd et al. [117].

The components of most mechanical structures are designed to be very reliable.
Failures are so uncommon that any approach based on observed frequencies is, in
general, out of the question. Therefore, any estimation of the probability of failure
must be based on some form of modelling in which statistical information about
parameters, such as crack dimension, loading, material data, etc., is combined by the
methods of mathematical statistics. The models are therefore probabilistic in the
sense that the variability of the different quantities is assumed to be random, while the
governing equations are purely deterministic. Thus, a probabilistic treatment cannot
replace deterministic modelling, but is an extension of the deterministic modelling to
consistently take into account the uncertainties of the quantities involved.

1.5 European initiatives related to rail transport

Rail transport has had a revival in recent years or decades in its competition with cars
and aeroplanes, due to road congestion and rising fuel prices, as well as governments
investing in rail as a means of reducing CO2 emissions in the context of concerns
about global warming. In the following, some European initiatives related to rail
transport are described.
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1.5.1 European Green Deal

The European Green Deal is an integral part of the strategy of the European
commission to implement the United Nation’s 2030 agenda and associated sustainable
development goals. The European Green Deal [118] presented in December 2019
strives to make Europe the first climate-neutral continent, setting out a clear vision
of how to achieve climate neutrality in Europe by 2050. Transport accounts for a
quarter of the EU’s greenhouse gas (GHG) emissions. To achieve climate neutrality,
a 90 % reduction in transport GHG emissions is therefore needed by 2050.

The transformation of the railway system will be pivotal to achieve the European
Green Deal objectives by offering both decarbonised and time/cost-competitive
transport solutions for passengers as well as for freight cargo.

The EU has raised its 2030 climate ambition, committing to cutting emissions by
at least 55 % by 2030. The Fit for 55 package [119], adopted in July 2021, includes
proposals for supporting a faster roll-out, relative to prior objectives, of sustainable
transport solutions such as the railway.

1.5.2 European Year of Rail 2021

2021 was the European Year of Rail, an European Commission initiative as part of
the EU’s efforts under the European Green Deal to achieve climate neutrality by
2050 [120]. This initiative was an opportunity to highlight the benefits of rail as
a sustainable, smart and safe means of transport. In the following, some benefits
highlighted over the 2021 European Year of Rail are summarized.

The benefits of rail are not only for holidaymakers and commuters. Businesses and
freight carriers can shift to rail and benefit from low-cost, increasingly competitive
offers to transport their goods all over Europe and reducing their carbon footprint at
the same time. The length of railway lines in use in km in the USA, the EU, China,
and Russia are shown in Fig. 1.44, ready to meet any need.

Figure 1.44. Length of railway lines in use in km [120].
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Rail is one of the most sustainable forms of transport. Rail is green and sustainable
because it is largely electrified and emits far less CO2 than any equivalent travel
by road or air. It accounts for only 0.4 % of GHG emissions from EU transport as
it is shown in Fig. 1.45, while all EU transport accounts for 25 % of the EU’s total
emissions. Additionally, it is the only transport means that between 1990-2017 has
consistently reduced its emissions and energy consumption, while increasingly using
renewable energy sources. Increased use of rail is necessary to fulfil European climate
objectives. Nevertheless, there are still some steps that can be taken to further
improve the climate footprint of rail.

Figure 1.45. Greenhouse gas (GHG) emissions from transport (EU-27, 2018) [120].

Rail is affordable, comfortable and safe. It is the safest land transport means with
the lowest incidence of fatal accidents as shown in Fig. 1.46. When railways are
adequately taken care of, i.e. regularly serviced, maintained, replaced when needed,
etc., an accident almost never happens.

Figure 1.46. Fatalities per billion passengers/km (2011-2015) [120].

Finally, some other interesting facts and figures about rail transport that were
emphasised during the 2021 European Year of Rail [120] are: more than 916 000 people
work in the EU railway sector, 21 % of the workforce in the EU rail sector are
women, more than 9100 km of high-speed rail network in Europe, and 75 % of total
train-kilometres are travelled by electricity-powered trains.
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To recap, rail transport can be a good alternative to on-road vehicles. However, in
order for them to be a feasible alternative, they have to be carefully maintained and
managed. In the end, re-thinking the way people and goods are moving all over the
world is urgent to combat and try to reverse the damages caused by climate change.

1.5.3 Europe’s Rail Joint Undertaking

The Europe’s rail joint undertaking (EU-Rail) is the European partnership on
railway research and innovation established under Horizon Europe. It continues
the achievements of the Shift2Rail Joint Undertaking (S2R) [121] developed under
the Horizon 2020 initiative, that was the first European rail initiative to research
and innovate (R&I) solutions to accelerate the integration of new and advanced
technologies into innovative rail solutions. After the promotional European Year of
Rail in 2021, concisely described in Subsection 1.5.2, this EU-Rail partnership aims
to accelerate research and development in innovative technologies and operational
solutions supporting the fulfilment of European Union policies and objectives relevant
for the railway sector and supporting the competitiveness of the rail sector and the
European rail supply industry [122].

The objectives of EU-Rail are devoted to addressing the EU policy objectives, rail
sector vision, and the challenges inherent to the transformation of the rail system.
Specifically, this initiative target the following goals:

(i) meeting evolving customer requirements;

(ii) improved performance and capacity;

(iii) reduced costs;

(iv) more sustainable transport;

(v) harmonised approach to evolution and greater adaptability;

(vi) reinforced role for rail in European transport and mobility; and

(vii) improved EU rail supply industry competitiveness.

It should be noted here that the fundamentals of this thesis are aligned with the
general objectives aforementioned, especially with improving performance, reducing
railway axle maintenance costs, and therefore making the railway a means of transport
more sustainable what at the same time reinforces the EU transport and mobility
competitiveness.
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To achieve the previous objectives, five areas of priority for EU-Rail are determined:

(i) European rail traffic management and supporting its key role in a multi-modal
transport system.

(a) delivering a European rail traffic management system to achieve dynamic
capacity management, improved performance, and cost efficiency;

(b) providing systems for real time management of the network; and

(c) supporting the key role of rail in future transport and mobility systems.

(ii) Digital and Automated Train Operations.

(a) delivering an adaptable and scalable track-side and on-board architecture
and associated solutions; and

(b) delivering scalable automation in train operations.

(iii) Sustainable and digital assets.

(a) solutions to reduce the environmental footprint, improve accessibility, and
increase resilience of the rail system; and

(b) innovative solutions to minimise asset life costs.

(iv) Competitive digital green rail freight.

(a) developing and integrating new operational and technological solutions to
make rail freight more competitive; and

(b) fully digitalising operations to support rail freight in the logistics value
chain.

(v) Smart solutions for low density lines, cost-efficient regional lines.

(a) to adapt solutions to the whole rail network, supporting competitiveness
of the whole sector.

Once again, the essentials in thesis are aligned with the priorities aforementioned,
particularly with the actions to develop solutions for reducing the environmental
footprint of the rail system by reducing railway axle maintenance costs what helps to
extend their useful life providing technological solutions to make rail more competitive.

These priorities will ensure a fast transition to more attractive, user-friendly, com-
petitive, affordable, easy to maintain, efficient and sustainable European rail system.
Moreover, they are devoted to delivering a sustainable and resilient rail system by
developing a zero-emission and climate resilient infrastructure, applying circular
economy to the rail sector, piloting the use of innovative technologies, designs and
materials in the full life-cycle of rail systems.
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To improve the competitiveness of the rail freight transport, in addition to the safety
analysis, an overall assessment of the LCC should be done as an essential part of the
approval process when introducing new developments. The LCCs should cover not
only the acquisition costs but also the maintenance and operational costs over the
entire lifetime of the wheelsets.

Due to its enormous importance in relation to passenger safety and public economy,
several research activities have been carried out in the field of design and maintenance
of railway wheelsets throughout Europe. Below, some remarkable examples are
summarized. The WIDEM project “Wheelset Integrated Design and Effective
Maintenance” [123] investigated damage accumulation assumptions for the safe
service life concept as well as NDT methods. The EURAXLES research project
“Minimizing the risk of fatigue failure of railway axles” [124] aimed at reducing the
LCC of wheelsets. The measures investigated included the integration of appropriate
risk analysis methods into the design concept, the improvement of corrosion protection
systems, and advancements in NDT methods. The WOLAXIM innovation project
“Whole Life Rail Axle Assessment and Improvement” [125] aimed at providing three
new methods for crack detection and corrosion assessment in railway axles. One
method was for the exposed body of the axles, intended primarily for freight wagons.
A second method was specifically for the hollow axles of high speed trains, improving
the speed of the inspections. The third method aimed to enhance the measurement
of corrosion in axles. Another example is the SUSTRAIL project “The sustainable
freight railway: Designing the freight vehicle track system for higher delivered tonnage
with improved availability at reduced cost” [126], that contributed to make the rail
freight system regain position and market share. The proposed solution was based on
an improvement in both freight vehicle and track components in a holistic approach
to achieve a higher reliability and increased performance. The approach pursued
innovations in rolling stock and freight vehicles, targeting an increase in speed and
axle-load, combined with innovations in the track components. One last example may
be the FR8RAIL project “Development of Functional Requirements for Sustainable
and Attractive European Rail Freight” [127], submitted as part of the Shift2Rail
Joint Undertaking (S2R) [121] developed under the Horizon 2020 initiative. The
main aim was the development of functional requirements for a sustainable and
attractive European rail freight meeting an ambitious 10 % reduction in the costs of
freight transport by rail.
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1.6 Discussion of open points to be covered

Among all the factors related to the design, operation, and maintenance of railway
axles, the following points are still under discussion, and are taken into account
during the research activity throughout this thesis.

Reliability engineering is a comparatively new discipline in scientific terms that
emphasises the probability that a component will perform a required function safely
under specific conditions for a certain time. Reliability engineering is then the study
of the longevity and failure of a component based on four attributes which are:
probability, proper operation, a given environment, and time. Early contributions
introducing probabilistic ideas to the problem of structural reliability were those
by Mayer [76, 77]. This work revealed general basic probabilistic methods as it
was observed that component strength and loading conditions are random variables,
and therefore there is an associated probability of failure. These probabilistic
fundamental ideas were further developed establishing the theory of the FOSM
method for reliability analysis by Cornell [128, 129]. This method has been widely
used for many years by those engaged in the probabilistic analysis of structures.
Recent research has contributed with new perspectives on the analysis of components
in practical applications, taking advantage of the FOSM method. Thereby, it enables
some new perspectives in the FCG analysis of components.

As mentioned, fatigue life prediction is essential for the design and maintenance
planning of components such as railway axles. Consequently, a probabilistic ap-
proach that considers input statistical distributions and provides an output response
distribution will be more useful than a deterministic one. Addressing the problem
from a probabilistic point of view that is also efficient and precise is, therefore, a
challenge. In some applications it is enough to obtain certain statistics of the response
distribution, for instance, the expected value, the variance, or higher-order moments.

Over recent decades, probabilistic FCG methods are becoming popular. Some ap-
proaches consist in acquiring S-N diagrams from specimens, considering the variability
of fatigue life, and then providing probabilistic fatigue S-N curves for the component
integrity assessment as in Beretta and Regazzi [25] and Wu et al. [130]. Many
other probabilistic models are based on deterministic crack growth equations such as
the Paris’ law by Paris and Erdogan [58]. For example, several probabilistic studies
founded on the Paris’ law are presented by Bea [70], Akama and Ishizuka [131],
Bea et al. [132], Hillmansen and Smith [133], Hong et al. [134], Náhlík et al. [135],
Wang et al. [136], Yasniy et al. [137] and Zhu et al. [138], being the model most
frequently used. In recent years, new advances considering the complete crack growth
curve have been made due to the increasing importance of considering the early stages
of crack growth for a proper lifespan estimation. A modified version of the Paris’ law,
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the NASGRO equation by Forman and Mettu [64], represents the state of the art
in the FCG field, being commonly used in railway axles evaluation. The NASGRO
equation is commonly applied in the evaluation of railway axles as in investigations
by Beretta and Carboni [55], Beretta and Villa [67], Náhlík et al. [135] and
Mallor et al. [139]. Some probabilistic approaches use the MC method on the
NASGRO equation to quantify the material uncertainties and loading conditions in
the fatigue behaviour of railway axles as the ones in Beretta and Carboni [55] and
Beretta and Villa [67]. Additionally, a comparison of the fatigue life calculation in
railway axles according to the Paris’ law and to the NASGRO equation is performed
in Náhlík et al. [135]. In this article, for both models, several material parameters
levels are considered to quantify how they affect the dispersion of the fatigue life.

It is worth highlighting the works made in the field of FCG life estimation according
to the Paris’ law using Markov chains and B-models by Bea [70], in the fatigue crack
nucleation stage based on the Coffin-Manson damage model by Núñez [71], in the
extension of the finite element method applied to bio-mechanics by Grasa [72], in
the multiaxial fatigue assessment based on the virtual strain energy damage model
of Liu by Calvo [73], and in the use of Markov chains and B-models applied to
dental implants by Prados-Privado [74]. The probabilistic developments proposed
in this thesis can be framed as a continuation of some research lines initiated by the
previous researchers throughout their theses at the Universidad de Zaragoza.

It is important to note that so far few attempts have been made to apply the
FOSM method considering the NASGRO model. A statistical description of the
NASGRO model applying the FOSM method is derived by Corbetta et al. [140].
This study indicates that the first-order expansions provided are not sufficient to
correctly describe the variability of the NASGRO law. The authors discard the use
of second or higher-order expansions alleging that it could produce very complicated
formulation making the method not viable in practice. For that reason, in that article,
some simplifications are made regarding the probability relationships among random
variables to overcome the difficulty. However, it remains unclear whether the FOSM
or a higher-order version, have the potential to be successfully applied. It would
thus be of interest to check the validity of the second or higher-order expansions to
describe the probabilistic FCG based on the NASGRO model.

The probabilistic FCG strategies above provide certain statistics of the response
distribution, such as the expected value and the variance. Then, the problem is
further analysed according to these statistics. One such interesting analysis is to
construct the whole PDF of fatigue crack growth life. The PDF can be used to
describe the relative likelihood that the value of the lifespan would be equal to
a particular value. Generally, the random output variable is assumed to follow a
common probability distribution, such as the normal or the log-normal distribution,
and subsequently the parameters of the distribution are estimated considering the
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statistics of the response as constraints. An illustrative example of the previous
strategy is shown by Mallor et al. [139] where the full second-order approach
provides the expected value and the variance of the random output variable lifespan
and then the normal and the log-normal PDFs are constructed according to these
two statistics of the life. The article highlights some drawbacks regarding the need
of assuming in advance a probability distribution of two parameters, since only the
expected value and the variance of the underlying lifespan probability distribution are
calculated, and also that the accuracy or similarity between the constructed PDFs
and the results of the MC method can be improved. A general methodology that
considers the statistics of the response and automatically provides an appropriate
PDF of the response distribution will be more useful than a predefined one. It
would thus be of interest to explore some alternatives to overcome the limitations
aforementioned to contribute to a better knowledge of the distribution of fatigue life.

As shown in the previous literature, the uncertainty propagation in fatigue crack
growth life has studied for many years. The investigations usually aim at providing
the probability distribution of the lifespan which, in railway axles, is a fundamental
aspect for the maintenance planning to keep the probability of failure as small as
possible, as far as it is economically viable. Addressing the problem in an efficient and
precise manner is, therefore, a challenge. The construction of a PDF under moment
constraints has historically been of great interest. In some cases, the probability
distribution manifests asymmetry or presents a characteristic heaviness of the tails
relative to the rest of the distribution or both. Therefore, the need to manage the
shape of the constructed PDF arises. The shape of the constructed distribution
can be handled by means of its moments related to skewness and kurtosis. Early
contributions considered this topic, devising a family of distributions, the Pearson
family by Pearson [141], which has the appeal of encompassing several well-known
distributions. This distribution has a rich flexibility in shape, covering a wide
skewness-kurtosis region. Furthermore, the location, scale, and shape parameters
of a particular Pearson distribution can be estimated in terms of the first four
moments, that is: the expected value, first raw moment; the variance, second
central moment; the skewness, third central standardized moment; and the kurtosis,
fourth central standardized moment. As a consequence, the Pearson family has
been used for modelling purposes by those engaged in the probabilistic analysis
of structures. However, an overall treatment of the uncertainty propagation in
fatigue crack growth life based on the NASGRO equation combined with the versatile
Pearson distribution family is missing. To the best of the authors’ knowledge, the
work presented in this thesis is the first attempt to develop an effective, efficient
and practical uncertainty propagation approach that is capable of predicting the
first four moments of the lifespan distribution according to the NASGRO equation
and using them to construct a probability density function based on the Pearson
distribution family.



1.6. Discussion of open points to be covered 79

Nowadays, the definition of inspection intervals in railway axles based on fracture
mechanics is an active topic of research. Several examples are the remarkable research
by Zerbst et al. [7, 22], Beretta and Carboni [55], Mädler et al. [83], Luke
et al. [95], Beretta et al. [96], Náhlík et al. [135], Broek [142] and Cocheteux
and Pouillart [143]. In these investigations, despite the different initial and final
crack sizes, they all use the FCG lifespan for the subsequent inspection planning.
A reliable FCG life estimation is therefore key aspect as highlighted in Carboni
and Cantini [144]. It would thus be of interest to improve the procedures for FCG
lifespan estimation considering its stochastic nature to better define periodicities.
As mentioned, to obtain a probabilistic FCG life estimation, a promising strategy
is to construct the probability distribution of the lifespan of the axle as a result
of the randomness of the inputs, using the Pearson distribution family based on
prescribed statistical moments. These moments can be estimated by applying the
full second-order approach FSOA to the fatigue crack growth NASGRO model [64]
as in Mallor et al. [139, 145–148], and further explained throughout this thesis.

As shown, a number of investigations have studied the FCG process and the stochastic
life prediction. Moreover, in-service loading is complex, and the experimental
information is quite limited, so that to solve probabilistic FCG problems, hypotheses
are generally assumed that may imply important limitations and restrictions. Several
papers consider the Paris’ law or the NASGRO equation. Most of the works use
statistical methods that sometimes, as in the MC method, its application implies
a high computational cost and the methodology becomes not suitable for practical
applications where the computational efficiency is a crucial issue.

With this background in mind, this thesis investigates the FCG based on the NASGRO
model from a probabilistic point of view. Moreover, it explores an efficient procedure
for the definition of inspection intervals of maintenance in railway axles considering
complex stochastic scenarios within the damage tolerance approach. In the meantime,
a new probabilistic formulation of the FCG phenomenon based on the NASGRO
equation is pursued. For this purpose, a generalized extension of the FOSM to a
full second-order approach (FSOA) is aimed and analysed in combination with the
NASGRO model. It is worth noting that the use of methodologies that help to extend
the service life of a product by reducing the energy resources associated with its
maintenance, contributes to the protection of the environment. The outcomes in this
thesis are expected to have a positive and comprehensive effect on the optimization
of maintenance intervals, thus promoting an efficient use of rail transport to carry
people and freight. In this sense, it would also decrease the environmental impact of
mankind due to air pollution caused by road transport, as it helps rail transport to
become a more environmentally friendly alternative. The novel framework in this
thesis is expected to be an asset in a broad range of engineering problems dealing
with random variables. As noted above, the research developed in this thesis has
been disseminated through the journal articles by Mallor et al. [139, 145–148].
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2
Full second-order approach for the
moments of functions of random variables

2.1 Introduction

The relationship between the input random variables and the output random variables,
called error propagation, uncertainty propagation or stochastic moment approxima-
tion, can be explicitly derived and understood, being important for a comprehension
of its underlying approximative character. Its objective is to determine the effect of
the input variables randomness on the randomness of the function based on them.
This chapter is devoted to bridging the gap between these approximation methods
and researchers in the world of uncertainty modelling and propagation.

The full second-order approach (FSOA) for statistical moments prediction, derived
in this thesis, is able to determine the stochastic moments of a general function,
such as: the expected value, first raw moment; the variance, second central moment;
the skewness, third central standardized moment; and the kurtosis, fourth central
standardized moment, based on the Taylor series approximation. The main idea
in this thesis is to apply this approach to predict the moments of the underlying
distribution according to the probabilistic fatigue crack growth life based on the
NASGRO equation.

The first-order second moment (FOSM) method, summarised in Subsection 1.4.2,
derives its name from the fact that it uses a first-order Taylor approximation of the
function and uses only the first and second moments of the input r.v.s to determinate
the expected value and the variance of the response. When the second-order Taylor
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is used, it is named as second-order second moment (SOSM) method, requiring up
to second-order moments of the input r.v.s for the expected value estimation, but for
the variance up to fourth-order moments. The moments of the input r.v.s required
to approximate the first to the fourth order moments are given in the Table 2.1.

Table 2.1. Moments of random input variables required using first-order (FO) and second-order (SO).

Moment to approximate Moment required
Ordinal Significance FO SO
1 Expected value

(Raw)
1 1, 2

2 Variance
(Central)

1, 2 1, 2, 3, 4

3 Skewness
(Central Normalised)

1, 3 1, 2, 3, 4, 5, 6

4 Kurtosis
(Central Normalised)

1, 4 1, 2, 3, 4, 5, 6, 7, 8

In this thesis the method is referred as full second-order approach (FSOA), not naming
the order of the moments of the input random variables needed for computation as
it depends on the order of the moment to approximate.

This chapter is organized as follows. Firstly, a series of abbreviations and conven-
tions are presented to compact the math derivations. Secondly, the most general
propagation of uncertainty for linear combinations in matrix form is derived. This
includes the expected value and the covariance matrix, that is, the variance and
the covariance calculations. In the third place, the propagation of uncertainty for
non-linear combinations is derived in matrix form. This derivation relates the previ-
ous most general case to the approximation of non-linear functions through Taylor
series, including the derivation of the expected value first and second-order and the
covariance matrix of first-order, i.e. the variance and the covariance. Finally, the
FSOA for the first to fourth moments of functions of random variables is derived
using summation notation. It presents the expressions involving tensors of different
orders in a simple and comprehensible way. The first to fourth moments are related
by definition to the expected value, the variance, the skewness, and the kurtosis
of the random output variable. Then from these second-order approximations the
simpler first-order expressions are also derived.
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2.2 Abbreviations and conventions

First a series of abbreviations and conventions are presented to compact the math
derivations:

• General function evaluation at the mean values vector of the random variables:

gµ = g
(
µX1 , µX2 , . . . , µXd

)
(2.1)

• One index j after comma means first partial derivative of the general function
with respect the random variable Xj evaluated about the mean values vector.

g,j = ∂g

∂Xj

∣∣∣∣
(µX1 ,µX2 ,...,µXd)

(2.2)

• Two indexes jk after comma mean second partial derivative of the function
with respect the random variables Xj , Xk evaluated about the mean values
vector. If both indexes are different the derivatives are called second mixed
partial derivatives.

g,jk = ∂2g

∂Xj∂Xk

∣∣∣∣
(µX1 ,µX2 ,...,µXd)

(2.3)

• The nth moment, also known as nth raw moment, of a continuous r.v. Xj with
probability density function fX (xj) is denoted as µ′

j,n and calculated by:

µ′
j,n = E

[
Xn

j

]
=

∞∫
−∞

xn
j fX(xj)dxj (2.4)

– Remarks:

∗ Note that the above definition refers to univariate moments.

∗ The first raw moment of a continuous random variable Xj is called
the expected value µ′

j,1, more commonly denoted as µj or E [Xj ]:

µj = E [Xj ] =
∞∫

−∞

xjfX(xj)dxj (2.5)

• The nth moment about the mean, or nth central moment, of a continuous
random variable Xj is referred to as:

µj,n = E [(Xj − E [Xj ])n] =
∞∫

−∞

(
xj − µXj

)n
fX(xj)dxj (2.6)
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– Remarks:

∗ Notice that the above definition refers to univariate moments.

∗ The first central moment of a r.v. always equals to 0. Not to be
confused with the first raw moment, i.e. the expected value.

µj,1 = E
[
(Xj − E [Xj ])1

]
= E [Xj ] − E [Xj ] = 0 (2.7)

∗ Note that the expected value operator is linear in the sense that:

E [Xj + Xk] = E [Xj ] + E [XK ] (2.8)

∗ The second central univariate moment of a continuous r.v. is its
variance:

(2.9)

µj,2 = Var (Xj)
= E

[
(Xj − E [Xj ])2

]
= E

[
Xj

2 − 2Xj E [Xj ] + E [Xj ]2
]

= E
[
Xj

2]− 2 E [Xj ] E [Xj ] + E [Xj ]2

= E
[
Xj

2]− E [Xj ]2

• The normalized or standardized nth central moment is the nth central moment di-
vided by the standard deviation raised to the nth power, i.e. σn. The normalized
nth central moment of a continuous random variable Xj is calculated by:

µj,n

σn
j

(2.10)

– Remarks:

∗ Note that the above definition refers to univariate moments.

∗ The normalized first central univariate moment of a continuous r.v.
always equals to 0 and the second equals to 1.

∗ The normalized third central univariate moment of a continuous r.v.
is called skewness:

γ1 = µj,3

σ3
j

(2.11)

∗ Usually, the square of the skewness is denoted by β1.

β1 = γ2
1 (2.12)
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∗ The normalized fourth central univariate moment of a continuous r.v.
is called kurtosis:

β2 = µj,4

σ4
j

(2.13)

∗ The kurtosis of a normal distribution is equal to 3. In practice to
provide the comparison to the normal distribution, the excess kurtosis
is defined as the kurtosis minus 3 denoted as γ2, making a normal
distribution to have zero excess kurtosis:

γ2 = β2 − 3 (2.14)

• The moments of the joint distribution of X = {X1, X2, . . . ,Xd} random variables
are defined similarly. For d random variables, the number of non-trivial nth

order mixed or often called cross central moments can be calculated as:

(n + d − 1) !
n! (d − 1) ! − d (2.15)

Non-trivial means that the cross central moments that involve only one variable
are excluded.

The nth central multivariate moments of continuous r.v.s are denoted with
consecutive indexes, two for the 2nd central moment µjk, three indexes for the
3rd central moment µjkl, and four indexes for the 4th central moment µjklm and
so on. Note that the presence of up to four indices does not imply that more
than two r.v.s are involved. Each index runs from 1 to d random variables.

– 2nd central moment: Covariance

The covariance is a measure of the joint variability of two r.v.s.

The number of random variables d must be at least two for the concept of
covariance to be non-trivial. The second mixed central moment for two
continuous random variables Xj and Xk, where j ̸= k, is called covariance,
and it is denoted by:

µjk = Cov (Xj , Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)
fX (xj , xk) dxjdxk (2.16)

Note that the variance is a special case of the covariance in which the two
variables are identically the same.

µjj = Cov (Xj , Xj) =
∞∫

−∞

(
xj − µXj

)2
fX (xj) dxj = Var (Xj) (2.17)
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In analogy to the variance Eq. (2.9), the covariance between two r.v.s can
be expressed as the expected value of their product minus the product of
their expected values:

Cov (Xj , Xk) = E [(Xj − E [Xj ]) (Xk − E [Xk])]
= E [XjXk − Xj E [Xk] − E [Xj ] Xk + E [Xj ] E [Xk]]
= E [XjXk]−E [Xj ] E [Xk]−E [Xj ] E [Xk]+E [Xj ] E [Xk]
= E [XjXk] − E [Xj ] E [Xk]

(2.18)

– 3rd central moment: Coskewness

The third central moment is a measure of the distribution symmetry or
lack of symmetry. Any symmetric distribution will have a third central
moment of 0.

The number of random variables d must be at least two for the concept of
coskewness to be non-trivial. For two continuous random variables Xj and
Xk, where j ̸= k, the two non-trivial third mixed central moments are:

µjjk = µ3 (Xj , Xj , Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)2 (
xk − µXk

)
fX (xj , xk) dxjdxk

µjkk = µ3 (Xj , Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)2
fX (xj , xk) dxjdxk

(2.19)

The special case in which the same variable is considered three times leads:

µjjj = µ3 (Xj , Xj , Xj) =
∞∫

−∞

(
xj − µXj

)3
fX (xj) dxj (2.20)

The normalized or standardized µjjj dividing by the standard deviation
raised to the third power σ3

j is known as skewness. The skewness is denoted
as γ1, Skew (X) or S (Xj , Xj , Xj).

S (Xj , Xj , Xj) = µjjj

σ3
j

(2.21)

In the same sense, the other mixed joint third central moments stand-
ardized using their respective standard deviations are called coskewness.
They are related to skewness as covariance is related to variance.

It is common to refer to the square of the skewness γ2
1 as β1.
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– 4th central moment: Cokurtosis

The fourth central moment is a measure of the combined weight, heaviness,
of the tails relative to the rest of the distribution.

The number of random variables d must be at least two for the concept of
cokurtosis to be non-trivial. For two continuous random variables Xj and
Xk, where j ̸= k, the three non-trivial fourth mixed central moments are:

µjjjk = µ4 (Xj , Xj , Xj , Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)3 (
xk − µXk

)
fX (xj , xk) dxjdxk

µjjkk = µ4 (Xj , Xj , Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)2(
xk − µXk

)2
fX (xj , xk) dxjdxk

µjkkk = µ4 (Xj , Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)3
fX (xj , xk) dxjdxk

(2.22)

The special case in which the same variable is considered four times leads:

µjjjj = µ4 (Xj , Xj , Xj , Xj) =
∞∫

−∞

(
xj − µXj

)4
fX (xj) dxj (2.23)

The normalized or standardized µjjjj dividing by the standard deviation
raised to the fourth power σ4

j is known as kurtosis. The kurtosis is denoted
as β2, Kurt (X) or K (Xj , Xj , Xj , Xj).

K (Xj , Xj , Xj , Xj) = µjjjj

σ4
j

(2.24)

The other mixed fourth central moments standardized using their respect-
ive standard deviations are called cokurtosis. They are related to kurtosis
as coskewness is related to skewness and covariance to variance.

Some authors refer to the excess Kurtosis, γ2, which is defined as kurtosis
minus 3 to make it comparable to the normal distribution. The reason not
to subtract off 3 in the presented math is that the fourth central moment
generalizes better.

The description of the 5th to 8th moments of the joint distribution is given in
Appendix A.
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2.3 Linear combinations: matrix form

This section presents the most general propagation of uncertainty for linear combina-
tions in matrix form. This includes the expected value and the covariance matrix, that
is, the variance and the covariance calculations. Throughout this section, boldfaced
letters are used to refer to random vectors or matrix.

A set of dX input random variables {X1, X2, . . . , XdX
} can be expressed as a

dX-dimensional vector X, where dX is the input random variables number:

X =
[
X1 X2 · · · XdX

]⊤
=


X1

X2
...

XdX

 (2.25)

A set of dY multivariate, also referred to as multi-variable, functions {Y1, Y2, . . . , YdY
}

can be expressed as a dY -dimensional vector function where dY is the output mul-
tivariate functions number:

Y(X) =
[
Y1 Y2 . . . YdY

]⊤
= g(X) =

[
g1(X) g2(X) . . . gdY

(X)
]⊤

=


g1(X)
g2(X)

...
gdY

(X)


(2.26)

Consider the multi-input multi-output system in Fig. 2.1.

X1
X2

XdX

...

...

Y1
Y2

YdY

...

...System

Figure 2.1. Multi-variable vector-valued function.

Assuming that the {Y1, Y2, . . . , YdY
} functions are linear combinations of a set of

dX random variables {X1, X2, . . . , XdX
} with combination coefficients A, which is a

(dY × dX)-matrix of combination coefficients:

A =


A11 A12 · · · A1dX

A21 A22 · · · A2dX

...
... . . . ...

AdY 1 AdY 2 · · · AdY dX

 (2.27)
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In matrix notation:
Y(X) = AX (2.28)

The mean value vector of the random variables vector X is denoted as µX :

µX = E[X] = P =
[
µX1 µX2 . . . µXdX

]⊤
=


µX1

µX2
...

µXdX

 (2.29)

We introduce the symmetric ΣX input covariance (dX × dX)-matrix which contains
all variances and covariances of X:

(2.30)ΣX =


σ2

X1
σX1X2 · · · σX1XdX

σX2X1 σ2
X2

· · · σX2XdX...
... . . . ...

σXdX
X1 σXdX

X2 · · · σ2
XdX

 =


µ11 µ12 · · · µ1dX

µ21 µ22 · · · µ2dX

...
... . . . ...

µdX 1 µdX 2 · · · µdX dX


The mean value vector of the vector function Y(X) is denoted as µY :

µY = E[Y] =
[
µY1 µY2 . . . µYdY

]⊤
=


µY1

µY2
...

µYdY

 (2.31)

We additionally introduce the symmetric ΣY output covariance (dY × dY )-matrix
which contains all variances and covariances of the output random variables Y(X):

(2.32)ΣY =


σ2

Y1
σY1Y2 · · · σY1YdY

σY2Y1 σ2
Y2

· · · σY2YdY...
... . . . ...

σYdY
Y1 σYdY

Y2 · · · σ2
YdY


The covariance matrix ΣY is the matrix whose (i, j)-th entry is the covariance:

ΣYij
= Cov (Yi, Yj) = E

[
(Yi − µYi

)(Yj − µYj
)
]

(2.33)

In matrix notation:
ΣY = E

[
(Y − E[Y]) (Y − E[Y])⊤

]
(2.34)
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2.3.1 Expected value

The expected value vector of Y(X) = AX for a random vector X with mean vector
E[X] is given by:

(2.35)µY = E[Y]
= E[AX]
= A E[X]

2.3.2 Covariance matrix: variance and covariance

The covariance matrix of Y(X) = AX, whose mean vector is A E[X], is given by:

(2.36)
ΣY = E

[
(AX − A E[X])(AX − A E[X])⊤]

= E
[
A(X − E[X])(X − E[X])⊤A⊤]

= A E
[
(X − E[X])(X − E[X])⊤]A⊤

= A Cov(X)A⊤

= AΣXA⊤

The previous derivation is the most general equation for propagation of uncertainty
from one set of variables on another. In other words, it provides the effect of
input random variables on the uncertainty of functions based on them. The output
uncertainties are quantified in terms of the covariances of the output random variables.

2.4 Non-linear combinations: matrix form

This section derives the propagation of uncertainty for non-linear combinations
in matrix form. This derivation relates the previous most general case to the
approximation of non-linear functions through Taylor series, including the derivation
of the expected value first and second-order and the covariance matrix of first-order,
i.e. the variance and the covariance calculations.

When {Y1, Y2, . . . , YdY
} is a set of dY functions which are non-linear combinations

of X, the uncertainty propagation can be performed by means of a linearisation of
Y(X) through its Taylor series approximation about the vector of the means of the
random variables µX . The second-order Taylor expansion of the i-th (i = 1, · · · , dY )
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component from the general case, that is, for any of the dY multivariate functions
{Y1, Y2, . . . , YdY

} is:

Yi(X) ≈ gi(µX)︸ ︷︷ ︸
o0

+ [∇gi
(µX)]⊤(X − µX)︸ ︷︷ ︸

o1

+ 1
2(X − µX)⊤Hgi

(µX)(X − µX)︸ ︷︷ ︸
o2

(2.37)

Remarks:

• The zeroth, first, and second-order terms are denoted as o0, o1 ,and o2 respect-
ively.

• µX is the mean value vector of the random variables vector X.

• gi(µX) is the model response, that is, the multivariate function Yi(X) evaluated
at the mean value vector µX .

• [∇gi
(µX)]⊤ is the transpose of the gradient vector of the multivariate function

Yi(X) evaluated at the mean value vector µX .

• Hgi
(µX) is the Hessian matrix of the multivariate function Yi(X) evaluated at

the mean value vector µX .

It has only been expressed the i-th the component as the quadratic order term o2

can not be expressed in matrix form, as it requires tensor notation. The zeroth and
first terms, what means the first-order Taylor approximation of the vector-valued
function Y(X), can be written in matrix form:

Y(X) ≈ g(µX) + Jg(µX)(X − µX) (2.38)

Remarks:

• Recall that g(µX) =
[
g1(µX), g2(µX), . . . , gdY

(µX)
]⊤ is a compressed notation

for the vector of the model response, that is, the vector-valued function Y(X)
evaluated at the mean value vector µX .

• Jg(µX) is the Jacobian matrix of the vector-valued function Y(X) evaluated at
the mean value vector µX .

The gradient (dX × 1) column-vector ∇gi
(µX) of the multivariate function Yi(X)

evaluated at the mean value vector µX is defined as (column vector convention
adopted):

∇gi
(µX) =

[
∂gi
∂X1

∂gi
∂X2

· · · ∂gi
∂XdX

]⊤
=


∂gi
∂X1
∂gi
∂X2...
∂gi

∂XdX

 (2.39)
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The Jacobian is the generalization of the gradient for a vector-valued function of
several variables. The Jacobian matrix Jg(µX) defined over the vector-valued function
Y(X) gives:

(2.40)Jg(µX) =



∂g1
∂X1

∂g1
∂X2

· · · ∂g1
∂XdX

∂g2
∂X1

∂g2
∂X2

· · · ∂g2
∂XdX...

... . . . ...
∂gdY
∂X1

∂gdY
∂X2

· · · ∂gdY
∂XdX



Then the Jacobian matrix of the vector-valued function Y(X) evaluated at the
mean value vector µX , is defined to be a (dY × dX)-matrix, whose (i, j)-th entry is
Jg(µX)ij = ∂gi

∂Xj
, with i = 1, 2, . . . , dY and j = 1, 2, . . . , dX . This matrix reduces to a

row-vector (1×dX)-vector when dY = 1, which equals to the transpose of the gradient:

(2.41)[∇g1(µX)]⊤ =
[

∂g1
∂X1

∂g1
∂X2

· · · ∂g1
∂XdX

]

In Eq. (2.37) appears the transposed gradient as it is only one component Yi(X) of
the vector-valued function while in Eq. (2.38) appears the Jacobian as it considers
all components of the vector-valued function Y(X).

As Y(X) is a dY -dimensional vector of multivariate functions, a vector-valued function,
the collection of second partial derivatives in the quadratic term is a third-order
tensor ((dX × dX) × dY ) denoted as Qg(µX). The notation Q indicates quadratic term.

Qg(µX) = (Hg1(µX), Hg2(µX), . . . , HgdY
(µX)) (2.42)

This third-order tensor is a collection of dY Hessian matrices Hgi
(µX), with

i = 1, 2, . . . , dY , that is, one for each function {Y1, Y2, . . . , YdY
}. These Hessian matrices

of the multivariate functions Yi(X) are evaluated at the mean value vector µX . The
Hessian matrices are defined to be a (dX × dX)-matrix, whose (j, k)-th entry is
Hgi

(µX)jk = ∂2gi
∂Xj∂Xk

, with j = 1, 2, . . . , dX and k = 1, 2, . . . , dX . The third-order tensor
is presented in Fig. 2.2.
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Figure 2.2. Qg(µX) third-order tensor.

This tensor leads to the usual Hessian (dX × dX)-matrix when dY = 1.

(2.43)Hg1(µX) =



∂2g1
∂X12

∂2g1
∂X1∂X2

· · · ∂2g1
∂X1∂XdX

∂2g1
∂X2∂X1

∂2g1
∂X22 · · · ∂2g1

∂X2∂XdX...
... . . . ...

∂2g1
∂XdX

∂X1
∂2g1

∂XdX
∂X2

· · · ∂2g1
∂XdX

2



2.4.1 Expected value first-order

The expected value vector of the first-order Taylor approximation Y(X) ≈ g(µX) +
Jg(µX)(X − µX) is given by:

(2.44)
µY ≈ E [g(µX) + Jg(µX)(X − µX)]

≈ E [g(µX)] + E [Jg(µX)(X − µX)]
≈ E [g(µX)] + E [Jg(µX)] E [(X − µX)]︸ ︷︷ ︸

0
≈ g(µX)

Remarks:

• The linearity of the expectation operator is applied.

• Note that the evaluated Jg(µX) is a matrix of scalar values.

• The first central moment of a r.v. always equals to 0. Not to be confused with
the first raw moment which is the expected value.
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• Recall that g(µX) =
[
g1(µX), g2(µX), . . . , gdY

(µX)
]⊤ is a compressed notation

for the vector of the model response, that is, the vector-valued function Y(X)
evaluated at the mean value vector µX .

• µY is also a vector. The i-th component of this vector is equal to the i-th
component of the output vector computed by the functions gi at the mean
value vector µX . E[Y] = µY is thus the computation of the model at mean
value vector.

The first-order expected value approximation of a function Y1 = g1(X) is:

(2.45)µY1 ≈ g1(µX)

Using the abbreviations and conventions introduced in Section 2.2 to compact the
math derivations and omitting the index i = 1 leads to:

E [Y ] = µY ≈ gµ (2.46)

2.4.2 Expected value second-order

The expected value i-th component of the second-order Taylor approximation
of the i-th (i = 1, · · · , dY ) component from the general case Yi(X) ≈ gi(µX) +
[∇gi

(µX)]⊤(X − µX) + 1
2 (X − µX)⊤Hgi

(µX)(X − µX) is given by:

µYi
≈ E

[
gi(µX) + [∇gi

(µX)]⊤(X − µX) + 1
2(X − µX)⊤Hgi

(µX)(X − µX)
]

≈ E [gi(µX)] + E
[
[∇gi

(µX)]⊤(X − µX)
]

+ E
[

1
2(X − µX)⊤Hgi

(µX)(X − µX)
]

≈ E [gi(µX)] + E
[
[∇gi

(µX)]⊤
]

E [(X − µX)]︸ ︷︷ ︸
0

+ E
[

1
2(X − µX)⊤Hgi

(µX)(X − µX)
]

≈ E [gi(µX)] + 1
2

E [(X − µX)]⊤︸ ︷︷ ︸
0

Hgi
(µX) E [(X − µX)]︸ ︷︷ ︸

0

+ tr
(

Hgi
(µX) Cov ((X − µX), (X − µX))

)
≈ gi(µX) + 1

2 tr
(

Hgi
(µX) Cov (X, X)

)
≈ gi(µX) + 1

2 tr (Hgi
(µX)ΣX)

≈ gi(µX) + 1
2 ⟨Hgi

(µX), ΣX⟩F

(2.47)
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Remarks:

• Note that the evaluated Hgi
(µX) is a matrix of scalar values.

• The expectation of a quadratic form E[X⊤AX] = E[X]⊤A E[X]+tr(AΣXX) where
X is a vector of dY -random variables, A is a dY -dimensional symmetric matrix.
Note that the operator tr( ) denotes the trace.

• Recall the covariance property Cov(X + a, Y + b) = Cov(X, Y ).

• The trace of a square matrix which is the product of two equal-sized matrices
is equal to the sum of entry-wise products of their elements, similarly to a dot
product of vectors.

• ⟨, ⟩F Frobenius inner product for matrix. The operation is a component-wise
inner product of two matrices as though they are vectors. The dot product,
often called in this context the inner product, is the sum of the products of the
corresponding entries of two sequences of numbers.

The previous derivation for a i-th component, expressed in index version (omitting
the index i) equals to:

E [Y ] = µY ≈ gµ + 1
2

d∑
j=1

d∑
k=1

g,jkµjk (2.48)

2.4.3 Covariance matrix: variance and covariance first-order

Starting from the covariance in matrix notation:

ΣY = E
[
(Y − E[Y]) (Y − E[Y])⊤

]
(2.49)

The covariance matrix of Y(X) ≈ g(µX) + Jg(µX)(X − µX), whose mean vector is
g(µX), is given by:

ΣY ≈ E
[(

g(µX) + Jg(µX)(X − µX) − g(µX)
)(

g(µX) + Jg(µX)(X − µX) − g(µX)
)⊤
]

≈ E
[(

Jg(µX)(X − µX)
)(

Jg(µX)(X − µX)
)⊤
]

≈ E
[(

Jg(µX)(X − µX)
)(

(X − µX)⊤Jg(µX)⊤
)]

≈ E
[
Jg(µX)(X − µX)(X − µX)⊤Jg(µX)⊤]

≈ Jg(µX) E
[
(X − µX)(X − µX)⊤]Jg(µX)⊤

≈ Jg(µX) Cov(X)J⊤
g (µX)

≈ Jg(µX)ΣXJ⊤
g (µX)

(2.50)
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Remarks:

• The matrix multiplication transposed equals to the multiplication of the
matrices transposed reversing the order of the factors.

• Note that the evaluated Jg(µX) is a matrix of scalar values.

The previous derivation is the most general equation for the propagation of uncertainty
from one set of variables onto another using a first-order Taylor approximation. In
other words, it provides the effect of input random variables on the uncertainty of
functions based on them approximated though Taylor. The output uncertainties are
quantified in terms of the covariances of the output random variables.

The Eq. (2.50) can be interpreted as it is depicted in Fig. 2.3.

"The input uncertainties ...

... are propagated through the system ...

... and approximately mapped to the output."
Figure 2.3. Interpretation of the error propagation law in its matrix form.

In the interpretation of the previous figure, the input uncertainties have a role in the
covariance matrix of the input random variables, ΣX , and also in the mean value
vector for evaluation of the Jacobian matrix of the output functions Jg(µX). Then
the Jacobian matrix, that can be thought as the system, is used to transform the
rows and columns of the covariance matrix of the input random variables, providing
the covariance matrix of the output random variables, ΣY , i.e. it is used to map the
input randomness onto the output randomness.

Note this is equivalent to the matrix expression for the linear case Eq. (2.36) with
Jg(µX) = A.

Now it is possible to evaluate the dimensions of the matrices involved:

ΣY ≈ Jg(µX)ΣXJ⊤
g (µX)

(dY × dY ) ≈ (dY × dX)(dX × dX)(dX × dY )
(2.51)
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And using the corresponding matrices:

(2.52)


σ2

Y1
σY1Y2 · · · σY1YdY

σY2Y1 σ2
Y2

· · · σY2YdY...
... . . . ...

σYdY
Y1 σYdY

Y2 · · · σ2
YdY



≈



∂g1
∂X1

∂g1
∂X2

· · · ∂g1
∂XdX

∂g2
∂X1

∂g2
∂X2

· · · ∂g2
∂XdX...

... . . . ...
∂gdY
∂X1

∂gdY
∂X2

· · · ∂gdY
∂XdX

 ·


µ11 µ12 · · · µ1dX

µ21 µ22 · · · µ2dX

...
... . . . ...

µdX 1 µdX 2 · · · µdX dX

 ·


∂g1
∂X1

∂g2
∂X1

· · · ∂gdY
∂X1

∂g1
∂X2

∂g2
∂X2

· · · ∂gdY
∂X2...

... . . . ...
∂g1

∂XdX

∂g2
∂XdX

· · · ∂gdY
∂XdX



Evaluating the first element of the output covariance matrix, i.e. the variance term,
the first-order variance approximation of a function Y1 = g1(X) is:

(2.53)

σ2
Y1 ≈

(
∂g1

∂X1

)2
µ11 + ∂g1

∂X2

∂g1

∂X1
µ21 + . . . + ∂g1

∂XdX

∂g1

∂X1
µdX 1

+ ∂g1

∂X1

∂g1

∂X2
µ12 +

(
∂g1

∂X2

)2
µ22 + . . . + ∂g1

∂XdX

∂g1

∂X2
µdX 2

+ . . . + . . . + . . . + . . .

+ ∂g1

∂X1

∂g1

∂XdX

µ1dX
+ ∂g1

∂X2

∂g1

∂XdX

µ2dX
+ . . . +

(
∂g1

∂XdX

)2
µdX dX

≈
dX∑
j=1

(
∂g1

∂Xj

)2
µjj +

dX∑
j=1

dX∑
k=1
k ̸=j

∂g1

∂Xj

∂g1

∂Xk
µjk

≈
dX∑
j=1

dX∑
k=1

∂g1

∂Xj

∂g1

∂Xk
µjk

Using the abbreviations and conventions introduced in Section 2.2 to compact the
math derivations and omitting the index i = 1 leads to:

Var (Y ) = σ2
Y ≈

d∑
j=1

d∑
k=1

g,jg,kµjk (2.54)
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The first-order covariance approximation of the functions Y1 = g1(X) and Y2 = g2(X)
is:

(2.55)

σY1Y2 ≈ ∂g1

∂X1

∂g2

∂X1
µ11 + ∂g1

∂X2

∂g2

∂X1
µ21 + . . . + ∂g1

∂XdX

∂g2

∂X1
µdX 1

+ ∂g1

∂X1

∂g2

∂X2
µ12 + ∂g1

∂X2

∂g2

∂X2
µ22 + . . . + ∂g1

∂XdX

∂g2

∂X2
µdX 2

+ . . . + . . . + . . . + . . .

+ ∂g1

∂X1

∂g2

∂XdX

µ1dX
+ ∂g1

∂X2

∂g2

∂XdX

µ2dX
+ . . . + ∂g1

∂XdX

∂g2

∂XdX

µdX dX

≈
dX∑
j=1

∂g1

∂Xj

∂g2

∂Xj
µjj +

dX∑
j=1

dX∑
k=1
k ̸=j

∂g1

∂Xj

∂g2

∂Xk
µjk

≈
dX∑
j=1

dX∑
k=1

∂g1

∂Xj

∂g2

∂Xk
µjk

Using the abbreviations and conventions introduced in Section 2.2 to compact the
math derivations and renaming the general functions as Y1 = g(X) and Y2 = h(X)
leads to:

Cov (Y1, Y2) = σY1Y2 ≈
d∑

j=1

d∑
k=1

g,jh,kµjk (2.56)

2.5 Non-linear combinations: summation notation

This section presents the complete mathematical derivation of the full second-order
approach for the first to fourth moments of functions of random variables using
summation notation. It presents the expressions involving tensors of different orders
in a simple and comprehensible way. The summation notation makes it is easier
to work with expressions involving tensors of different orders. The first to fourth
moments are related by definition to the expected value, the variance, the skewness,
and the kurtosis of the random output variable. Then from these second-order
approximations the simpler first-order expressions are also derived.

In this section, for the sake of brevity, the math derivation for every moment, begins
with the second-order Taylor approximation and then the first-order is obtained
from the second-order omitting the non-linear terms. Additionally, the equations in
summation notation that have an equivalent in matrix form, are related to previously
derived ones in Section 2.4.
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A multi-input single-output system is considered, that is, a system with only one
output random variable Y(X) =

[
Y1

]⊤
= g(X) =

[
g1(X)

]⊤
simply denoted as Y as

shown in Fig. 2.4.

X1
X2

Xd

...

... YSystem

Figure 2.4. Multi-variable real-valued function.

Note that from the system in Fig. 2.1, Y1 is simply denoted as Y and the dX input
random variables number is simply denoted as d.

To derive a complete second-order approach for obtaining the stochastic moments
of an arbitrary general function Y = g (X1, X2, ..., Xd) of d random variables about
the mean value of each one, vector µX = E[X] = P =

[
µX1 µX2 . . . µXdX

]⊤
. The

function is approximated using the second-order Taylor expansion about the vector
of the means of the random variables:

(2.57)
Y ≈ g

(
µX1 , µX2 , . . . , µXd

)
+

d∑
j=1

∂g

∂Xj

∣∣∣∣
(µX1 ,µX2 ,...,µXd)

(
xj − µXj

)
+ 1

2!

d∑
j=1

d∑
k=1

∂2g

∂Xj∂Xk

∣∣∣∣
(µX1 ,µX2 ,...,µXd)

(
xj − µXj

) (
xk − µXk

)
The second-order Taylor approximation, using the abbreviations introduced in
Section 2.2, becomes:

(2.58)Y ≈ gµ +
d∑

j=1
g,j

(
xj − µXj

)
+ 1

2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)
The zeroth, first, and second-order terms are denoted as o0, o1, and o2 respectively
to compress the subsequent mathematical derivations:

o0 = gµ

o1 =
d∑

j=1
g,j

(
xj − µXj

)
o2 = 1

2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

) (2.59)
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2.5.1 Expected value second-order

The mean value of a general function Y = g(X) is given by:

E [Y ] = µY = E [g(X)] =
∞∫

−∞

g(X)fX(x) dx (2.60)

Being fX(x) the probability density function of the random variables and
dx = dx1dx2 . . . dxn. Inserting the second-order Taylor approximation at the mean
vector of the random variables leads to:

E [Y ] ≈
∞∫

−∞


o0︷︸︸︷
gµ︸︷︷︸
I

+

o1︷ ︸︸ ︷
d∑

j=1
g,j

(
xj − µXj

)
︸ ︷︷ ︸

II

+

o2︷ ︸︸ ︷
1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)
︸ ︷︷ ︸

III

fX(x) dx

≈
∞∫

−∞

gµfX(x) dx +
∞∫

−∞

d∑
j=1

g,j

(
xj − µXj

)
fX(x) dx

+
∞∫

−∞

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)
fX(x) dx

≈ gµ

∞∫
−∞

fX(x) dx

︸ ︷︷ ︸
1

+
d∑

j=1
g,j

∞∫
−∞

(
xj − µXj

)
fX(x) dx

︸ ︷︷ ︸
0

+1
2

d∑
j=1

d∑
k=1

g,jk

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)
fX(x) dx

︸ ︷︷ ︸
µjk

(2.61)

Remarks regarding the horizontal curly braces:

• In the second-order approximation for the expected value, the I, II and III

summation terms that has to be integrated match with the zeroth, first, and
second-order Taylor terms denoted as o0, o1, and o2 respectively.

• The integral of probability density function over the entire space is equal to 1.

• The first central moment of a r.v. always equals to 0. Not to be confused with
the first raw moment which is the expected value.

• The second mixed or cross central moment of two random variables Xj and Xk

is the covariance denoted as µjk.
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Summarizing, the second-order approximation for the expected value of an arbitrary
general function is:

E [Y ] = µY ≈ gµ + 1
2

d∑
j=1

d∑
k=1

g,jkµjk (2.62)

The above equation is equivalent to the Eq. (2.48) derived from the matrix form.

The complete derivation of the expected value second-order approximation assuming
independence between the input r.v.s can be found in Appendix A.

2.5.2 Expected value first-order

From the second-order approximation for the expected value derived in Eq. (2.61),
the first-order approximation can be obtained omitting the non-linear terms, o2 term,
of the second-order Taylor approximation thus the first-order Taylor approximation
is left. Using the o0, o1 and o2 notation presented in Eq. (2.59) and skipping the
terms containing o2, the first-order expected value approximation leads to:

(o0 + o1 +��o2) = o0︸︷︷︸
I

+ o1︸︷︷︸
II

+ ��o2︸︷︷︸
III

(2.63)

The first-order expected value approximation obtained omitting the corresponding
o2 term from the Eq. (2.62) equals:

E [Y ] = µY ≈ gµ (2.64)

The above equation is equivalent to the Eq. (2.46) derived from the matrix form.
Note that in this case the equation is valid for general or independent variables.

2.5.3 Variance second-order

To estimate the variance of the general function Y , first, working with the definition
of variance:

(2.65)

Var (Y ) = σ2
Y

= E
[
(Y − µY )2

]
= E

[
Y 2 − 2Y µY + µ2

Y

]
= E

[
Y 2]− 2 E [Y ] µY + µ2

Y

= E
[
Y 2]− µ2

Y

Note that E [Y ] µY = µ2
Y .
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Then applying the expected value defined as the integral:

(2.66)
Var (Y ) = E

[
Y 2]− µ2

Y

=
∞∫

−∞

[g (X)]2fX(x) dx − µ2
Y

Introducing the second-order Taylor series approximation of Y = g (X) yields:

Var (Y ) =
∞∫

−∞

[
gµ +

d∑
j=1

g,j

(
xj − µXj

)
+ 1

2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

)
(xk − µXk

)
]2

fX(x) dx − µ2
Y

(2.67)

With the notation o0, o1 and o2 used in Eq. (2.59), the sum that has to be integrated
reads (o0 + o1 + o2)2, and applying the multinomial theorem when raised to the second
power, the Taylor series becomes:

(2.68)(o0 + o1 + o2)2 = o2
0︸︷︷︸

I

+ o2
1︸︷︷︸

II

+ o2
2︸︷︷︸

III

+2(o0o1︸︷︷︸
IV

+ o0o2︸︷︷︸
V

+ o1o2︸︷︷︸
V I

)

Var (Y ) =
∞∫

−∞

 g2
µ︸︷︷︸
I

+

 d∑
j=1

g,j

(
xj − µXj

)2

︸ ︷︷ ︸
II

+

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)2

︸ ︷︷ ︸
III

+ 2gµ

d∑
j=1

g,j

(
xj − µXj

)
︸ ︷︷ ︸

IV

+ 2gµ
1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)
︸ ︷︷ ︸

V

+ 2

 d∑
j=1

g,j

(
xj − µXj

)1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)
︸ ︷︷ ︸

V I

 fX(x) dx − µ2
Y

(2.69)
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The sum rule in integration states that the integral of a sum of functions is equal to
the sum of their integrals, so the I to V I terms can be integrated individually.

I: o2
0

∞∫
−∞

g2
µfX(x) dx = g2

µ

∞∫
−∞

fX(x) dx

︸ ︷︷ ︸
1

= g2
µ (2.70)

II: o2
1

∞∫
−∞

 d∑
j=1

g,j

(
xj − µXj

)2

fX(x) dx (2.71a)

Applying again the multinomial theorem and using summation notation: d∑
j=1

g,j

(
xj − µXj

)2

=
d∑

j=1

d∑
k=1

g,jg,k

(
xj − µXj

) (
xk − µXk

)
(2.71b)

(2.71c)

∞∫
−∞

d∑
j =1

d∑
k =1

g,jg,k

(
xj − µXj

) (
xk − µXk

)
fX(x) dx

=
d∑

j=1

d∑
k=1

g,jg,k

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)
fX(x) dx

︸ ︷︷ ︸
µjk

III: o2
2

∞∫
−∞

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)2

fX(x) dx (2.72a)

Applying the multinomial theorem and using summation notation:

(2.72b)

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)2

= 1
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jkg,lm

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm)
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∞∫
−∞

1
4

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jkg,lm

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm)fX(x) dx

= 1
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jkg,lm

∞∫
−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm) fX(x) dx

︸ ︷︷ ︸
µjklm

(2.72c)

IV : 2o0o1

∞∫
−∞

2gµ

d∑
j=1

g,j

(
xj − µXj

)
fX(x) dx = 2gµ

d∑
j=1

g,j

∞∫
−∞

(
xj − µXj

)
fX(x) dx

︸ ︷︷ ︸
0

= 0 (2.73)

Remark: The first central moment of a r.v. always equals to 0. Not to be confused
with the first raw moment which is the the expected value.

V : 2o0o2

(2.74)

∞∫
−∞

2gµ
1
2

d∑
j =1

d∑
k =1

g,jk

(
xj − µXj

) (
xk − µXk

)
fX(x) dx

= gµ

d∑
j=1

d∑
k=1

g,jk

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)
fX (x) dx

︸ ︷︷ ︸
µjk

V I: 2o1o2

(2.75)

∞∫
−∞

2

 d∑
j=1

g,j

(
xj − µXj

)1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

) fX(x) dx

=
∞∫

−∞

d∑
j=1

d∑
k=1

d∑
l=1

g,jg,kl

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
fX(x) dx

=
d∑

j=1

d∑
k=1

d∑
l=1

g,jg,kl

∞∫
−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
fX(x) dx

︸ ︷︷ ︸
µjkl
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Summarizing, the second-order approximation for the variance of an arbitrary general
function is:

(2.76)

Var (Y ) = σ2
Y

≈ g2
µ︸︷︷︸
I

+
d∑

j=1

d∑
k=1

g,jg,kµjk︸ ︷︷ ︸
II

+ 1
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jkg,lmµjklm︸ ︷︷ ︸
III

+ 0︸︷︷︸
IV

+ gµ

d∑
j=1

d∑
k=1

g,jkµjk︸ ︷︷ ︸
V

+
d∑

j=1

d∑
k=1

d∑
l=1

g,jg,klµjkl︸ ︷︷ ︸
V I

−µ2
Y

without the horizontal curly braces and omitting the IV term, the approximation of
the variance is given by:

(2.77)

Var (Y ) = σ2
Y

≈ g2
µ +

d∑
j=1

d∑
k=1

g,jg,kµjk + 1
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jkg,lmµjklm

+ gµ

d∑
j=1

d∑
k=1

g,jkµjk +
d∑

j=1

d∑
k=1

d∑
l=1

g,jg,klµjkl − µ2
Y

The complete derivation of the variance second-order approximation assuming inde-
pendence between the input r.v.s can be found in Appendix A.

2.5.4 Variance first-order

As explained in the introduction Section 2.1, if only linear terms of the Taylor
expansion are considered, the highest moments that occur, when computing the
variance, are of second-order, and then the method is commonly referred to as
first-order second moment (FOSM) method. In this thesis, it is preferred to name
the method simply as first-order variance approximation, being more general and
being valid for every moment order.

From the second-order approximation for the variance Eq. (2.76), the first-order
approximation can be derived omitting the non-linear terms of the second-order
Taylor approximation thus the first-order Taylor approximation is retained. Using
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the o0, o1 and o2 notation presented in Eq. (2.59) and skipping the terms containing
o2, the first-order variance approximation leads to:

(o0 + o1 +��o2)2 = o2
0︸︷︷︸

I

+ o2
1︸︷︷︸

II

+ ��o2
2︸︷︷︸

III

+2(o0o1︸︷︷︸
IV

+���o0o2︸︷︷︸
V

+���o1o2︸︷︷︸
V I

)

(o0 + o1)2 = o2
0︸︷︷︸

I

+ o2
1︸︷︷︸

II

+2(o0o1︸︷︷︸
IV

)
(2.78)

Then the Eq. (2.76) becomes:

(2.79)
Var (Y ) = σ2

Y

≈ g2
µ︸︷︷︸
I

+
d∑

j=1

d∑
k=1

g,jg,kµjk︸ ︷︷ ︸
II

+ 0︸︷︷︸
IV

−µ2
Y

And knowing that the first-order expected value approximation is E [Y ] = µY ≈ gµ,
as shown in Eq. (2.64), the first-order variance approximation is:

Var (Y ) = σ2
Y ≈

d∑
j=1

d∑
k=1

g,jg,kµjk︸ ︷︷ ︸
II

(2.80)

The above equation is equivalent to the Eq. (2.54) derived from the matrix form.

2.5.5 Third central moment skewness second-order

The skewness of Y = g (X) can be determined from the third central moment
µ3 (Y, Y, Y ) = µY,3 divided by the standard deviation raised to the third power σ3

Y . It
is also referred to as normalized or standardized third central moment. The skewness
is denoted as γ1Y

, Skew (Y ), or S (Y, Y, Y ) as indicated below:

S (Y, Y, Y ) = µY,3

σ3
Y

(2.81)

To estimate the third central moment µ3 (Y, Y, Y ) = µY,3 of the general function Y ,
first, working with the definition of the third central moment:

(2.82)

µ3 (Y, Y, Y ) = µY,3

= E
[
(Y − µY )3

]
= E

[
Y 3 − 3Y 2µY + 3Y µ2

Y − µ3
Y

]
= E

[
Y 3]− 3µY

(
E
[
Y 2]− µY E [Y ]

)
− µ3

Y

= E
[
Y 3]− 3µY σ2

Y − µ3
Y
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Note that σ2
Y =

(
E
[
Y 2]− µY E [Y ]

)
from Eq. (2.65) is replaced. Then applying the

expected value defined as the integral:

(2.83)
µ3 (Y, Y, Y ) = E

[
Y 3]− 3µY σ2

Y − µ3
Y

=
∞∫

−∞

[g (X)]3fX(x) dx − 3µY σ2
Y − µ3

Y

Introducing the second-order Taylor series approximation of Y = g (X) yields:

µ3 (Y, Y, Y )

=
∞∫

−∞

gµ +
d∑

j=1
g,j

(
xj − µXj

)
+ 1

2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)3

fX(x) dx

− 3µY σ2
Y − µ3

Y

(2.84)

With the notation o0, o1 and o2 used in Eq. (2.59), the sum that has to be integrated
reads (o0 + o1 + o2)3, and applying the multinomial theorem when raised to the third
power, the Taylor series becomes:

(o0 + o1 + o2)3 = o3
0︸︷︷︸

I

+ o3
1︸︷︷︸

II

+ o3
2︸︷︷︸

III

+3(o2
0o1︸︷︷︸
IV

+ o2
0o2︸︷︷︸
V

+ o0o2
1︸︷︷︸

V I

+ o2
1o2︸︷︷︸

V II

+ o0o2
2︸︷︷︸

V III

+ o1o2
2︸︷︷︸

IX

) + 6(o0o1o2︸ ︷︷ ︸
X

)

(2.85)
The summands in the integral can be integrated individually.

I: o3
0

∞∫
−∞

g3
µfX(x) dx = g3

µ

∞∫
−∞

fX(x) dx

︸ ︷︷ ︸
1

= g3
µ (2.86)

II: o3
1

∞∫
−∞

 d∑
j=1

g,j

(
xj − µXj

)3

fX(x) dx (2.87a)

Applying again the multinomial theorem and using summation notation: d∑
j=1

g,j

(
xj − µXj

)3

=
d∑

j=1

d∑
k=1

d∑
l=1

g,jg,kg,l

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(2.87b)
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(2.87c)

∞∫
−∞

d∑
j =1

d∑
k =1

d∑
l =1

g,jg,kg,l

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
fX(x) dx

=
d∑

j=1

d∑
k=1

d∑
l=1

g,jg,kg,l

∞∫
−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
fX(x) dx

︸ ︷︷ ︸
µjkl

III: o3
2

∞∫
−∞

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)3

fX(x) dx (2.88a)

Applying the multinomial theorem and using summation notation:

(2.88b)

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)3

= 1
8

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

d∑
s=1

g,jkg,lmg,rs

·
(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm) (xr − µXr ) (xs − µXs)

∞∫
−∞

1
8

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

g,jkg,lmg,rs

·
(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm) (xr − µXr ) (xs − µXs) fX(x) dx

= 1
8

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

d∑
s=1

g,jkg,lmg,rs

·
∞∫

−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm) (xr − µXr ) (xs − µXs) fX(x) dx

︸ ︷︷ ︸
µjklmrs

(2.88c)
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IV : 3o2
0o1

∞∫
−∞

3g2
µ

d∑
j=1

g,j

(
xj − µXj

)
fX(x) dx = 3g2

µ

d∑
j=1

g,j

∞∫
−∞

(
xj − µXj

)
fX(x) dx

︸ ︷︷ ︸
0

= 0 (2.89)

V : 3o2
0o2

(2.90)

∞∫
−∞

3g2
µ

1
2

d∑
j =1

d∑
k =1

g,jk

(
xj − µXj

) (
xk − µXk

)
fX(x) dx

= 3g2
µ

1
2

d∑
j=1

d∑
k=1

g,jk

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)
fX (x) dx

︸ ︷︷ ︸
µjk

V I: 3o0o2
1

(2.91)

∞∫
−∞

3gµ

 d∑
j=1

g,j

(
xj − µXj

)2

fX(x) dx

= 3gµ

d∑
j=1

d∑
k=1

g,jg,k

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)
fX (x) dx

︸ ︷︷ ︸
µjk

V II: 3o2
1o2

∞∫
−∞

3

 d∑
j=1

g,j

(
xj − µXj

)2 1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

) fX(x) dx

=
∞∫

−∞

3

 d∑
j=1

d∑
k=1

g,jg,k

(
xj − µXj

) (
xk − µXk

)1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)fX(x) dx

= 31
2

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jg,kg,lm

∞∫
−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm) fX(x) dx

︸ ︷︷ ︸
µjklm

(2.92)
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V III: 3o0o2
2

∞∫
−∞

3gµ

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)2

fX(x) dx

=
∞∫

−∞

3gµ
1
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jkg,lm

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm)fX(x) dx

= 3gµ
1
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jkg,lm

∞∫
−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm) fX(x) dx

︸ ︷︷ ︸
µjklm

(2.93)

IX: 3o1o2
2

∞∫
−∞

3

 d∑
j=1

g,j

(
xj − µXj

)1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)2

fX(x) dx

=
∞∫

−∞

3

 d∑
j=1

g,j

(
xj − µXj

)

·

1
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jkg,lm

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm)

 fX(x) dx

= 31
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

g,jg,klg,mr

·
∞∫

−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm) (xr − µXr ) fX(x) dx

︸ ︷︷ ︸
µjklmr

(2.94)
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X : 6o0o1o2

(2.95)

∞∫
−∞

6gµ

 d∑
j=1

g,j

(
xj − µXj

)1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

) fX(x) dx

= 6gµ
1
2

d∑
j=1

d∑
k=1

d∑
l=1

g,jg,kl

∞∫
−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
fX(x) dx

︸ ︷︷ ︸
µjkl

Summarizing, the second-order approximation for the third central moment of an
arbitrary general function is:

µ3 (Y, Y, Y ) = µY,3

≈ g3
µ︸︷︷︸
I

+
d∑

j=1

d∑
k=1

d∑
l=1

g,jg,kg,lµjkl︸ ︷︷ ︸
II

+ 1
8

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

d∑
s=1

g,jkg,lmg,rsµjklmrs︸ ︷︷ ︸
III

+ 0︸︷︷︸
IV

+ 3g2
µ

1
2

d∑
j=1

d∑
k=1

g,jkµjk︸ ︷︷ ︸
V

+ 3gµ

d∑
j=1

d∑
k=1

g,jg,kµjk︸ ︷︷ ︸
V I

+ 31
2

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jg,kg,lmµjklm︸ ︷︷ ︸
V II

+ 3gµ
1
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jkg,lmµjklm︸ ︷︷ ︸
V III

+ 31
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

g,jg,klg,mrµjklmr︸ ︷︷ ︸
IX

+ 6gµ
1
2

d∑
j=1

d∑
k=1

d∑
l=1

g,jg,klµjkl︸ ︷︷ ︸
X

−3µY σ2
Y − µ3

Y

(2.96)

Note that the j,k,l,m,r,s,t,u letters are used as summation indices where n,o,p,q are
skipped because n, p and q are used to indicate parameters of the NASGRO equation
and o is used to denote the order terms of the Taylor approximation.

The derivation of the third central moment second-order approximation assuming
independence between the input r.v.s can be found in Appendix A.
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2.5.6 Third central moment skewness first-order

From the second-order approximation for the third central moment Eq. (2.96), the
first-order approximation can be derived omitting the non-linear terms of the second-
order Taylor approximation thus the first-order Taylor approximation is left. Using
the o0, o1 and o2 notation presented in Eq. (2.59), and skipping the terms containing
o2, the first-order approximation for the third central moment leads to:

(o0 + o1 +��o2)3 = o3
0︸︷︷︸

I

+ o3
1︸︷︷︸

II

+ ��o2
3︸︷︷︸

III

+3(o2
0o1︸︷︷︸
IV

+���o2
0o2︸︷︷︸
V

+ o0o2
1︸︷︷︸

V I

+���o2
1o2︸︷︷︸

V II

+���o0o2
2︸︷︷︸

V III

+���o1o2
2︸︷︷︸

IX

) + 6(���o0o1o2︸ ︷︷ ︸
X

)

(o0 + o1)3 = o3
0︸︷︷︸

I

+ o3
1︸︷︷︸

II

+3(o2
0o1︸︷︷︸
IV

+ o0o2
1︸︷︷︸

V I

)

(2.97)

Then the Eq. (2.96) becomes:

µ3 (Y, Y, Y ) = µY,3

≈ g3
µ︸︷︷︸
I

+
d∑

j=1

d∑
k=1

d∑
l=1

g,jg,kg,lµjkl︸ ︷︷ ︸
II

+ 0︸︷︷︸
IV

+ 3gµ

d∑
j=1

d∑
k=1

g,jg,kµjk︸ ︷︷ ︸
V I

−3µY σ2
Y − µ3

Y

(2.98)

And knowing that the first-order expected value approximation is E [Y ] = µY ≈ gµ

from Eq. (2.64) and the first-order variance approximation is Var (Y ) = σ2
Y ≈∑d

j=1
∑d

k=1 g,jg,kµjk from Eq. (2.80), the third central moment approximation of
first-order is:

µ3 (Y, Y, Y ) = µY,3 ≈
d∑

j=1

d∑
k=1

d∑
l=1

g,jg,kg,lµjkl︸ ︷︷ ︸
II

(2.99)

2.5.7 Fourth central moment kurtosis second-order

The kurtosis of Y = g (X) can be determined from the fourth central moment
µ4 (Y, Y, Y, Y ) = µY,4 divided by the standard deviation raised to the fourth power
σ4

Y . It is also referred to as normalized or standardized fourth central moment. The
kurtosis is denoted as β2Y

, Kurt (Y ), or K (Y, Y, Y, Y ) as indicated below:

K (Y, Y, Y, Y ) = µY,4

σ4
Y

(2.100)
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To estimate the fourth central moment µ4 (Y, Y, Y, Y ) = µY,4 of the general function
Y , first, working with the definition of the fourth central moment:

(2.101)

µ4 (Y, Y, Y, Y ) = µY,4

= E
[
(Y − µY )4

]
= E

[
Y 4 − 4Y 3µY + 6Y 2µ2

Y − 4Y µ3
Y + µ4

Y

]
= E

[
Y 4]− 4µY E

[
Y 3]+ 6µ2

Y E
[
Y 2]− 3µ4

Y

= E
[
Y 4]− 4µY

(
µY,3 + 3µY σ2

Y + µ3
Y

)
+ 6µ2

Y

(
σ2

Y + µ2
Y

)
− 3µ4

Y

= E
[
Y 4]− 4µY µY,3 − 12µ2

Y σ2
Y − 4µ4

Y + 6µ2
Y σ2

Y + 6µ4
Y − 3µ4

Y

= E
[
Y 4]− 4µY µY,3 − 6µ2

Y σ2
Y − µ4

Y

Note that σ2
Y = E

[
Y 2]− µY E [Y ] = E

[
Y 2]− µ2

Y from Eq. (2.65) and µY,3 = E
[
Y 3]−

3µY σ2
Y −µ3

Y from Eq. (2.82) are replaced isolating the raw moments E
[
Y 2] and E

[
Y 3].

Then applying the expected value defined as the integral:

(2.102)
µ4 (Y, Y, Y, Y ) = E

[
Y 4]− 4µY µY,3 − 6µ2

Y σ2
Y − µ4

Y

=
∞∫

−∞

[g (X)]4fX(x) dx − 4µY µY,3 − 6µ2
Y σ2

Y − µ4
Y

Introducing the second-order Taylor series approximation of Y = g (X) yields:

µ4 (Y, Y, Y, Y )

=
∞∫

−∞

gµ +
d∑

j=1
g,j

(
xj − µXj

)
+ 1

2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)4

fX(x) dx

− 4µY µY,3 − 6µ2
Y σ2

Y − µ4
Y

(2.103)

With the notation o0, o1 and o2 used in Eq. (2.59), the sum that has to be integrated
reads (o0 + o1 + o2)4, and applying the multinomial theorem when raised to the fourth
power, the Taylor series becomes:

(2.104)
(o0 + o1 + o2)4 = o4

0︸︷︷︸
I

+ o4
1︸︷︷︸

II

+ o4
2︸︷︷︸

III

+4(o3
0o1︸︷︷︸
IV

+ o3
0o2︸︷︷︸
V

+ o0o3
1︸︷︷︸

V I

+ o3
1o2︸︷︷︸

V II

+ o0o3
2︸︷︷︸

V III

+ o1o3
2︸︷︷︸

IX

)

+ 6(o2
0o2

1︸︷︷︸
X

+ o2
0o2

2︸︷︷︸
XI

+ o2
1o2

2︸︷︷︸
XII

) + 12(o2
0o1o2︸ ︷︷ ︸
XIII

+ o0o2
1o2︸ ︷︷ ︸

XIV

+ o0o1o2
2︸ ︷︷ ︸

XV

)

The summands in the integral can be integrated individually.
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I: o4
0

∞∫
−∞

g4
µfX(x) dx = g4

µ

∞∫
−∞

fX(x) dx

︸ ︷︷ ︸
1

= g4
µ (2.105)

II: o4
1

∞∫
−∞

 d∑
j=1

g,j

(
xj − µXj

)4

fX(x) dx (2.106a)

Applying again the multinomial theorem and using summation notation:

(2.106b)

 d∑
j=1

g,j

(
xj − µXj

)4

=
d∑

j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jg,kg,lg,m

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm)

∞∫
−∞

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jg,kg,lg,m

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm) fX(x) dx

=
d∑

j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jg,kg,lg,m

∞∫
−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm)fX(x) dx

︸ ︷︷ ︸
µjklm

(2.106c)

III: o4
2

∞∫
−∞

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)4

fX(x) dx (2.107a)

Applying the multinomial theorem and using summation notation:

[
1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

)
(xk − µXk

)
]4

= 1
16

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

d∑
s=1

d∑
t=1

d∑
u=1

g,jkg,lmg,rsg,tu

·
(
xj − µXj

)
(xk − µXk

) (xl − µXl
) (xm − µXm

) (xr − µXr
) (xs − µXs

) (xt − µXt
) (xu − µXu

)
(2.107b)
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∞∫
−∞

1
16

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

d∑
t =1

d∑
u =1

g,jkg,lmg,rsg,tu

(
xj − µXj

)
· · · (xu − µXu) fX(x) dx

= 1
16

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

d∑
s=1

d∑
t=1

d∑
u=1

g,jkg,lmg,rsg,tu

∞∫
−∞

(
xj − µXj

)
· · · (xu − µXu) fX(x) dx

︸ ︷︷ ︸
µjklmrstu

(2.107c)

IV : 4o3
0o1

∞∫
−∞

4g3
µ

d∑
j=1

g,j

(
xj − µXj

)
fX(x) dx = 4g3

µ

d∑
j=1

g,j

∞∫
−∞

(
xj − µXj

)
fX(x) dx

︸ ︷︷ ︸
0

= 0 (2.108)

V : 4o3
0o2

(2.109)

∞∫
−∞

4g3
µ

1
2

d∑
j =1

d∑
k =1

g,jk

(
xj − µXj

) (
xk − µXk

)
fX(x) dx

= 4g3
µ

1
2

d∑
j=1

d∑
k=1

g,jk

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)
fX (x) dx

︸ ︷︷ ︸
µjk

V I: 4o0o3
1

(2.110)

∞∫
−∞

4gµ

 d∑
j=1

g,j

(
xj − µXj

)3

fX(x) dx

= 4gµ

d∑
j=1

d∑
k=1

d∑
l=1

g,jg,kg,l

∞∫
−∞

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
fX(x) dx

︸ ︷︷ ︸
µjkl
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V II: 4o3
1o2

(2.111)

∞∫
−∞

4

 d∑
j=1

g,j

(
xj − µXj

)3 1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

) fX(x) dx

=
∞∫

−∞

4

 d∑
j=1

d∑
k=1

d∑
l=1

g,jg,kg,l

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)

·

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

) fX(x) dx

= 41
2

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

g,jg,kg,lg,mr

∞∫
−∞

(
xj − µXj

)
· · · (xr − µXr ) fX(x) dx

︸ ︷︷ ︸
µjklmr

V III: 4o0o3
2

∞∫
−∞

4gµ

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)3

fX(x) dx

=
∞∫

−∞

4gµ
1
8

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

d∑
s=1

g,jkg,lmg,rs

(
xj − µXj

)
· · · (xs − µXs) fX(x) dx

= 4gµ
1
8

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

d∑
s=1

g,jkg,lmg,rs

∞∫
−∞

(
xj − µXj

)
· · · (xs − µXs) fX(x) dx

︸ ︷︷ ︸
µjklmrs

(2.112)
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IX: 4o1o3
2

∞∫
−∞

4

 d∑
j=1

g,j

(
xj − µXj

)1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)3

fX(x) dx

=
∞∫

−∞

4

 d∑
j=1

g,j

(
xj − µXj

)1
8

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

d∑
s=1

g,jkg,lmg,rs

·
(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm) (xr − µXr ) (xs − µXs)

 fX(x) dx

= 41
8

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

d∑
r=1

d∑
s=1

d∑
t=1

g,jg,klg,mrg,st

∞∫
−∞

(
xj − µXj

)
· · · (xt − µXt) fX(x) dx

︸ ︷︷ ︸
µjklmrst

(2.113)

X : 6o2
0o2

1

∞∫
−∞

6g2
µ

[
d∑

j=1

g,j

(
xj − µXj

)]2

fX(x) dx = 6g2
µ

d∑
j=1

d∑
k=1

g,jg,k

∞∫
−∞

(
xj − µXj

)
(xk − µXk

)fX (x) dx

︸ ︷︷ ︸
µjk

(2.114)

XI: 6o2
0o2

2

∞∫
−∞

6g2
µ

1
2

d∑
j=1

d∑
k=1

g,jk

(
xj − µXj

) (
xk − µXk

)2

fX(x) dx

=
∞∫

−∞

6g2
µ

1
4

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jkg,lm

(
xj − µXj

) (
xk − µXk

) (
xl − µXl

)
(xm − µXm)fX(x) dx
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The complete final formula derived in this section for the second-order approximation
for the fourth central moment is enclosed in the following page.

The derivation of the fourth central moment second-order approximation assuming
independence between the input r.v.s can be found in Appendix A.
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Summarizing, the second-order approximation for the fourth central moment of an
arbitrary general function is:
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2.5.8 Fourth central moment kurtosis first-order

From the second-order approximation for the fourth central moment Eq. (2.120),
the first-order approximation can be derived omitting the non-linear terms of the
second-order Taylor approximation thus the first-order Taylor approximation is left.
Using the o0, o1 and o2 notation presented in Eq. (2.59), and skipping the terms
containing o2, the first-order approximation for the fourth central moment leads to:
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Then the Eq. (2.120) becomes:
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And knowing that the first-order expected value approximation is E [Y ] = µY ≈ gµ

from Eq. (2.64), the first-order variance approximation is Var (Y ) = σ2
Y ≈∑d

j=1
∑d

k=1 g,jg,kµjk from Eq. (2.80), and the first-order approximation for the third
central moment is µ3 (Y, Y, Y ) = µY,3 ≈

∑d
j=1

∑d
k=1

∑d
l=1 g,jg,kg,lµjkl from Eq. (2.99),

the fourth central moment approximation of first-order is:
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(2.123)
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3
Probabilistic fatigue crack growth (FCG)
methodology in the damage tolerance
assessment (DTA) of railway axles

3.1 Introduction

Currently, the design and operation of railway axles is based on a two-stage safety
concept comprising safe life and damage tolerance approaches. These safety levels are
illustrated in Fig. 3.1. It also includes an additional stage in-service damage indication
systems with further options that offer potential for establishing a third stage safety
concept. For completeness, the Fig. 3.1 also indicates the maturity of the technologies
in the three stages, by using a three-level scale as follows: (*) state of the art, (**)
present and future development, and (***) original contribution within this thesis.
The figure is adapted from an extended review on safe life and damage tolerance
aspects of railway axles in [22], therefore the reader is referred to this paper for full
details. It is important to note that the developments in this thesis aim at enriching
the secondary safety level DTA, by improving the periodic inspection definition
currently based on operating experience or based on a limited use of deterministic
approaches through the use of a more comprehensive probabilistic approach that
provides a higher level of safety assurance. In consequence, they constitute an
extension of the nowadays and under development practices by proposing the use of
probabilistic fracture mechanics together with non-destructive testing methods.
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Primary safety level: "Safe Life"

Secondary safety level: "Damage Tolerance"

Tertiary safety level: In-service damage indication systems

Design for fatigue strength (EN 13103)

Design for fatigue strength (damage accumulation)

Design for finite life (one million miles axle) 

*

**

**

Periodic inspection based on operating experience

Periodic inspection based on fracture mechanics & NDI (POD)

Periodic inspection based on Probabilistic fracture mechanics & NDI (POD)

*

***

** Based on vibration characteristics, laser pulse ultrasonic, etc.

State of the art
Present and future development
Original contribution within this thesis

**

*

***
**

Figure 3.1. Components of a safety assessment system for railway axles.

A summary on existing and potential innovative safe life and damage tolerance
methods for the design and operation of railway axles is given above. In the following,
a number of selected issues are investigated, promising potential for the further
increase of the safety of railway axles. This chapter is devoted to presenting the
different parts and principles of the probabilistic fatigue methodology developed
for the damage tolerance assessment of railway axles. The devised methodology
intends to plan periodic inspections based on probabilistic fracture mechanics and
non-destructive methods. The need to optimize inspection intervals of railway axles
involves, among other aspects, a reliable estimation of fatigue crack growth life in the
axles. With this in mind, the core of the developments in the present thesis revolves
around the redefinition of the fatigue crack growth process from a deterministic to a
probabilistic point of view. The ultimate target is to provide a method for reliability
design and inspection optimization in the operation of railway axles.

An overview of the damage tolerance analysis (DTA) of railway axles is presented in
Fig. 3.2. It remarks the original contributions that are result of the present thesis. In
the DTA of railway axles there are three main steps that are organized in the blocs:
(i) input parameters; (ii) fatigue crack growth analysis: Deterministic / Probabilistic;
and (iii) results evaluation. Firstly, in block (i), the input parameters row is at
the same time divided in three columns regarding geometry, loading conditions and
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material properties. The three of them include uncertainties if a probabilistic approach
is desired, otherwise they are simply deterministic parameters. Secondly, in block (ii),
the fatigue crack growth analysis has two twin paths, the deterministic and the
probabilistic one. The first one, follows the deterministic approach as indicated with
arrows in black. It covers the deterministic fatigue crack growth (FCG) NASGRO
model that uses the weight functions for efficient stress intensity factors evaluation
and the subsequent deterministic fatigue life estimation. The second one, in blue,
follows the probabilistic FCG methodology in the damage tolerance assessment of
railway axles developed within this thesis. It includes the full second-order approach
(FSOA) for the approximation of the first to four stochastic moments of the fatigue
life N , being its accuracy correlated with Monte Carlo (MC) results during developing
stages. Then, it uses these four moments to fit a probability distribution using the
versatile Pearson family. Subsequently, the probability distribution is evaluated
for certain reliability in order to obtain a conservative reliability-based estimation
of the fatigue life. In the end, a probabilistic fatigue life estimation is available.
Finally, in block (iii), the evaluation of results includes the definition of the inspection
intervals based on the previous deterministic or probabilistic fatigue life calculation.
It encompasses the forward, the backward and the last chance detection schemes.
Then the inspection intervals are further evaluated attending to the performance of
the non-destructive testing (NDT) techniques such as the magnetic testing or the
ultrasonic testing in the near-endor far-end configuration. Ultimately, the probability
of failure or its complementary probability of crack detection is calculated according
to the combination of inspection alternative and NDT method selected in the two
previous steps. Note that the NDT has a probabilistic background and this is why
when following the probabilistic path in blue, the result of the probability of failure
can be though in essence as doubly probabilistic.

This chapter is organized as follows. Firstly, an overview of the deterministic
NASGRO model is provided. In addition, the probabilistic expressions regarding its
integration with the full second-order approach are derived. Additionally, an outline
of the weight functions method for efficient stress intensity factors calculation is
included. Secondly, a summary of the Pearson distribution family and the estimation
of the distribution parameters from prescribed moments is given. In the third place,
the use of probabilistic fatigue life estimation in defining inspection intervals for
railway axles is developed. The steps of damage tolerance analysis are briefly reviewed
and the results of the probabilistic fatigue crack growth life are adapted for the final
definition of the reliability-based inspection intervals. Finally, the performance of the
non-destructive inspection techniques and the different alternatives for evaluating
the probability of detection of cracks in railway axles are described in detail.
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Figure 3.2. Overview of the damage tolerance assessment of railway axles.
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3.2 Fatigue crack growth model

It is well-known that the choice of the fatigue crack growth model plays a crucial
role in life prediction. Among the various models that are available in the literature,
summarized in Subsection 1.2.5, for the present purpose, the NASGRO crack growth
model is presented from two viewpoints: the deterministic and the probabilistic one.

3.2.1 Deterministic NASGRO equation

NASGRO expressions are enclosed in Eqs. (3.1) to (3.9).

da

dN
= C(∆Keff )n

(
1 − ∆Kth

∆K

)p

(
1 − Kmax

Kc

)q (3.1)

∆Keff = 1 − f

1 − R
(∆K) (3.2)

∆Kth = ∆Kth0

√
a

a+a0(
1−f

(1−A0)(1−R)

)1+CthR
(3.3)

Cth =
{

Cp
th if R ≥ 0

Cm
th if R < 0

(3.4)

f =
{

max
(
R, A0 + A1R + A2R2 + A3R3) if R > 0

A0 + A1R if R ≤ 0
(3.5)

A0 =
(
0.825 − 0.34α + 0.05α2) [cos

(
π

2
Smax

σ0

)] 1
α

(3.6)

A1 = (0.415 − 0.071α) Smax

σ0
(3.7)

A2 = 1 − A0 − A1 − A3 (3.8)

A3 = 2A0 + A1 − 1 (3.9)

where da/dN is the crack propagation rate, N is the number of applied cycles, a is
the crack depth, R is the stress ratio, ∆K is the stress intensity factor (SIF) range
from the maximum and minimum K, i.e. Kmax and Kmin, f is the crack opening
function, ∆Kth is the threshold stress intensity factor range, Kc is the critical stress
intensity factor, ∆Keff is the effective stress intensity factor range, and C, n, p,
and q are material empirically derived constants. The Eq. (3.1) consists of three
different terms according to the three different propagation regimes: (i) Region I
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at low growth rates,
(

1 − ∆Kth
∆K

)p

, is used to describe the regime close to the fatigue
threshold; (ii) Region II at mid-range of growth rates, C(∆Keff )n, represents the
linear or so-called Paris regime; and (iii) Region III at high growth rates,

(
1 − Kmax

Kc

)q

,
describes the regime up to the critical SIF. The term ∆Keff is the effective stress
intensity factor range and it is described by the Eq. (3.2) where f describes the
plasticity-induced crack closure effect as mentioned, and R is the stress ratio such as
above. The crack size and stress ratio dependency of the threshold is expressed as
in Eq. (3.3) with ∆Kth0 being the threshold SIF range at R = 0, a the crack depth
aforementioned and a0 the El-Haddad parameter. Cth is an empirical constant which
distinguishes positive, Cp

th, from negative, Cm
th, stress ratio R values as defined in

Eq. (3.4). A0 is a parameter used in the crack opening function f in Eq. (3.5) and
defined according to Eq. (3.6). The crack opening function f also depends on the
A1, A2, and A3 values calculated as expressed in Eqs. (3.7), (3.8), and (3.9). These
four parameters are function of the stress state defined by the plane stress/strain
constraint factor α, and by the ratio of the maximum applied stress, Smax to the
flow stress σ0, typically assumed to be constant. The use of this ratio as a constant
has been shown to produce acceptable results for positive stress ratios, where the
effect of Smax/σ0 on the crack opening function is relatively small. For most of the
materials, a value Smax/σ0 = 0.3 is adopted, chosen as an average value obtained from
fatigue crack growth experiments, adopting different geometries for the specimens.
For a more detailed description of the previous equations refer to [64].

For a sufficiently small step increment, the crack propagation rate in Eq. (3.1) can be
approximated for the ratio between finite increments Eq. (3.10), enabling the use of
an iterative scheme suitable for computing Eq. (3.11), where i is the step increment
up to the ns steps number.

da

dN
≈ ∆a

∆N
(3.10)

∆ai

∆N i
≈ ai+1 − ai

N i+1 − N i
(3.11)

3.2.2 Probabilistic NASGRO equations

In stochastic fatigue crack growth analyses, the following probability distributions
are achievable: the distribution of the crack size at any given number of load cycles
and the distribution of the number of load cycles to reach any given crack size. In
damage tolerance analyses of railway axles, the number of load cycles distribution is
preferred as it enables the definition of interval inspections verifying crack sizes.

The FSOA for the moments of functions of random variables presented in Chapter 2,
enables the prediction of the first raw and the second, third, and fourth central
moments of a general function. At this point, to bridge the gap between the FSOA and
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the fatigue crack growth life prediction, the probabilistic formulations for propagating
the first to fourth moments through the fatigue crack growth NASGRO model are
deduced. This section, starts with the introduction of the discretised version of
the NASGRO equation focusing on the lifespan of interest. Then, it derives the
probabilistic formulations for propagating the first raw, and the second, third and
fourth central moments through the fatigue crack growth NASGRO model. And
finally, it describes the manner in which the first to fourth moments of the fatigue
lifespan of interest N are calculated recalling that the first to fourth moments are
related, by definition, to the expected value, first raw moment; the variance, second
central moment; the skewness, third central standardized moment; and the kurtosis,
fourth central standardized moment, of the random output variable.

To begin with, the NASGRO model is adapted to obtain the distribution of the number
of load cycles N to reach a given crack depth a. Introducing Eq. (3.2) into Eq. (3.1),
the original NASGRO crack propagation rate da/dN is built, then isolating dN and
using the discretised version for every ith crack growth increment gives Eq. (3.12).

dN i = dai

C
(

1−fi

1−Ri ∆Ki
)n

(
1 − Ki

max
Kc

)q

(
1 − ∆Ki

th

∆Ki

)p (3.12)

To continue with, the expected value of the fatigue life, E [N ], is obtained by applying
the expectation operator to the total number of cycles N which is the summation
of the ns life increments dN i up to a final crack depth afin. Applying the linearity
property of the expectation operator, leads to Eq. (3.13).

E [N ] = E
[

ns∑
i=1

dN i

]
=

ns∑
i=1

E
[
dN i

]
(3.13)

The variance of the fatigue life, Var (N), is obtained by applying the variance
definition to N . Using the formula for the variance of the sum of random variables
gives Eq. (3.14). To promote understanding, the derivation of the formula for variance
of the sum of random variables is given in Appendix B by means of the Eq. (B.1).

Var (N) = Var
(

ns∑
i=1

dN i

)
=

ns∑
i1=1

Var
(
dN i1

)
+ 2

ns−1∑
i1=1

ns∑
i2=i1+1

Cov
(
dN i1 , dN i2

)
(3.14)
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Similarly, the third central moment of the fatigue life µ3 (N, N, N) is obtained by apply-
ing the third central moment definition to the total number of cycles N . Using the for-
mula for the third central moment of the sum of random variables leads to Eq. (3.15).

(3.15)

µ3 (N, N, N) = µ3

(
ns∑

i=1
dN i,

ns∑
i=1

dN i,

ns∑
i=1

dN i

)

=
ns∑

i1=1
µ3
(
dN i1 , dN i1 , dN i1

)
+ 3

ns∑
i=i1

ns∑
i2=1
i2 ̸=i1

µ3
(
dN i1 , dN i1 , dN i2

)

+ 6
ns−2∑
i1=1

ns−1∑
i2=i1+1

ns∑
i3=i2+1

µ3
(
dN i1 , dN i2 , dN i3

)

In the same manner as above, the fourth central moment of the fatigue life
µ4 (N, N, N, N) is obtained by using the formula for the fourth central moment
of the sum of random variables giving Eq. (3.16).

µ4 (N, N, N, N) = µ4

(
ns∑

i=1
dN i,

ns∑
i=1

dN i,

ns∑
i=1

dN i,

ns∑
i=1

dN i

)

=
ns∑

i1=1
µ4
(
dN i1 , dN i1 , dN i1 , dN i1

)
+4
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(
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ns∑
i2=i1+1
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(
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ns∑
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(
dN i1 , dN i2 , dN i3 , dN i4

)
(3.16)
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To conclude, in Eq. (3.13), E
[
dN i

]
is obtained by applying the FSOA derived to obtain

the stochastic first moment Eq. (2.62), on the dN i function Eq. (3.12). Similarly,
the moments of dN i in Eq. (3.14), are obtained by applying the FSOA developed to
obtain the stochastic second central moment Eq. (2.77). In Eqs. (3.15) and (3.16) the
moments µ3 and µ4 of dN i are obtained by applying the FSOA devoted to obtaining
the stochastic central moments of third and fourth order Eqs. (2.96) and (2.120)
respectively, on the dN i function Eq. (3.12). Note that, Eqs. (3.13) and (3.14) are
referred to as the probabilistic NASGRO equations for the expected value and variance
calculation respectively and Eqs. (3.15) and (3.16) are referred to as the probabilistic
NASGRO equations for the third and fourth central moments respectively.

In summary, for every ith crack growth increment, the first to fourth moments of
the fatigue lifetime increment dN i, i.e. the first raw, the second central moment, the
third and fourth central moments, are calculated by applying the full second-order
approach (FSOA) method on the discretised version of the NASGRO equation. It
requires the first and second partial derivatives of the NASGRO equation with
respect to the random input variables, and the first to eighth order moments of the
random input variables. Then, the first to fourth moments of the fatigue lifetime N

are obtained by applying the NASGRO probabilistic equations (Pr. Eqs.), namely
Eqs. (3.13), (3.14), (3.15), and (3.16), providing a continuous result along the crack
depth a. Finally, the expected value of N , its variance, the skewness and the kurtosis
are calculated based on the first to fourth predicted moments.

3.2.3 Stress intensity factor evaluation: weight functions

The crack propagation is calculated at two different points, the deepest point named
A and the crack surface point named B as depicted in Fig. 3.3.

𝑎 

2𝑐
 B 

A

2b 

Figure 3.3. Axle cross-section with a postulated crack.

It is important to note that the crack geometry is described by two parameters that
represent the two axes of a semiellipse. Therefore, the crack growth rate that also de-
pends on the boundary conditions, is calculated at the two different points, the deepest
point A, and the crack surface point B. Accordingly, to determine the crack evolution,
the SIFs are evaluated in the two points, which determine the crack shape in the
next step of the calculation. The NASGRO Eq. (3.1) is therefore separately applied
to the crack deepest point and its surface point, for the latter case replacing a by b.
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To use the NASGRO equation efficiently, fast SIFs calculations, which are dependent
on the instant crack shape, is therefore fundamental. To do that, the weight functions
method is used. The weight function method is based on the principle of superposition
as presented in the schematic of Fig. 3.4. The stress intensity factor for a cracked
body subjected to external loads shown in Fig. 3.4a can be obtained by calculating
the stress intensity factor in a geometrically identical body with the local stress field
σ (x) applied to the crack faces as it is shown in Fig. 3.4c. The local stress field
σ (x) induced by the external load in the crack plane is determined by neglecting the
presence of the crack as illustrated in Fig. 3.4b.

(a) Cracked body with externally
applied stress.

(b) Uncracked geometrically
identical body.

(c) Geometrically identical body
with local stress applied to the
crack faces.

Figure 3.4. Schematic of the weight function method.

According to the method, for a one-dimensional variation of stresses acting across
the crack plane, the relation between the stress intensity factor and the stress
distribution is given by the definite integral in the Eq. (3.17), where σ (x) is the stress
distribution in the uncracked component and m (x, a) are the weight functions, which
are dependent on the instant crack shape and on the position along the crack front
in which the SIFs are calculated.

K =
a∫

0

σ (x) m (x, a) dx (3.17)

The main advantage of the weight functions method is its universality. It is possible to
obtain the weight function for a given cracked body and it can be used afterwards to
estimate the SIF induced by any other externally applied load. The weight functions
used at the calculation points come from [44].
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3.3 Pearson distribution family fit from prescribed moments

Many statistical analyses consider the normal distribution when no more information
about the underlying probability distribution is available, however, this assumption
does not always reflect the reality. Among the different distributions that can be
chosen, the Pearson distribution family is used in the methodology as it is a versatile
family that covers a broad range of distribution shapes, and therefore it is able to
model a wide range of data accurately. Moreover, it enables the expression of the
distribution parameters as a function of the first four moments of the distribution
without a priori hypotheses, and thus it is an efficient and objective procedure. This
is why this procedure is often referred to as Pearson distribution family fit using the
method of moments.

The Pearson distribution is a family of continuous probability distributions [141]. A
Pearson probability density function p(x) is defined to be any valid solution to the
first order linear differential equation presented in Eq. (3.18), where λ is a location
parameter, β1 is the square of the skewness, β2 is the kurtosis, and µ2 is the second
central moment of the distribution.

p′(x)
p(x) + (x − λ) + a

b0 + b1(x − λ) + b2(x − λ)2 = 0 with: (3.18)

b0 = 4β2 − 3β1

10β2 − 12β1 − 18µ2, a ≡ b1 = √
µ2
√

β1
β2 + 3

10β2 − 12β1 − 18 , b2 = 2β2 − 3β1 − 6
10β2 − 12β1 − 18

The solution to the above differential equation is shown in Eq. (3.19).

p(x) ∝ exp
(

−
∫

x + a

b2x2 + b1x + b0
dx

)
(3.19)

The variety of solutions differs in the values of the coefficients a, b0, b1 and b2.
Furthermore, the integral in this solution simplifies when certain cases of the integrand
are considered. These cases are distinguished by the number of real roots of the
quadratic function in the denominator. The two cases are: (i) negative discriminant
b2

1 − 4b2b0 < 0, and (ii) non-negative discriminant b2
1 − 4b2b0 ≥ 0. Additionally, further

subdivisions, referred to as Pearson distribution types, are derived depending on the
quantities β1 and β2. Recall that the first quantity is the square of the skewness
shown in Eq. (2.12) and the second one is the kurtosis defined in Eq. (2.13). In
other words, the type of distribution to which the data belong is entirely determined
by the skewness and the kurtosis. The Pearson distribution types correspond to
common probability distributions. The following types and their common distribution
associated arise: type I (beta), type II (symmetrical beta), type III (gamma), type
IV (Cauchy), type V (inverse-gamma), type VI (beta prime), type VII (Student’s t)
and the limit of type I, III, IV, V (normal).
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Once the Pearson distribution type is determined, the two, three or four parameters
of the particular distribution type can be calculated as a function of the expected
value, variance, skewness and kurtosis, i.e. from the first four moments. The formulas
to calculate the parameters for each type of Pearson distribution are given in [149].
As an example, the following formulas can be used for the Pearson distribution type
I that arises from the case (ii) when the real roots of the quadratic equation a1 and
a2 are of opposite sign. The real roots a1 < 0 < a2 are enclosed in Eq. (3.20).

a1 = −b1 −
√

b2
1 − 4b2b0

2b2
, a2 = −b1 +

√
b2

1 − 4b2b0

2b2
(3.20)

In this case, the solution of the differential equation in Eq. (3.19) becomes Eq. (3.21).

p(x) ∝
(

1 − x

a1

)− a+a1
b2(a1−a2)

(
1 − x

a2

) a+a2
b2(a1−a2)

(3.21)

The previous solution p(x) is supported on the interval (a1, a2), then applying the
substitution x = a1 + y(a2 − a1) yields a solution in terms of y that is supported on
the interval (0, 1) as it is shown in Eq. (3.22).

p(y) ∝
(

a1 − a2

a1
y

)− a+a1
b2(a1−a2)

(
a2 − a1

a2
(1 − y)

) a+a2
b2(a1−a2)

(3.22)

The exponents are named as m1 and m2 as it is designated in Eq. (3.23).

m1 = − a + a1

b2 (a1 − a2) , m2 = a + a2

b2 (a1 − a2) (3.23)

After substituting and regrouping, the solution in Eq. (3.22) simplifies to Eq. (3.24).

p(y) ∝ ym1(1 − y)m2 (3.24)

Note that Eq. (3.24) corresponds to the probability density function of the beta
distribution for 0 < y < 1, and shape parameters α = m1 + 1 and β = m2 + 1. Thus,
(x − λ)/(a2 − a1) follows a beta distribution with the same shape parameters α and β,
scale parameter (a2 − a1) and with a location parameter λ as it is shown in Eq. (3.25).

x − λ

a2 − a1
follows a Beta(α, β) with: (3.25)

λ = µ′
1 − (a2 − a1) m1 + 1

m1 + m2 + 2 ≡ µ′
1 − (a2 − a1) α

α + β

Note that µ′
1 is the expected value of the distribution of the original x variable to

model, i.e. its first raw moment.



3.4. Use of probabilistic fatigue life estimation in defining inspection intervals for railway axles 135

3.4 Use of probabilistic fatigue life estimation in defining
inspection intervals for railway axles

The essence of damage tolerance analysis of railway axles is to detect cracks before
they become critical, providing certain level of safety for the axles in a fleet of trains
by performing periodical inspections in-service. Thus, damage tolerance analyses
are based on fracture mechanics to simulate crack propagation. Within the frame of
the damage tolerance concept, the possibility of using probabilistic fatigue lifespan
estimation is developed here. For that purpose, this section gives an overview of the
steps of the damage tolerance of railway axles. Then, the propagation of uncertainty
in fatigue crack growth using the FSOA and the probability distribution fit using
the Pearson distribution family are outlined. Finally, the two previous elements are
combined providing a reliability-based inspection interval definition.

3.4.1 Steps of the damage tolerance analysis

Damage tolerance is the classical concept of fracture mechanics application. It is
illustrated in Fig. 3.5. A typical application field is the railway sector. The steps of
a damage tolerance analysis of a railway axle comprise [21, 56, 66]:

Step 1. establishment of the initial crack location, orientation, shape and size,
Step 2. simulation of sub-critical crack extension, i.e. the FCG process,
Step 3. determination of critical crack size for component failure,
Step 4. determination of residual lifetime of the component, and
Step 5. establishment of inspection intervals and computation of the overall

probability of crack detection.

The aim of the damage tolerance analysis in this thesis is to determine inspection
intervals with an associated CPOD, what is also function of the performance of
the NDT method. The different steps of the analysis are explained in detail for a
particular example dealing with the fatigue crack growth in a railway axle.
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Figure 3.5. Fracture mechanics analysis within the framework of Damage Tolerant Design [21].
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3.4.2 Probabilistic fatigue crack growth life

Starting from the assumption of an initial crack-like defect (step 1), the crack growth
simulation (step 2) considers: (i) the component geometry and dimensions; (ii) the
loading conditions including the bending moment, cyclic, the load spectra, in-service
load sequences, and the press-fit, static; (iii) the material properties, primary the
da/dN–∆K curve; and (iv) the considered crack growth equation, commonly the
NASGRO model. After that, different definitions of the critical crack size (step 3) are
in use, but since the growth rate of long cracks is usually high due to its exponential
nature, the failure is imminent whatever the relatively long crack depth. Next, the
residual lifetime is calculated (step 4), that is, the number of loading cycles or the
distance in kilometres, which the assumed initial crack, (step 1), would need to grow
up to the final crack size, (step 3). Among all the different aspects which affect the
residual lifetime (step 4), it strongly depends on the FCG process (step 2), and, as it
is stochastic in nature, the residual lifetime also depends on the uncertainties inherent
to the factors listed in (i) to (iv). Addressing the FCG problem from a probabilistic
point of view is, therefore, a crucial point for the final (step 5), establishing inspection
intervals with a probability of crack detection associated.

In order to obtain a probabilistic fatigue crack growth life estimation, this thesis
applies a procedure that uses the first four moments of the fatigue crack growth life
predicted by the FSOA to fit the parameters of a probability distribution based on
the Pearson distribution family.

The FSOA for the moments of functions of random variables enables the prediction
of the expected value, the variance, the skewness and the kurtosis of the probabilistic
fatigue crack growth life. On this basis, the complete mathematical derivation of the
FSOA for the first to fourth moments of functions of random variables is presented
in Chapter 2. It presents the expressions involving tensors of different orders in
a simple and comprehensible way. Notice that, the first to fourth moments are
related, by definition, to the expected value, first raw moment; the variance, second
central moment; the skewness, third central standardized moment; and the kurtosis,
fourth central standardized moment, of the random output variable. For a detailed
description, the manner in which the FSOA is applied to the fatigue crack growth
NASGRO model for propagating the first to fourth moments of the fatigue life N

through the use of the NASGRO Pr. Eqs. is explained in Subsection 3.2.2. Finally,
the expected value of N , its variance, the skewness and the kurtosis are calculated
based on the first to fourth predicted moments.

At this point, the problem of fitting a probability distribution from prescribed mo-
ments arises. Commonly, the normal distribution is assumed when there is not much
information available about the underlying probability distribution, notwithstanding
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that this assumption might not reflect the reality in some scenarios. Among the differ-
ent distributions that can be considered, the Pearson distribution family, presented in
Section 3.3, is used in the methodology as it is a versatile family that covers a broad
range of distribution shapes. Additionally, it enables the expression of the parameters
of the distribution as a function of the first four moments of the distribution without
a priori hypotheses. Depending on these quantities, different common probabil-
ity distributions arise, for instance, the beta, symmetrical beta, gamma, Cauchy,
inverse-gamma distribution, beta prime, Student’s t and the normal distribution.

Summarizing, once the FSOA method and the Pearson family fit are applied, there
is available a probabilistic description of the fatigue crack growth life, that provides
relevant information about the statistical distribution of the output random variable
fatigue life.

3.4.3 Reliability-based inspection interval definition

The damage tolerance methodology overviewed in Subsection 3.4.1 is commonly
based on the deterministic calculation of the fatigue crack growth (step 2), but, as
mentioned, given the uncertainties inherent to geometric parameters, the variability
of loads and the scatter of the material properties, the calculation of an axle lifespan
should not be done with a simple deterministic calculation, and instead, a probabilistic
approach is preferred. As shown in Fig. 3.6, the random nature of the fatigue crack
growth in the railway axle needs a probabilistic description taking into account of
the variabilities given by the geometric accuracy, the material properties and the
actual in-service loads. With such an uncertainty, applying the probabilistic approach
outlined in Subsection 3.4.2, the probability distribution of the fatigue crack growth
life is available. That is, the distribution of the fatigue life predictions with allowance
for these sources of uncertainty is obtained, thus leading to an enhanced and more
robust control over the safety required by these critical components.
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Figure 3.6. Probabilistic fatigue life.
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The probability distribution can be described in various forms, such as by the survival
function (SF), by the cumulative distribution function (CDF) or by the probability
density function (PDF). In the context of probabilistic FCG life in railway axles, the
SF is the function that gives the probability that an axle will survive beyond any
specified time, cycles or kilometres. Often, in engineering, the survival function is
also known as the reliability function. Alternatively, the reliability function can also
be evaluated for a given reliability percent obtaining the corresponding number of
kilometres. In other words, in this way it provides the minimum mileage travelled for
a given surviving proportion of axles. Another name for the SF is the complementary
of the cumulative distribution function (CCDF). Moreover, it is well-known that the
CDF and the PDF are related. Given these basic premises, the working approach
selects a reliability level in such a way that a conservative lifespan balancing safety
and economic issues is achieved. Notice that, the input uncertainties and scatter are
implicitly collected in the output probability distribution provided by the Pr. Eqs.
and represented by its survival, cumulative distribution and probability density
functions of fatigue life. The stated procedure is illustrated in Fig. 3.7.
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Figure 3.7. Conservative reliability-based life estimation from probabilistic fatigue life (survival,
cumulative distribution and probability density functions of fatigue life).
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As a result of the procedure, a conservative estimation of the lifespan is obtained,
taking advantage of the knowledge available at the lower tail of the distribution
of lives. Finally, instead of the deterministic lifespan calculation, the conservative
lifespan estimation is considered as the FCG process (step 2) outcome, which is the
basis for the subsequent steps oriented to the interval inspection definition. The idea
for determining the periodicity of the NDI is depicted simply in Fig. 3.8.
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fatigue crack growth lifetime
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Figure 3.8. Definition of the periodicity of NDT inspections, i.e. inspection intervals of maintenance.

First, based on the conservative lifespan estimation, the residual lifetime (step 4) is
delimited. This portion of lifetime is denoted as Ndef in Fig. 3.8 in reference to the
lifetime for the definition of inspection intervals. The Ndef covers the propagation
from amin to amax (steps 1 and 3), being the minimum and the maximum crack
sizes considered for the lower and the higher lifetime bounds respectively, and it is
calculated through the Eq. (3.26).

Ndef = N (amax) − N (amin) (3.26)

The usual assumption made is that amin corresponds to crack size aP OD% that has
certain probability of being detected by NDT, for instance the crack size a95% which
has a POD = 95%. Finally, the inspection interval Tins is determined by dividing
Ndef by a number of times ntimes that takes account of the number of times that the
crack can be detected before a failure could occur, as formulated in Eq. (3.27).

Tins = Ndef

ntimes
(3.27)

For instance, the usual assumption considering ntimes equal to 2 or 3 [142], allows
the crack to be potentially observed at least twice or three times before it leads to
catastrophic failure. This assumption is based on the fact that a crack could be
missed at an inspection. It is, however, evident that even two or more inspections
cannot ensure the crack detection. As already mentioned this approach is called
damage tolerance and is applied to ensure safe service of the railway axle. The
possible outcomes of the crack sizes with planned inspections is illustrated in Fig. 3.9.
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Figure 3.9. Inspections considering that a crack can be detected at least three times before failure.

It does not matter either at which lifetime the crack initiates. Inspections scheduled at
e.g. Ndef /2 interval will always give two chances for detection regardless of when crack
growth process begins, provided that inspections are scheduled at Ndef /2 interval
starting from time zero, even though the possibility of having a crack is initially
small. Similarly, if Ndef /3 interval is chosen, there will always be three opportunities
between amin and amax whether the crack occurs early or late, as shown in Fig. 3.9.

It is worth to remark that there is no standard regarding the inspections of railway
axles, but only guidelines about freight wagons, thus, the responsibility is entirely
demanded to the constructor and the maintenance operators. The guidelines in
EN 15313:2016 standard [20], summarized in Table 1.3, recommend, as general indic-
ation, that an inspection has to be carried out every 400 000 km, inspecting the axle
by ultrasonic testing. Additionally, the maintenance plan of railway axles for freight
wagons, includes a full inspection of the axle by MPI that is carried out when the
wheels are re-profiled or substituted at the major overhaul (out-off-service), typically
every 1.2 million km. Intermediate inspections are carried out adopting visual and
ultrasonic inspections. These inspections are usually scheduled based on progressed
experience, but, recently operators of the rail sector are starting to apply engineering
approaches. An approach to inspection interval design that is complementary to the
empirical approach is required to establish the highest level of safety.

In summary, the approach presented here extends the current damage tolerance
principles in railway axles by means of improving the crack growth simulation (step 2),
replacing the deterministic crack growth estimation by a probabilistic one. The
damage tolerance assessment benefits from a better knowledge of the distribution
of fatigue lifespan. As a result, it would give a more conservative recommendation
for the definition of inspection intervals as it is based on a probabilistic fatigue
propagation instead of on a deterministic one. The specific in-service inspection
procedures shall be improved continuously in order to benefit the continuous advance
in the state-of-the-art technology.
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3.5 Performance of the non-destructive inspection methods

During service, the railway axles are subjected to deterioration, due to: contact
fatigue, friction fatigue, thermal fatigue, fatigue caused by rotating bending and/or
torsional oscillations, abrasion wear and tear, corrosion from exposure to atmospheric
agents and/or corrosive environments, and loss of paint or damage from ballast impact
during operation or impacts with other bodies during maintenance. For this reason,
in order to detect damages and prevent catastrophic failures of the safety-critical
axles, the need of establishing a plan of periodic NDI during the service of the vehicle
emerges. Nowadays, the most common methods for inspecting railway axles are VT,
UT and MT. It should be emphasised that the VT are performed during standard
inspections in the depot. Aside from visual inspection, in the other two cases, UT
and MT, it is necessary to carry out more in-depth instrumental investigations and
non-destructive testing.

The definition of an inspection plan is the final goal of a damage tolerance analysis of
railway axles. In order to constitute an appropriate plan of the periodic inspections,
it is essential to know the performances of the NDT methods used. In fact, NDT
performance is a statistical matter [56], and the characteristic usually adopted for
evaluating its performance is the POD vs. crack size curve, commonly referred to
as POD curve. The POD vs. crack size relationships for various NDT methods are
illustrated in Fig. 3.10, digitalized from [56]. These POD curves were obtained by
Benyon and Watson [106], and nowadays are widely adopted in the railway axle
field. They consider the case of MT also known as MPI and UT in near-end and
far-end scan application conditions, defined for a solid axle in Fig. 3.11, where the axle
is inspected from the end of the axle to mid-span or further in far-end, and where the
axle is inspected from the end of the axle to an adjacent seat in near-end condition.
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Figure 3.10. Probability of crack detection (POD) as a function of crack size for several non-
destructive testing (NDT) methods [56].
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Figure 3.11. General view of a non-powered wheelset with a postulated crack in the T-transition
inspected using near-end scan and far-end scan techniques.

It can be observed from Fig. 3.10 that the POD of a crack depends not only on the
NDT technique but also on the actual crack size. Note that the MPI is the most
powerful detecting method under consideration, providing very good results even
when dealing with comparatively short crack depths. On the other side, ultrasonic
techniques have notable different POD curves. The second-best method is near-end
scan followed by far-end scan. Usually for the shorter interval, the inspections are
performed by UT and for the larger interval by MT. It seems likely, according to
Fig. 3.10, that MPI is the most cost-effective NDT technique for a bare axle (where
the wheels, bearings, brake discs are removed) during its overhaul. All unfortunately
rather common, fatigue cracks may be initiated and grow to failure in less time
than needed to wear out the wheels, and so to re-profile or substitute them in an
overhaul. Consequently, costly and because of their intrusive nature, disruptive, axle
inspections in between overhauls have to be carried out. As mentioned above, they
are frequently based on UT as a compromise between a limited intrusiveness, which
disrupts train service, and a lower POD compared with MPI.

The POD vs. crack size curves can be used to establish inspection intervals relying
on a statistical basis. It involves an additional level in the probabilistic approach,
in order to guarantee the structural integrity during the life of the railway axles.
Establishing inspection intervals is essentially a statistical task acting as a link
between fracture mechanics analysis, non-destructive testing and the constraints of
industrial practice.

Each NDT inspection method is characterized by a POD vs. crack size curve whose
CDF is fitted by an exponential curve as is expressed in Eq. (3.28).

PODMP I = max
{

0.0, 0.9796
(

1.0 − 1.0236e−2.1360(a−0.1950)
)}

PODnear-end = max
{

0.0, 0.9787
(

1.0 − 0.9889e−0.7691(a−0.4114)
)}

PODfar-end = max
{

0.0, 0.9480
(

1.0 − 0.9887e−0.2576(a−1.9979)
)} (3.28)
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Starting from POD vs. crack size curves, the total probability of observing cracks and
defects in railway axles can be quantified by two different alternatives [109] shown in
the Fig. 3.12 and described below: (a) cumulative POD represented in Fig. 3.12a,
and (b) last chance POD depicted in Fig. 3.12b.
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Figure 3.12. Options for probability of detection calculation.

The alternative (a), cumulative probability of detection in successive inspections
(CPOD), arises from the consideration in Subsection 3.4.3 that the definition of an
inspection schedule is done to have the possibility to inspect the axle several times
prior to failure. In consequence, the probability of detection of the eventual crack is
not the POD during one single NDT control, but instead, it has to be evaluated, once
fixed the interval between inspections, as a function of the crack growth evolution,
a-N curve, together with the NDT performance of the adopted method, POD-a
curve. The CPOD increases from inspection to inspection since the crack becomes
larger during the time in between. It is determined easily when the crack size vs.
time dependency (step 2) in Subsection 3.4.1 and the POD vs. crack size curve for
the NDT method are known. Notice that the crack size vs. time dependency is
equivalent to the a-N curve, being N the number of cycles or mileage travelled in
km. Note that the CPOD is sometimes replaced by its complementary cumulative
probability of failure in successive inspections (CPOF) or simply referred to as Pf .
Furthermore, alternative (a) offers to two additional ways to calculate the CPOD,
denoted as forward and backward detection schemes as shown in Fig. 3.12a. The
two approaches, based on forward detection, starting from amin usually selected
as the limit of detectability of the crack, and backward detection, going back from
amax commonly the final failure, are shown. The forward inspection seems to be the
natural approach, while the backward approach is sometimes applied during trials
after serious accidents to assign responsibilities. It should be noted that the latter
should always be taken into consideration in the design of the inspection intervals,
because it is systematically more conservative, giving smaller values of CPOD.
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In this regard, given the length of the inspection interval in Fig. 3.12a, three in-
spections along the life of the railway axle are obtained as illustrated in Fig. 3.13.
The CPOD of a crack growing according to the a-N curve, can be calculated based
on the given number of inspections #i and the POD-a curve of the NDT method
used. The easiest way to calculate the CPOD is to convert the POD of the indi-
vidual inspections, #1, #2, #3, designated with the sub-index #i, to probability of
non-detection (POND) by the relationship POND (a#i) = 1 − POD (a#i) where a#i is
the corresponding crack depth at the #i inspection. These PONDs, when multiplied
give a cumulative probability of non-detection in successive inspections (CPOND).
Notice, that the individual POND decreases with increasing crack length. Finally,
the CPOND is converted back to its complementary CPOD.
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Figure 3.13. Probability of detection of a#i in the #i individual inspection and fault tree of the
cumulative probability of non-detection in successive inspections or its complementary cumulative
probability of detection, considering the forward scheme and the ultrasonic near-end scan NDT.

In summary, the CPOD of a crack can be evaluated as in Eq. (3.29).

CPOD#i = 1 − CPOND#i = 1 −
∏

i

POND (a#i) = 1 −
∏

i

[1 − POD (a#i)] (3.29)

The Pf , also denoted as CPOF, given that all the inspections failed to detect an
actual crack, can be considered as the CPOND as expressed in Eq. (3.30).

Pf = CPOF#i = 1 − CPOD#i = CPOND#i =
∏

i

[1 − POD (a#i)] (3.30)
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The alternative (b) for the evaluation of the probability of failure, was originally
proposed for application in the railway axle field in [66], and so called last chance
detection, as represented in Fig. 3.12b. This alternative is intended to avoid the error
amplification of the first (a) alternative, due to the fact that in the initial stages of
propagation, i.e. small cracks, the POD is really low. By the last chance alternative,
only the POD of the last useful inspection in the backward direction is considered.
Therefore, the last chance POD can be simply evaluated as in Eq. (3.31), and the
probability of failure as in Eq. (3.32):

POD = POD
(
a# max(i)

)
(3.31)

Pf = 1 − POD = 1 − POD
(
a# max(i)

)
(3.32)

The last chance approach has the advantage of establishing a simple relationship
between the POD and the inspection interval. Furthermore, with this approach it is
possible to focus attention on the dimension of the crack that must be observed to
have a high POD.

In particular, as it is not known exactly when crack growth is triggered by an
accidental event, the component will always be subjected to inspection every Tins

km, and depending on the detection scheme and inspection method used, the CPOD,
its complementary CPOF or the last chance POD can be computed. It is important
to recall the hypothesis made here, that is, the presence of a crack (step 1) in
Subsection 3.4.1 and so the probability of failure equals the probability of not detecting
the crack in due time throughout the axle lifetime. This must be distinguished from
the probability of failure of an arbitrary axle in a fleet of trains since an existing
defect an its nucleation to a crack of that size is very unlikely. To calculate the real
probability of failure, the Pf obtained in the damage tolerance analysis should be
multiplied by the probability of having a defect on the axle and by the probability
that a crack will nucleate from that defect and further grow during the service life.
Therefore, the real probability of failure of an axle is, by orders of magnitude, smaller
than the one obtained in a damage tolerance analysis. The calculation of the real
probability of failure is beyond the scope of this thesis.

Preventive maintenance is a prevailing principle in the railway industry. Note that,
in this context, damage tolerance does not mean that a crack detected during an
inspection is considered acceptable even when its size is far from being critical. In
some other applications, this is a possible option, but it should be handled with care
especially for safety relevant applications, as it is the case of a railway axle. Regarding
the damage tolerance methodology developed for railway axles, the approach is still
under present and future development. A comparison of this relatively new approach
with what is prescribed by the current standards, i.e. infinite life, and against the
safe life approach, that is, damage accumulation, are still under discussion.
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Application examples

4.1 Introduction

This chapter illustrates the devised probabilistic damage tolerance-based maintenance
planning for railway axles, thorough an application example. It provides a random
variables approach to the fracture mechanics based fatigue crack growth model. The
case study herein tackled deals with the fatigue crack growth analysis of a railway
axle. The full second-order approach in Chapter 2 takes into account the stochastic
character of the fatigue crack growth, randomizing the input random variables
considered in the FCG phenomenon. As explained, this method is implemented in
order avoid the large computational effort required by the Monte Carlo simulation
method. The probabilistic FCG methodology in the DTA of railway axles, described
in the previous Chapter 3, is hereinafter applied to the chosen case study. The
outcomes allow investigating the influence of probabilistic approaches on the reliability
evaluation, assessing the most important factors in the definition of inspection
intervals. One of the most essential aspects is the time taken for a detected crack
to extend to its critical size. If this time is sufficiently large and the probability of
detection meets an admissible level, the design concept based on inspection intervals
could be suitable. Since the goal of DTA is to inform the maintenance decision
makers about the impacts of a particular inspection interval, it is indispensable
to integrate into the overall methodology the uncertainties involved in the fatigue
process regarding the random input variables.
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When dealing with reliability of components with a damage tolerance design concept
subjected to variable amplitude fatigue loading, the following inputs, methods and
results are considered in this thesis:

• the geometry of the component;

• an expected crack location, initial size and shape;

• the static and cyclic loading conditions;

• the load spectrum in service conditions;

• the elastic material properties;

• the fatigue crack growth curve;

• a fatigue crack growth equation, NASGRO;

• weight functions to evaluate the stress intensity factor at the crack tip;

• knowledge regarding the input uncertainties, i.e. the random input variables;

• a FSOA method for probabilistic fatigue crack growth and PDF reconstruction;

• a reliability-based inspection interval definition;

• the performance curves of the NDT techniques; and

• overall probability of successful detection or the complementary Pf assessment.

This chapter is organized as follows. Firstly, the case study under analysis con-
sidering a metal railway axle is described. It details the geometry, the postulated
crack location, size and shape, the material parameters of the NASGRO FCG, the
press-fit and bending loading conditions including the load spectrum, the mesh built
together with the loads and boundary conditions for the FEM analysis, the stress
fields from the FEM analysis and the results of the deterministic (Det.) simula-
tion performed according to the NASGRO equations. Secondly the input random
variables considered in the probabilistic analysis for the FCG in the railway axle
are reported. The assumptions taken regarding their variability, the distributions
type, and the relationships of correlation or dependence considered are thoroughly
described. Finally, all the ideas presented in the chapters of this thesis are put
together, illustrating the course of the reasoning for building a link between the full
second-order approach applied on the FCG phenomenon and the DTA of railway
axles to define inspection intervals. It considers, the most comprehensive set of
random variables as the backbone when exemplifying the work-flow of the calculation,
promoting a deep understanding of the r.v.s influence. In short, this brings to an
end and is a celebration of my cumulative work in this field.
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4.2 Case study definition: railway axle

In this section, the case study dealing with the fatigue crack growth analysis of
railway axle is presented. The geometry of the wheelset is shown in Fig. 4.1. The
non-powered railway axle considered in the present numerical example is 173 mm in
diameter and it is made of EA1N steel defined in the EN 13261:2020 standard [19].

Figure 4.1. Geometry of the wheelset with external journals.

The POD of a crack depends not only on the NDI method but also on the actual
crack size as shown in Fig. 3.10. For instance, MPI can detect relatively long cracks
larger than 2 mm in approximately 95 % cases. That is, a crack of 2 mm in length
is not detected in 5 % cases. Therefore, there is a risk that an existing crack is not
detected, and so the existence of a crack should be considered. The initial crack size is
often taken more or less arbitrarily, but it might be selected as a crack with a certain
probability of detection. For example, it could be defined as a crack with POD of
95 %, a95%. Such a criterion certainly has appeal, because it seems consistent, yet it
still leads to inconsistencies. In the case of study, a semicircular initial crack aini of
2 mm was postulated at the T-transition, as indicated with a red line in Fig. 4.2, in
which is also defined the radial coordinate system x at the axle surface.

 

T-transition 

x 
 

𝑎 
 

cross-section 

 

Figure 4.2. General axle view of a non-powered wheelset with a postulated crack in the T-transition.
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As shown in the figure, the so-called T-notch or T-transition is defined as the
transition between the wheel seat and the axle body. As it is described later, the
previous crack location is assumed at the highest stressed region, what is relevant
for establishing inspection intervals. This is the case even if real cracks are initiated
at other locations, for instance, beneath press seats or at corrosion pits, since crack
initiation process does not play a role for residual lifetime determination which
assumes a pre-existing crack of a depth of some millimetres. In addition, the POD
at the T-notch position is usually the poorest one along the whole railway axle.

The fatigue crack growth material parameters required for the NASGRO model
evaluation are obtained from the bibliography and given in Table 4.1.

Table 4.1. NASGRO fatigue crack growth material parameters.

Parameter Value Reference
n 2.09 [-] [49]
C† 3.3197×10−10 [MPa−n mm1−n/2] [49]
p 1.3 [-] [49]
q 0.001 [-] [49]
Kc 2434.9 [MPa

√
mm] [49]

∆Kth0 233.70 [MPa
√

mm] [49]
Cp

th 1.442 [-] [49]
Cm

th −0.02 [-] [49]
α 2.5 [-] [7, 65]
Smax/σ0 0.3 [-] [65]
a0 0.0381 mm [65, 150]
† Exponents in the C parameter units make reference to n.

The loads considered in the present study are the press-fit loading produced by the
wheel mounting with interference and the bending moment loading in the railway
axle due to the vehicle weight and cargo. The wheel was press-fitted with 0.286 mm
interference in diameter. In addition, the bending moment level selected M , equal to
70.35 MN mm, corresponded to the highest load amplitude in the spectrum of a 22.5 t
per axle, plus additional forces, generated when the train goes through curved track,
over crossovers, switches, rail joints, braking efforts, etc. This assumption implied
the worst case scenario since such stress level corresponded to the maximum one for
axle bodies according to the EN 13103-1:2017 standard [15]. Moreover, the present
example considered the load spectrum acting on a railway axle over its service. The
load spectrum was derived from the one available in the UIC B 169/RP 36 report [84].
The resulting service loading spectrum is shown in Fig. 4.3.
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Figure 4.3. Stress spectrum, mileage 15 000 km, considered in the probabilistic analysis.

The interference stress distribution normal to the crack surface and the reference
bending stress amplitude for the 70.35 MN mm bending moment needed for the stress
intensity factor Kmax and Kmin evaluation were calculated via the finite element
method (FEM).

The modelling procedure adopted was applied on the geometry of the wheelset
presented in Fig. 4.1. The three-dimensional finite element model used in the
simulation consists of the wheel and the railway axle, considered as deformable
solids discretized by means of linear 8-node hexahedron elements with full integration
(C3D8 in the ABAQUS library [151]), as shown in Fig. 4.4. The full wheelset assembly
considered in the analysis is shown in Fig. 4.4a. The corresponding railway wheel
was assembled together with the axle, whereas the bearings and the rail-track were
modelled only as boundary conditions as explained hereafter. The mesh generated for
the railway axle is presented in Fig. 4.4b and the high mesh refinement in the region
of interest, i.e. the T-transition, is shown in the detail in Fig. 4.4c. Special attention
was paid while meshing the T-transition in order to provide the best compromise
between accuracy and running time. It is important to note here that it is not
necessary to model the postulated crack since the SIFs are subsequently obtained
based on the axial stresses acting across the crack plane in the uncracked component
by means of the weight functions as described in Subsection 3.2.3.

The press-fit between wheel and axle was modelled. In order to emulate the press-fit
loads, the CLEARANCE option in ABAQUS was used, and the radial interference value
was chosen equal to 143.125 µm according to current EN 13260:2020 standard [18].
The contact between the wheel and axle was modelled with a SMALL SLIDING contact
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(a) Full wheelset.

(b) Railway axle. (c) T-transition mesh refinement.

Figure 4.4. Mesh of the finite element model (FEM).

(friction coefficient µ = 0.6). To obtain the bending stresses, a vertical force, F, was
applied to the middle section of the bearing journal as shown in Fig. 4.5. By means
of this force, the bending moment corresponding to the 22.5 t per axle is represented
in the axle cross-section of interest. It also avoids the need of modelling the bearings.
Additionally, the vertical translations were constrained at the bottom of the wheel
(u3 = 0) to simulate the track conditions. Finally, two symmetry conditions were
applied. The first one, to the middle section of the axle body (u2 = 0, plane 1-3). The
second one, taking advantage of the longitudinal symmetry (u1 = 0, plane 2-3). By
doing so, only one quarter of the wheelset was actually modelled. The magnitude of
the applied force is modified in accordance with the symmetries. Note that Fig. 4.5
presents the full wheelset despite the two aforementioned symmetries.

F                                                                           F

1 2 

3 

Figure 4.5. Load and boundary conditions in the symmetry model.
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The analysis of results is aimed to obtain the stress distribution in the T-transition in
axial direction. It should be recalled here that the crack plane is defined perpendicular
to the rotation axis of the railway axle, so the results are focused on the stress
distribution acting through the crack plane. The stress field in axial direction
according to the press-fit with interference load case is shown in Fig. 4.6 using
undeformed shape. Moreover, the stress field according to the bending moment load
case is shown in Fig. 4.7 using deformed shape.

Figure 4.6. Stress distributions [MPa] in axial direction at the press-fit load case. Undeformed.

Figure 4.7. Stress distributions [MPa] in axial direction at the bending load case. Deformed x20.

The weight function procedure presented in Subsection 3.2.3 is able to provide the
SIF as function of the instant crack shape and of the position along the crack front in
which are calculated. To this aim, the two-dimensional stress field in the T-transition
cross-section can be further simplified to the one-dimensional stress path σ (x) in the
uncracked component according to the radial coordinate system x defined at the axle
surface in Fig. 4.2. The typical shape of these simpler stress paths for the press-fit
with interference and for the bending moment load cases are reproduced in Fig. 4.8.
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Figure 4.8. Stress distributions in axial direction at the press-fit and at the bending load cases.

The total stress field in the axle has to be considered then as the superposition of the
two different fields, the first one due to the press-fit and the second one given by the
applied bending moment load. The stresses at the interference σI , at the reference
bending moment σB and at the combination of both σB+I are shown in Fig. 4.9.
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Figure 4.9. Stress distributions at the T-transition in axial direction at the press-fit with interference,
at the bending and at the superposition of both load cases.

The axle rotates and the bending load always acts in the vertical plane. As a result,
every revolution the crack goes through all possible positions with respect to the
applied moment, and thus the resulting load type is rotary bending. In consequence,
the total stress distribution on the crack depends on its angle location with respect
to the axle rotation as shown in Fig. 4.10. Accordingly, the press-fit is considered
as a static load inducing a stress in the axle, while the vertical load produces an
alternating stress condition. It may be inferred that the maximum and minimum
stresses are obtained at θ = 0 and θ = π and are related due to the stresses symmetry.

𝜃 
 

𝜃  =  0 𝑟𝑎𝑑 𝜃  =  𝜋 𝑟𝑎𝑑 (x)(x) (x)(x)

Figure 4.10. Interference and bending stress at the axle cross-section in two different angle rotations θ.
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To calculate the deterministic FCG in the railway axle, the NASGRO equations
in Subsection 3.2.1 are used. The combination of the loading conditions is applied
repeatedly according to the iterative scheme described in Eq. (3.11), increasing the
crack depth from the semicircular initial crack aini of 2 mm at the T-transition and
keeping a semi-elliptical shape while growing up to a final crack depth afin of 50 mm.
The final length considered was shorter than the critical length determined from
fracture toughness. In addition, as a result of the spectrum in Fig. 4.3, different
number of blocks are eventually damaging, i.e. contribute to the crack growth. This
is because each block of the spectrum contributes or not to crack growth depending
on the level of load amplitude and on the pertinent crack shape. Therefore, not
damaging load levels in the stage of a short crack could become damaging in its stage
of a long crack. An illustration of the crack front growing in the axle cross-section for
different crack depths a according to the Det. calculation is presented in Fig. 4.11.

a = 50 mm

a = 40 mm

a = 30 mm

a = 20 mm

a = 5 mm
a = 2 mmcrack depth

a = 10 mm

Figure 4.11. Axle cross-section with a growing crack.

The Det. simulation performed, gives the evolution of the crack depth vs. the number
of km shown in Fig. 4.12.
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Figure 4.12. Crack depth vs. the number of km N provided by the Det. NASGRO.



156 Chapter 4. Application examples

4.3 Random variables

The input random variables considered in the probabilistic analysis for fatigue crack
growth in the railway axle are: (i) the exponent n and the parameter C of the crack
growth equation in the Paris region; (ii) the bending moment M in the railway axle;
and (iii) the threshold stress intensity factor range at R = 0, ∆Kth0. For clarity, these
random variables are referred to throughout this section as enumerated below:

(i) {n, C}
(ii) {M}
(iii) {∆Kth0}

The assumptions taken regarding their variability, the distributions type, and the
relationships of correlation or dependence are thoroughly detailed in the following. In
the application examples, all the r.v.s were assumed as having a standard deviation
equal to the 1.5 % of their mean value. The mean value and the variance of the r.v.s
considered are enclosed in Table 4.2. Notice that the mean values of the material
parameters used in the probabilistic analysis correspond to the material parameters
presented in Table 4.1. Additionally, the material parameters that are not considered
probabilistic, i.e. the deterministic ones, are those included in Table 4.1.

Table 4.2. Random variables mean and variance.

r.v. µ σ2

n 2.09 [-] 9.8300×10−4 [-]
C† 3.3197×10−10 [MPa−n mm1−n/2] 2.4796×10−23 [MPa−n mm1−n/2]2

M‡ 70.35 [MN mm] 1.11 [MN mm]2

∆Kth0 233.70 [MPa
√

mm] 12.29 [MPa
√

mm]2
† Exponents in the C parameter units make reference to n.
‡ M corresponds to the highest load amplitude in the spectrum.

The random variables n and C in (i), are assumed as a bivariate Normal–Log-normal
distribution as it turns out that they are highly correlated [89]. The Pearson’s
correlation coefficient is obtained from [89] as PCCn,ln(C) = −0.968. The bivariate
Normal–Log-normal distribution appears at first glance to be difficult to manoeuvre,
but by taking the natural log of the second variable C, the bivariate Normal dis-
tribution emerges, and this distribution is easier to handle [152]. The bivariate
Normal–Log-normal distribution assumed and its projections in three orthogonal
planes are shown in Fig. 4.13.
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Figure 4.13. Surface of the bivariate Normal–Log-normal joint density function (n, C).

The marginal PDF of the normally distributed n and the log-normally C modelled
and the histograms of the drawns sampled in the MC are presented in Fig. 4.14.
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Figure 4.14. Marginal PDFs and histograms of MC drawns of n and C r.v.s.

The random variable bending moment in a railway axle M (ii), is assumed as a
random input variable normally distributed as shown in Fig. 4.15.
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The single source of variability from M induces variability on the bending stress, and
therefore there is variability when combined with the interference stress. The bending
stress distribution normal to the crack surface shown in Fig. 4.9 was considered
as the reference bending stress amplitude for the mean value of bending moment.
Both the bending and the interference stresses needed for the SIF evaluation, were
calculated via the FEM. Accordingly, the SIFs were also stochastic, and given
the axle cyclic rotary character, they were described as two r.v.s Kmax and Kmin

that are correlated with an inverse relation, when one of them increases, the other
decreases in the same proportion. It can be seen that the Pearson’s correlation
coefficient is PCCKmax,Kmin

= −1. The two r.v.s are correlated variables, so they are
not independent. For illustrative purposes, the bivariate Normal distribution that
emerges and its projections in three orthogonal planes are shown in Fig. 4.16. In
this case, all realizations of (Kmax, Kmin) lie on the straight line that has zero area
and thus, they actually do not have a Normal joint density function. They are still,
however, said to have a bivariate Normal distribution.

Figure 4.16. Surface of the bivariate Normal–Normal joint density function (Kmax, Kmin).

The marginal PDFs of the normally distributed Kmax and Kmin modelled and the
histograms of the drawns sampled in the MC are presented in Fig. 4.17.
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Figure 4.17. Marginal PDFs and histograms of MC drawns of Kmax and Kmin r.v.s.
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The mean value and the variance of the r.v. bending moment M assumed, and of the
SIFs Kmax and Kmin, that are consequently random, are enclosed in Table 4.3.

Table 4.3. Bending moment M , Kmax and Kmin mean and variance.

r.v. µ σ2

M 70.35 [MN mm] 1.11 [MN mm]2

Kmax 308.62 [MPa
√

mm] 15.87 [MPa
√

mm]2

Kmin −222.61 [MPa
√

mm] 15.87 [MPa
√

mm]2

Regarding the random variable threshold stress intensity factor range at R = 0,
∆Kth0 (iii), there is not a clear consensus about what probability distribution is most
suitable. For instance, its distribution is considered normal in [90], log-normal in
[92] and both normal and log-normal in [55]. In consequence, following the latter
consideration, both scenarios are considered here. The ∆Kth0 is assumed as a random
input variable normally distributed and also as a random input variable log-normally
distributed. In order to differentiate when the normal or the log-normal distribution
is used, the enumerated as (iii) refers by default to the normal and with an asterisk
(iii*) refers to the log-normal case. The normal distribution (iii) and the log-normal
distribution (iii*) assumed are shown in Fig. 4.18.
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Figure 4.18. PDFs and histograms of MC drawns of ∆Kth0 r.v. assuming normal and log-normal.

The above assumptions are not the only ones possible, as the proposed FSOA method
is open to any choice of input variability, distributions type, and relationships of
correlation or dependence among r.v.s. Alternative statistical assumptions can be
adopted and their effects directly assessed.

To recapitulate, the resulting parameters for the normal and for the log-normal PDFs
are collected in Table 4.4.
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Table 4.4. Random variables probability distribution parameters: shape, location, scale, and PCC.

r.v. Prob. distr. Shape Location Scale PCC
n Normal - 2.09 (= µn) 3.1400×10−2 (= σn)

}
−0.9679

C Log-normal 1.4999×10−2 (= σ) 0.00 (= λ) 3.3193×10−10 (= eµ)
Kmax Normal - 308.62 (= µKmax) 3.98 (= σKmax)

}
−1.0

Kmin Normal - −222.61 (= µKmin
) 3.98 (= σKmin

)
∆Kth0 Normal - 233.70

(
= µ∆Kth0

)
3.51

(
= σ∆Kth0

)
-

∆Kth0 Log-normal 1.4999×10−2 (= σ) 0.00 (= λ) 233.67 (= eµ) -

Note that the Pearson’s correlation coefficient obtained from [89] is computed using
the natural logarithm ln (C), PCCn,ln(C) = −0.968, and here the PCCn,C = −0.9679
makes reference to C. Note further that in the two log-normal distributions, µ and σ

are the expected value (or mean) and standard deviation of the natural logarithm of
the variable, not the expectation and standard deviation of the variable itself.

Based on the previous r.v.s grouped in (i) {n, C}, (ii) {Kmax, Kmin}, and (iii) {∆Kth0},
there are eight distinct combinations of r.v.s, subsets, including the empty set. The
empty case would be the deterministic case as there is not any random variable.
Additionally, the special case of ∆Kth0 considered as log-normal is included (iii*).
As a result, the eight case scenarios that arise considering different combinations of
r.v.s are the following:

• (i) {n, C}
• (ii) {Kmax, Kmin}
• (iii) {∆Kth0 ∼ N }
• (iii*) {∆Kth0 ∼ LogN }
• (i) & (ii) {n, C, Kmax, Kmin}
• (i) & (iii) {n, C, ∆Kth0}
• (ii) & (iii) {Kmax, Kmin, ∆Kth0}
• (i) & (ii) & (iii) {n, C, Kmax, Kmin, ∆Kth0}

The strategy presented carefully models the physical relationships among the random
variables. Note that it considers the randomness of n and the randomness of C

jointly. It also applies to the r.v.s Kmax and Kmin. These are not arbitrary options
as they are jointly distributed in pairs, so a realistic probabilistic calculation or MC
simulation must consider or sample from their bivariate distributions.
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4.4 Putting It All Together (PIAT)

The title of this section, “Putting It All Together (PIAT)”, intends to have several
meanings. First, it is especially devoted to giving a deeper understanding of all the
ideas presented previously, illustrating the course of the reasoning for building a link
between the FSOA applied on the FCG phenomenon and the DTA of railway axles to
define inspection intervals. Second, this title refers to the eighth case scenario, that
is, the combination of (i) & (ii) & (iii) that builds the set {n, C, Kmax, Kmin, ∆Kth0}.
The putting it all together (PIAT) acronym, clearly refers to the consideration of all
the r.v.s together in the study. This case is the most comprehensive set, and therefore
it is used as the backbone when exemplifying the work-flow of the calculation, and
again, promoting a deep understanding of the r.v.s influence. Since the goal of DTA
is to inform the maintenance decision makers about the impacts of a particular
inspection interval, it is important to integrate into the overall methodology the
uncertainties involved in the fatigue process regarding the random input variables.
Third, the title could refer to putting the chapters of this thesis all together. After
all, I am a doctoral student so I do what I am intended to do. Thus, this is a suitable
title for the section that celebrates and concludes my cumulative work. Despite
these three separate meanings, they all support the same point, namely, that our
field, probabilistic fatigue, is moving towards putting it all together. We have to be
thoughtful now that we use this probabilistic approach wisely seeing the richness of
some of the scenarios that we are presenting.

This section is organized as follows. Subsection 4.4.1 presents the MC results for
the probabilistic analysis in the PIAT case. They are used as the framework for
comparison in the subsequent subsections. In Subsection 4.4.2, the accuracy of the
probabilistic NASGRO equations (Pr. Eqs.) obtained using the FSOA method for the
PIAT combination of r.v.s is checked. The history values of the first four moments
of the fatigue crack growth life N obtained using the FSOA are compared with those
obtained by the MC. The purpose of presenting this case is to elucidate the strategy
proposed and make clear that it can well predict the expected value µN , standard
deviation σN , skewness γ1N

and kurtosis β2N
, of the fatigue lifetime N based on

NASGRO model. Furthermore, Subsection 4.4.3 checks the precision of the developed
methodology not only for the PIAT case but also, for all the eight case scenarios that
arise considering the different combinations of r.v.s. For the sake of simplicity, the
comparison is done in terms of the first four moments of N for a crack depth a equal
to 50 mm. Subsection 4.4.4 illustrates the estimation of the distribution parameters
from the prescribed moments of the lifespan provided by the FSOA, in order to
fit probability distributions considering the PIAT case. In addition, the quality of
PDF constructed with the Pearson distribution in comparison with the histogram
from the MC method is discussed. Subsection 4.4.5 defines the inspection intervals
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based on the conservative lifespan estimation obtained from the Pearson distribution
of the fatigue life N fitted using the FSOA moments for the PIAT case. Finally,
Subsection 4.4.6 concludes with the computation and discussion of the probabilities
of successful inspections according to the suggested inspection intervals for the PIAT
case, by means of quantifying the probability of crack detection calculated according
to the performance of the NDT techniques frequently used in the railway industry.

4.4.1 Monte Carlo (MC) results

The example presented here deals with the fatigue crack growth in a railway axle
defined in Section 4.2. The geometry is defined in Fig. 4.1 and the initial crack
assumed was of 2 mm in the T-transition. The MC method was applied to obtain the
probability distribution of the NASGRO model, Eq. (3.1), with the set of five input
random variables {n, C, Kmax, Kmin, ∆Kth0}, that is, for the PIAT case in Section 4.3.

There are several sources of variability from all the r.v.s in the PIAT case, constituting
the set {n, C, Kmax, Kmin, ∆Kth0}. The n and C r.v.s for each of the MC simulations
were repeatedly randomly sampled from the bivariate Normal–Log-normal distribu-
tion shown in Fig. 4.13. Using the same approach, the ∆Kth0 r.v. was repeatedly
randomly sampled from the normal distribution shown in Fig. 4.18a. The remaining
deterministic material properties were those enclosed in Table 4.1.

On the other hand, there was an additional source of variability from the bending
moment M . It induced variability on the bending stress, and therefore there was
variability in the combination of the bending with the interference stress in Fig. 4.9.
As explained, the SIFs were also stochastic, and given the axle cyclic rotary character,
they were described as two random variables Kmax and Kmin that are correlated.
Then, the Kmax and Kmin r.v.s, which are explicitly involved in the NASGRO
equation, were repeatedly randomly sampled from the bivariate Normal distribution
shown in Fig. 4.16. Additionally, under realistic service conditions, the axles of
rail vehicles do not experience long periods of uniform amplitude loading, they are
instead subjected to a stress spectrum. Therefore, the sampled Kmax and Kmin r.v.s
were further modulated taking into account the loading spectrum acting on a railway
axle over its service shown in Fig. 4.3. As a result of the spectrum combined with
the randomness of the load, different number of blocks are eventually damaging, i.e.
contribute to the crack growth.

With the aim of founding the appropriate framework for comparison of the develop-
ments within this thesis regarding the FSOA, 10 000 MC simulations were performed
providing the results shown in Fig. 4.19. The plot in Fig. 4.19-bottom, shows the
different evolutions of the crack depth vs. the number of km for each realization, and
it also represents by a red line the computed mean value. The graph in Fig. 4.19-top,
shows the histogram, frequency normalized, of the random output variable fatigue
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life N for a crack depth equal to 50 mm. Notice that each MC simulation is equally
likely, referred to as a realization, as described in Subsection 1.4.1.
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Figure 4.19. Crack depth evolution vs. the number of km (bottom) and histogram, frequency
normalized, for crack depth equal to 50 mm (top).

The underlying probability distribution of N differs from a normal distribution
according to a normality test based on [153]. It tests the null hypothesis that a
sample comes from a normal distribution combining skew and kurtosis to produce
an omnibus test of normality. To give insight into the non-normally distributed
fatigue life N , a normal probability plot is shown in Fig. 4.20. The deviations from
the straight line indicate departures from normality and they evidence the typical
inverted C shape of a right-skewed distribution.
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Figure 4.20. Normal probability plot of the number of km N provided by the MC for crack depth of
50 mm and the least squares fit line of the data.
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Further analysis regarding the nature of the underlying distribution of N will be
done in the subsections below when reconstructing the probability density function
from prescribed moments.

The probability distribution of the fatigue life N can be analysed for every crack
depth a into the 2–50 mm interval. The expected value µN , standard deviation σN ,
skewness γ1N

and kurtosis β2N
are computed. The history values of these moments

of N are collected over the entire interval for subsequent comparison.

4.4.2 Full Second Order Approach (FSOA) results

The FSOA was applied to calculate the first moment, the second central moment,
the third central moment and the fourth central moment of dN i at every crack depth,
Eq. (3.12), with the set of five input random variables {n, C, Kmax, Kmin, ∆Kth0}, that
is, for the PIAT case in Section 4.3. Then, the expected value µN , the variance σ2

N ,
the skewness γ1N

, and the kurtosis β2N
of the fatigue life N were obtained from the

ith moments, providing a continuous result along the crack depth a. To gain further
insight into the FSOA, see the Appendix C for the derived mathematical formulation
of the expected value, the variance, the third central moment, and the fourth central
moment, of the discretised NASGRO equation, for the consideration of only the two
random variables Kmax and Kmin for the sake of simplicity. The results provided by
the proposed methodology were compared with the results of 10 000 MC simulations.
The MC results in Subsection 4.4.1 are considered here for checking the statistical
moments computed via the FSOA.

To check the accuracy of the method in terms expected value µN , standard deviation
σN , skewness γ1N

, and kurtosis β2N
, the history values of these moments of N ,

provided by the Monte Carlo (MC) and by the probabilistic NASGRO equations
(Pr. Eqs.) obtained using the FSOA method for the PIAT combination of r.v.s are
compared in Fig. 4.21. Note that Fig. 4.21a also includes the deterministic Det.
number of km for the mean values of the r.v.s. Note further that the standard
deviation is reported instead of the variance in Fig. 4.21b even though the variance is
more convenient when developing the probabilistic formulations, since the standard
deviation has the convenience of being expressed in units of the original variable, so
it is more meaningful to interpret. Similarly, the use of the skewness and the kurtosis
in Fig 4.21c and Fig 4.21d is more suitable for interpreting that the third and fourth
central moments respectively.
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(c) Skewness of N .
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Figure 4.21. History values of the moments of N for the PIAT combination of r.v.s, provided by the
MC and by the PrEqs.

The values of the first to fourth moments in Fig. 4.21 provided by MC and by the
corresponding probabilistic equation (Pr. Eq.) for 10–50 mm crack depths are listed
below. The results of expected value and the Det. fatigue life in in Fig. 4.21a are
listed in Table 4.5. Moreover, the results of standard deviation in Fig. 4.21b are
listed in Table 4.6. Furthermore, the values of skewness in Fig. 4.21c are listed in
Table 4.7. Lastly, the kurtosis results in Fig. 4.21d are listed in Table 4.8.
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Table 4.5. Expected value of N for PIAT case provided by MC and by the Pr. Eq. and fatigue life
according to the Det.

MC Pr. Eq. Det. Pr. Eq.-MC Det.-MC
a µN µN N Error Diff.
[mm] [km] [km] [km] [%] [%]
10 4 823 669 4 278 083 4 275 831 −11.31 % −11.36 %
20 4 830 083 4 282 748 4 280 403 −11.33 % −11.38 %
30 4 832 836 4 286 441 4 284 032 −11.31 % −11.36 %
40 4 834 329 4 288 400 4 285 964 −11.29 % −11.34 %
50 4 835 142 4 289 469 4 287 044 −11.29 % −11.34 %

Table 4.6. Standard deviation of N for PIAT case provided by the MC and by the Pr. Eq. for the
variance calculation.

MC Pr. Eq. Pr. Eq.-MC
a σN σN Error
[mm] [km] [km] [%]
10 2 490 623 2 092 753 −15.97 %
20 2 491 300 2 113 007 −15.18 %
30 2 491 499 2 121 396 −14.85 %
40 2 491 606 2 125 215 −14.71 %
50 2 491 670 2 127 529 −14.61 %

Table 4.7. Skewness of N for PIAT case provided by the MC and by the Pr. Eq.

MC Pr. Eq. Pr. Eq.-MC
a γ1N

γ1N
Error

[mm] [-] [-] [%]
10 1.9226 2.0906 8.74 %
20 1.9221 1.8194 −5.34 %
30 1.9219 1.7169 −10.67 %
40 1.9218 1.6733 −12.93 %
50 1.9218 1.6481 −14.24 %

Table 4.8. Kurtosis of N for PIAT case provided by the MC and by the Pr. Eq.

MC Pr. Eq. Pr. Eq.-MC
a β2N

β2N
Error

[mm] [-] [-] [%]
10 10.3608 10.8652 4.87 %
20 10.3569 9.2545 −10.64 %
30 10.3557 8.6227 −16.73 %
40 10.3553 8.3473 −19.39 %
50 10.3552 8.1754 −21.05 %
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The following observations in terms of central tendency are made on the basis of the
expected value curves shown in Fig. 4.21a and listed in Table 4.5. The expected value
computed from the MC is considered as the framework of reference for comparison.
The error in the Pr. Eq. is about −11.31 %, staying constant as the crack depth
increases. The maximum difference of the Pr. Eq. leads to an expected value about
547 000 km lower. The percentage difference of the Det. number of km is about the
−11.35 % and the maximum difference is less than 550 000 km, being the Det. value
lower. In both cases, the Pr. Eq. and the Det. N are lower than the MC expected
value for every crack depth. It can be explained due to the existing right-skewed
distribution of N observed previously.

The next outcomes in terms of dispersion are achieved based on the standard deviation
curves in Fig. 4.21b and listed in Table 4.6. Again, the standard deviation provided
by the MC is considered as reference. It is trivial that the deterministic calculation
does not account the variability of the response, and then it does not provide standard
deviation results. It can be observed from the MC results that the larger the crack,
the more the variability in km. The Pr. Eq. also reproduces this tendency. The
error in the Pr. Eq. ranges from −15.97 to −14.61 %, decreasing in magnitude as the
crack depth increases. The maximum difference of the Pr. Eq. calculates a standard
deviation about 397 800 km lower. The results in terms of standard deviation provided
by the Pr. Eq. are lower than the MC for every crack depth, that is, in this case, the
method underestimates the dispersion.

The following observations are made based on the skewness results in Fig. 4.21c and
in Table 4.7. Once again, the skewness computed from the MC is considered as the
framework of reference for comparison. It is observed that the skewness values are
always positive, indicating that the right tail, in a sense, is longer and or heavier
than the left one. Additionally, it can be seen that as the crack depth increases the
skewness decreases reaching a value greater than 1.6 in both calculations. The range
of results is wider in the case of the Pr. Eq. than in the case of the MC and also the
two curves intercept before reaching their stabilization in magnitude. The error in
the Pr. Eq. ranges from 8.74 to −14.24 % as the crack depth increases. The Pr. Eq.
provides a slightly lower magnitude than the MC for crack depths approximately
larger than 15 mm. The maximum difference of the Pr. Eq. calculates a skewness
about 0.27 lower.

The next outcomes are related to the kurtosis results in Fig. 4.21d and in Table 4.8.
Once more, the kurtosis provided by the MC is considered as reference. It is observed
that the larger the crack the lower kurtosis and, in both calculations, a stabilization
in magnitude is reached. The error in the Pr. Eq. ranges from 4.87 to −21.05 % as
the crack depth increases. The Pr. Eq. provides a slightly lower magnitude than the
MC for crack depths approximately larger than 15 mm. The maximum difference of
the Pr. Eq. calculates a kurtosis about 2.18 lower.
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Gathering the observations from the results together, the next outcomes are obtained:

• The expected value, the standard deviation or variance, the skewness, and the
kurtosis of the fatigue life N , provided by the MC and by the Pr. Eqs. are
really close, even considering the load spectrum acting on a train axle over its
service. The errors between the two methods are small enough to consider the
accuracy of the proposed FSOA method fully acceptable, from an engineering
perspective.

• The key advantage of the proposed FSOA is the lower computational time,
similar to that required for a deterministic calculation. Therefore, due to
the acceptable accuracy and the computational efficiency, the FSOA method
outperforms the conventional MC method. So, this method is considered to be
advantageous compared to the conventional MC method.

• The output distribution of N shown in the example is not normally distributed,
despite the fact that it considers several normal r.v.s as inputs.

• The probabilistic formulations provide a better description of the full complexity
of fatigue crack propagation processes when compared with the partial inform-
ation given by the deterministic one. The probabilistic approach presented
aims to reflect the railway axle lifetimes under service conditions.

At this point, the full second-order approach (FSOA) application for the first to
fourth moments of the NASGRO equation considering the PIAT random variables
{n, C, Kmax, Kmin, ∆Kth0} is completed. As a result, the history values of these
moments of N , i.e. the expected value µN , standard deviation σN , skewness γ1N

, and
kurtosis β2N

, of the underlying lifespan probability distribution are available.

4.4.3 Summary and comparison of the eight case scenarios

This subsection broadens the accuracy check of the FSOA method described in
Subsection 4.4.2. There, the history values of the first four moments of fatigue life
N provided by the FSOA and by the MC for the PIAT combination of r.v.s were
compared. Here, the precision of the results is further checked for all the eight case
scenarios that arise considering the different combinations of r.v.s in Section 4.3.
Each case is calculated using respective MC simulations and, once again, the results
are considered for checking the statistical moments computed via the FSOA for the
corresponding case. In addition to the accuracy check, the results provided here
further illustrate the effects of the different random variables individually and their
interactions when combined, on the output random variable, fatigue life N .
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To check the accuracy of the FSOA, the expected value µN , standard deviation σN ,
skewness γ1N

and kurtosis β2N
, provided by the MC and by the Pr. Eqs. for all the

combinations of r.v.s are compared in Fig. 4.22. This time, for the sake of simplicity,
the comparison is done in terms of the first four moments of N for a crack depth a

equal to 50 mm. Note that the errors between the Pr. Eq. and the MC are annotated
for each of the result points. In addition, the coefficient of variation cvN is also
calculated as the ratio of the σN to the µN . The cvN is shown in Fig. 4.23.
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Figure 4.22. Summary of the moments of N for a crack depth equal to 50 mm for all combinations
of r.v.s considered, using the MC and the Pr. Eqs.
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Figure 4.23. Summary of the coefficient of variation of N for a crack depth equal to 50 mm.



170 Chapter 4. Application examples

The values of the first to fourth moments in Fig. 4.22 provided by MC and by the
Pr. Eqs. for all the combinations of r.v.s considered, can be found below. The results
of expected value in Fig. 4.22a and standard deviation in Fig. 4.22b are listed in
Tables 4.9 and 4.10.

Table 4.9. Expected value of N provided by MC and by the Pr. Eq. and the Det. fatigue life.

MC Pr. Eq. Det. Pr. Eq.-MC Det.-MC
r.v.s† a µN µN N Error Diff.
[combination] [mm] [km] [km] [km] [%] [%]
(i) 50 4 329 546 4 287 392 4 287 044 −0.97 % −0.98 %
(ii) 50 4 514 673 4 287 909 4 287 044 −5.02 % −5.04 %
(iii) 50 4 566 256 4 288 257 4 287 044 −6.09 % −6.11 %
(iii*) 50 4 567 336 4 288 257 4 287 044 −6.11 % −6.14 %
(i) & (ii) 50 4 546 623 4 288 257 4 287 044 −5.68 % −5.71 %
(i) & (iii) 50 4 612 654 4 288 605 4 287 044 −7.03 % −7.06 %
(ii) & (iii) 50 4 784 383 4 289 121 4 287 044 −10.35 % −10.40 %
(i) & (ii) & (iii) 50 4 835 142 4 289 469 4 287 044 −11.29 % −11.34 %
† (i)= {n, C}, (ii)= {Kmax, Kmin}, and (iii)= {∆Kth0} or (iii*) for log-normal case.

Table 4.10. Standard deviation of N provided by MC and by the Pr. Eq. for the variance calculation.

MC Pr. Eq. Pr. Eq.-MC
r.v.s† a σN σN Error
[combination] [mm] [km] [km] [%]
(i) 50 655 124 654 066 −0.16 %
(ii) 50 1 402 147 1 325 913 −5.44 %
(iii) 50 1 570 315 1 489 379 −5.15 %
(iii*) 50 1 583 846 1 509 717 −4.68 %
(i) & (ii) 50 1 598 880 1 510 616 −5.52 %
(i) & (iii) 50 1 743 547 1 610 533 −7.63 %
(ii) & (iii) 50 2 331 541 2 005 390 −13.99 %
(i) & (ii) & (iii) 50 2 491 670 2 127 529 −14.61 %
† (i)= {n, C}, (ii)= {Kmax, Kmin}, and (iii)= {∆Kth0}.

Moreover, the values of skewness in Fig. 4.22c and kurtosis in Fig. 4.22d are listed in
Tables 4.11 and 4.12. Furthermore, the results of coefficient of variation in Fig. 4.23
are listed in Table 4.13.
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Table 4.11. Skewness of N provided by the MC and by the Pr. Eq.

MC Pr. Eq. Pr. Eq.-MC
r.v.s† a γ1N

γ1N
Error

[combination] [mm] [-] [-] [%]
(i) 50 0.47 0.46 −3.23 %
(ii) 50 1.13 1.10 −2.54 %
(iii) 50 1.15 1.34 16.28 %
(iii*) 50 1.22 1.41 15.86 %
(i) & (ii) 50 1.20 1.00 −16.23 %
(i) & (iii) 50 1.19 1.01 −15.08 %
(ii) & (iii) 50 1.89 1.62 −14.59 %
(i) & (ii) & (iii) 50 1.92 1.65 −14.24 %
† (i)= {n, C}, (ii)= {Kmax, Kmin}, and (iii)= {∆Kth0}.

Table 4.12. Kurtosis of N provided by the MC and by the Pr. Eq.

MC Pr. Eq. Pr. Eq.-MC
r.v.s† a β2N

β2N
Error

[combination] [mm] [-] [-] [%]
(i) 50 3.35 3.28 −2.17 %
(ii) 50 5.13 5.38 5.02 %
(iii) 50 5.33 6.29 17.89 %
(iii*) 50 5.66 6.85 21.08 %
(i) & (ii) 50 5.50 5.25 −4.49 %
(i) & (iii) 50 5.30 5.57 5.08 %
(ii) & (iii) 50 10.44 8.11 −22.33 %
(i) & (ii) & (iii) 50 10.36 8.18 −21.05 %
† (i)= {n, C}, (ii)= {Kmax, Kmin}, and (iii)= {∆Kth0}.

Table 4.13. Coefficient of variation of N computed using the MC and the Pr. Eq. results.

MC Pr. Eq. Pr. Eq.-MC
r.v.s† a cvN cvN Error
[combination] [mm] [%] [%] [%]
(i) 50 15.13 % 15.26 % 0.82 %
(ii) 50 31.06 % 30.92 % −0.44 %
(iii) 50 34.39 % 34.73 % 0.99 %
(iii*) 50 34.68 % 35.21 % 1.52 %
(i) & (ii) 50 35.17 % 35.23 % 0.17 %
(i) & (iii) 50 37.80 % 37.55 % −0.65 %
(ii) & (iii) 50 48.73 % 46.76 % −4.06 %
(i) & (ii) & (iii) 50 51.53 % 49.60 % −3.75 %
† (i)= {n, C}, (ii)= {Kmax, Kmin}, and (iii)= {∆Kth0}.
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The next observations in terms of expected value, standard deviation, skewness,
kurtosis and coefficient of variation for a crack depth a equal to 50 mm for all the
combinations of r.v.s considered, are obtained. Recall that the computed results
from the MC are considered as reference for comparison. The analysis describes the
general tendency of the results depending on the different r.v.s considered in each
case, the global trend and the magnitudes of the moments obtained, and finally, the
comparison of errors between the MC and the Pr. Eq. results using the FSOA.

Regarding the expected values in Fig. 4.22a listed in Table 4.9, the MC and the Pr. Eq.
method show the same behaviour. The expected value increases from the (i) to (iii*)
cases, (i) & (ii), (i) & (iii) and (ii) & (iii) provide higher values than the cases of their
basic r.v.s separately, and, the PIAT combination (i) & (ii) & (iii) provides the highest
values of all the previous separate cases and combinations. This fact indicates that
every time a combination of two or three basic random variables, (i), (ii) and (iii) or
(iii*) is considered, the central tendency is higher than when considered separately.
On the other hand, the Det. always calculates the same number of km for a given
starting condition. It is obvious that the deterministic NASGRO equation does not
deal with randomness, and therefore no matter what combination of r.v.s is involved,
the Det. value is the same. Focusing on the results, the Det. number of km is always
lower that the MC and the Pr. Eq. expected values. Coming back to the MC and
the Pr. Eq., the expected values steadily increase from the (i) to the PIAT case,
providing a moderate increment of 500 000 km in the MC results while the increment
trend in the Pr. Eq. results it is not so pronounced. The magnitudes obtained in
terms of km are coherent for the railway axle under study. Lastly, the expected value
in the Pr. Eq. gives lower values than in the MC results in all the cases. The error
in the Pr. Eq. ranges from −0.9 to −11 % what is considered very good in terms of
accuracy.

Concerning the standard deviations in Fig. 4.22b listed in Table 4.10, the MC and
the Pr. Eq. method show the same general tendency. The standard deviations always
increase from (i) to (iii*) and also when combined from (i) & (ii) to (i) & (ii) & (iii)
being the PIAT case the one with the highest standard deviation. This indicates that
the (i), (ii) and (iii) or (iii*) turn out to be sorted according to increasing variability
of lifespan, and also, that every time a combination of two or three basic random
variables is taken into account, the dispersion obtained is higher than when the
r.v.s are considered individually. Moreover, the standard deviation steeply increases
both in the MC and in the Pr. Eq. from the (i) to the PIAT case, providing a high
increment of 1 800 000 km in the MC results and an also high increment approximately
of 1 400 000 km in the Pr. Eq. results. The magnitudes of the dispersion obtained
are considered quite significant. Ultimately, the standard deviation provided by the
Pr. Eq. is lower than the one provided by the MC. The error in the probabilistic
equation ranges from −0.1 to −14 % what is considered good in terms of accuracy.
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Regarding the skewness values in Fig. 4.22c listed in Table 4.11, both the MC and
the FSOA increase form (i) to (iii*). In the MC, the combinations (i) & (ii), (i) & (iii)
and (ii) & (iii), provide higher values than the corresponding cases individually. On
the other hand, the FSOA for the (i) & (ii) case gives lower skewness than the
individual case (ii) as a result of its interaction with (i). The same effect occurs in
the combination of (i) with (iii). Then, the combination (ii) & (iii) gives higher values
than (ii) and (iii) separately as well as in the MC. In both the MC and the FSOA, the
values of the PIAT case, (i) & (ii) & (iii), are the highest of all the previous individual
and combinations of r.v.s. Besides, the skewness values slightly alternate both in the
MC and in the Pr. Eq. results, all the same, the general trend is to increase from
the (i) to the (i) & (ii) & (iii) providing a high increment of 1.4 in the MC results and
an also high increment of 1.2 in the Pr. Eq. values. The magnitudes of the measure
of the asymmetry obtained are thought to be moderate. Eventually, the skewness
provided by the Pr. Eq. mostly estimates a lower value than the MC but occasionally
gives a higher value, (iii) and (iii*) cases. The error in the probabilistic equation
ranges from −16 to 16 % what is considered acceptable in terms of accuracy. Note
that due to the low magnitude of the skewness the errors vary sharply.

Concerning the kurtosis values in Fig. 4.22d listed in Table 4.12, both the MC and
the FSOA increase form (i) to (iii*). In the MC, the combination (i) & (ii) provides
a bit higher kurtosis than (i) and (ii) separately, the (i) & (iii) a bit lower than (i)
and (iii) separately, and again, the (ii) & (iii) results are higher than (ii) and (iii)
separately, and last of all, the (i) & (ii) & (iii) case provides higher kurtosis than all
cases except for the (ii) & (iii), as a result of its interaction with (i). On the other
hand, the FSOA for the combinations (i) & (ii) and (i) & (iii) give a bit lower kurtosis
than the corresponding r.v.s separately, and again, the (ii) & (iii) results are higher
than (ii) and (iii) separately, and finally, the PIAT combination, (i) & (ii) & (iii),
provides the highest kurtosis. Furthermore, the kurtosis values slightly fluctuate
both in the MC and in the Pr. Eq., but the general trend is to increase from the
(i) to the PIAT case, providing a high increment of 7.0 in the MC results and an
also high increment of 4.8 in the Pr. Eq. results. The magnitudes of the measure
of the tailedness obtained are thought to be fairly significant. At last, the kurtosis
calculated by the Pr. Eq. approach, half of the times gives lower values, (i), (i) & (ii),
(ii) & (iii), and (i) & (ii) & (iii), and half of the times gives higher values, (ii), (iii),
(iii*) and (i) & (iii) cases. The error in the probabilistic equation ranges from −22 to
21 % what is considered acceptable in terms of accuracy. Note that due to the low
magnitude of the kurtosis the errors vary steeply.

Regarding coefficients of variation in Fig. 4.23 listed in Table 4.13, as explained, they
are calculated as the ratio of the standard deviation σN to the expected value µN ,
and due to the observations regarding the expected value and standard deviation,
they always increase from (i) to the PIAT case, (i) & (ii) & (iii), resulting the highest
value in the PIAT case scenario, for both the MC and the Pr. Eq. method. In



174 Chapter 4. Application examples

addition, it markedly increases from the (i) to the PIAT case in the 15–50 % range
for both the MC and the Pr. Eq. approaches. The magnitudes obtained, showing the
extent of the variabilities in relation to the expected values, are reasonable. Lastly,
the coefficient of variation Pr. Eq. results, half of the times gives lower values, (ii),
(i) & (iii), (ii) & (iii), and (i) & (ii) & (iii), and half of the times gives higher values, (i),
(iii), (iii*), (i) & (ii) cases. The error in the probabilistic equation ranges from −4.0
to 1.5 % what is considered fully acceptable in terms of accuracy.

In short, the effect of the different r.v.s in the fatigue lifespan N and their interactions
when combined have been interpreted. The results demonstrated that:

• Definitely, there is a general agreement between the results provided by the
MC and the ones obtained through the FSOA method.

• The accuracy of the fatigue lifetime moments obtained via the FSOA presented,
and its efficiency when compared to an equivalent MC method analysis, prove
the good performance of the proposed approach.

• The selection of the most comprehensive set of r.v.s, the PIAT case, as backbone
to exemplify the work-flow of the calculation is further justified. This is because
in this case, high values of expected value, standard deviation, skewness and
kurtosis emerge, and therefore the PIAT case is suitable for checking and
proving the validity of the FCG methodology in the DTA of railway axles.

4.4.4 Probability distribution reconstruction

At this point, the FSOA part of the methodology presented in Chapter 2 is completed.
As a result, the first to fourth moments of the underlying lifespan probability distribu-
tion are available for the set of five input random variables {n, C, Kmax, Kmin, ∆Kth0},
that is, for the PIAT case in Section 4.3. Recapitulating, the moments of fatigue
life N provided by the probabilistic NASGRO equations for a crack depth a equal to
50 mm are enclosed in Table 4.14.

Table 4.14. Expected value, standard deviation, skewness and kurtosis of N provided by the Pr. Eqs.

Pr. Eq. Pr. Eq. Pr. Eq. Pr. Eq.
a µN σN γ1N

β2N

[mm] [km] [km] [-] [-]
50 4 289 469 2 127 529 1.6481 8.1754

Note that the square root of the variance, i.e. the standard deviation σN , is reported
instead of the variance σ2

N even though the variance is more convenient when
developing the probabilistic formulations. This is because the standard deviation is
more meaningful to interpret since it is expressed in units of the original variable.
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The next part of the methodology addresses the problem of fitting a probability
distribution from prescribed moments of the lifespan provided by the FSOA for the
PIAT r.v.s. In this case, it is possible to construct probability distributions with
more than two parameters given that the first four moments are available. To check
the benefits of the uncertainty propagation methodology presented in terms of life
distributions, three scenarios were considered: (i) the lifespan was assumed to be
normally distributed; (ii) the lifespan was assumed to be log-normally distributed; and
(iii) the Pearson distribution family was used to model the lifespan, thus avoiding the
need of assuming a distribution in advance. The Pearson family is compared with the
other two scenarios to verify that the proposed improvements contribute to a better
knowledge of the distribution of fatigue life. For that purpose, the three probability
functions were constructed as described below from the moments in Table 4.14.

In the normal case (i), the PDF for the lifespan N is assumed to be normally
distributed, and therefore it is derived from the well-known PDF for the standard
normal distribution ϕ (x). Specifically, the PDF is parametrized in terms of a location
parameter which is directly the expected value of the fatigue life N , and a scale
parameter which is directly the square root of the variance, i.e. the standard deviation
of the random output variable fatigue life N . As a result, the lifespan N distributed
normally is characterised by the PDF fN (N ; µN , σN ), where µN and σN are fixed
parameters. Notice that to fit the normal distribution only the first raw moment
and the second central moment are needed.

In the log-normal case (ii), the PDF for the lifespan N is assumed to be log-normally
distributed, and therefore it is derived from the standardized form for the log-normal
PDF f (x; σ) with σ as a shape parameter. Commonly, the PDF is further paramet-
rized in terms of a location parameter λ and a scale parameter eµ. The location
parameter λ was set equal to zero, hence only two parameters remain to be estimated.
The physical meaning of the location parameter is realistic since it indicates that
crack growth occurs after any given cycle and so the support of the distribution is
non-negative. The shape σ and the scale eµ parameters of the log-normal are func-
tions of the expected value and the variance of the fatigue life N . As a consequence,
the lifespan N distributed log-normally is described by the PDF fN (N ; σ, λ, eµ) where
σ, λ and eµ are fixed parameters. Note that in consequence to fit the log-normal
distribution only the first raw moment and the second central moment are needed.

In case (iii), the Pearson distribution type was automatically determined based on
the skewness and kurtosis, more specifically, the quantities β1N

= γ2
1N

and β2N
as

it is described in Section 3.3. In the PIAT example, the procedure leads to the
Pearson type VI that corresponds to the beta prime distribution. Afterwards, the
parameters of the beta prime distribution were estimated making the statistical
moments of the constructed lifespan distribution match the first four prescribed
moments predicted by the Pr. Eq. provided by the FSOA. In this case, the PDF for
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the lifespan N beta prime-distributed is derived from the standardized form for the
beta prime PDF f (x; α, β) in Eq. (4.1) with α, β as shape parameters and where Γ is
the gamma function Γ (x) = (x − 1) !. Once again, the PDF is further parametrized
by introducing two parameters representing the location and the scale. The shape
parameters α and β, the scale and the location parameter λ were calculated by using
the closed form expressions described in Section 3.3 that express the parameters as
function of the first four moments of the fatigue life N distribution. Recall that in
these expressions the expected value µN or first raw moment is denoted as µ′

1. As
a result, the lifespan N following a beta prime distribution is characterized by the
PDF fN (N ; α, β, λ, a2 − a1) given in Eq. (4.2).

f(x; α, β) = Γ(α + β)xα−1(1 + x)−α−β

Γ(α)Γ(β) (4.1)

fN (N ; α, β, λ, a2 − a1) =
f
(

N−λ
a2−a1

; α, β
)

a2 − a1
(4.2)

Note that in the fN (N ; α, β, λ, a2 − a1) PDF the α, β, λ and a2−a1 are fixed parameters.

The resulting parameters for the three probability density functions constructed for
the PIAT combinations of r.v.s, are collected in Table 4.15.

Table 4.15. Shape, location, and scale parameters computed from the first four moments of the
lifespan N for a crack depth equal to 50 mm.

Prob. Distr. Shape Location Scale
Normal - 4 289 469 (= µN ) 2 127 529 (= σN )
Log-normal 0.47 (= σ) 0 (= λ) 3 842 763 (= eµ)
Pearson type VI
(Beta prime)

4.02, 13.15 (= α, β) 748 774 (= λ) 10 713 037 (= a2 − a1)

The PDFs of the three aforementioned distributions, and the MC histogram of the
fatigue life N for a crack depth equal to 50 mm for the PIAT combinations of r.v.s
are compared in Fig. 4.24.
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Figure 4.24. Histogram of fatigue life N provided by the MC and PDF of the normal, the log-normal
and the beta prime distributions fitted from moments provided by the Pr. Eqs. for 50 mm crack depth.
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The histogram of fatigue life N provided by the MC simulations is taken for the com-
parison of the three PDFs constructed. The differences between the normal distribu-
tion and the MC histogram highlight the degree of non-normality and non-symmetry
of the underlying lifespan distribution. The log-normal distribution includes a certain
degree of asymmetry, and therefore it is a more convenient choice over the symmet-
rical normal distribution. It can be observed that the log-normal is advantageous
to the normal distribution in describing the lower and higher tails of the lifespan,
although the degree of asymmetry in the log-normal is not directly defined. On the
other hand the beta prime distribution was determined from the Pearson distribution
family according to the quantities related to shape β1 and β2. It can be observed that
the beta prime distribution agrees well with the MC histogram for all the lifespan
range, including the tails and also the peak. The superiority of the beta prime and
the log-normal distributions over the normal to represent the MC results is clear.
Furthermore, the differences between the beta prime and the log-normal distributions
are evident especially when describing the lower tail of the distribution of lives, which
is of great importance in reliability and in DTA. The behaviour of the normal and the
log-normal distributions in the lower tail region slightly underestimate the lifespan.
The better tail performance of the beta prime distribution is due to the fact that the
first four moments of the lifespan N are matched when estimating the parameters of
the Pearson distribution. That is, the PDF using the Pearson distribution family is
sensitive to variations in skewness and kurtosis. Besides, the Pearson distribution
type is selected depending on the moments that are related to the shape of the
underlying distribution, and afterwards the corresponding probability distribution
parameters are calculated. On the contrary, the construction of the normal and
log-normal distributions does not consider the skewness or kurtosis changes given
that their third and fourth moments are not matched to the calculated lifespan
N moments. In fact, the normal distribution has 0 skewness and a kurtosis equal
to 3 inherently, and the skewness and the kurtosis of the log-normal distribution
are determined indirectly once the distribution is defined in terms of the expected
value and variance of the lifespan N . Consequently, the quality of the normal and
log-normal PDFs is influenced by the similarity between them and the actual lifespan
distribution, which is not always known. In other words, the quality can only be
good if the lifespan is close to the selected distribution. It must be emphasized
that in some applications the normal or the log-normal assumption may be enough,
however, the Pearson distribution family still offers a perceptible improvement as
the goodness and quality of the PDF constructed is not compromised by an a priori
selection or assumption of a probability distribution.

Additionally, a Kolmogorov-Smirnov test [154] was used to measure quantitatively
the goodness of fit between the constructed probability distributions and the MC
results. The test statistic quantifies the distance between the cumulative distribution
functions of the constructed distribution and the cumulative MC histogram of
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reference, and therefore the lowest value indicates the best representation of the
underlying distribution. On the other hand, the null-hypothesis for the Kolmogorov-
Smirnov test is that the distributions are the same, in consequence, the lower the
p-value the greater the statistical evidence to reject the null hypothesis and to
conclude that the distributions are different. The test statistics and the p-values
obtained for the three probability distributions constructed are enclosed in Table 4.16.

Table 4.16. Kolmogorov-Smirnov test statistics and p-values for goodness of fit of the distributions.

Prob. Distr. Test statistic p-value
Normal 1.12×10−1 7.81×10−109

Log-normal 1.56×10−2 1.48×10−2

Pearson 8.68×10−3 4.40×10−1

The test statistics obtained for the normal, log-normal, and the beta prime distribu-
tions, show that the best representation of the underlying distribution is achieved
with the beta prime distribution that arises from the Pearson family, as it gives the
smaller magnitude for the test statistic. Additionally, the highest p-value is obtained
for the beta prime distribution what supports the statistical evidence that this is
the best fit distribution. These values confirm the advantage of the beta prime
distribution over the log-normal and the normal distributions to represent the MC
results in the case of the PIAT r.v.s combinations.

The following outcomes are drawn from the analysis of the probability distributions
obtained by applying the uncertainty propagation methodology:

• The expected value, the variance, the skewness and kurtosis provided by the
Pr. Eqs. enable the construction of PDFs with more than two parameters as it
is the case of the versatile Pearson distribution family.

• The automatic selection of the Pearson distribution type that is based on the
moments of the underlying distribution is a more general procedure than the
selection of an arbitrary probability distribution to fit.

• The parameters of the particular Pearson distribution type are directly com-
puted from the moments, using the called method of moments. It makes
calculating the parameters of the Pearson distribution type quite simple and
fast. At the same time it does not use minimization or maximization algorithms
as in the case of optimization procedures used in other existing methods for
estimating probability distribution parameters.

• The overall similarity between the Pearson type VI, i.e. the beta prime distri-
bution, and the MC histogram confirms that the Pearson distribution family
accurately captures and provides a good description of the underlying lifespan
distribution under stochastic conditions.
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As mentioned above, the beta prime distribution of the fatigue life N fitted using
the FSOA, can be represented by the SF, by the CDF and by the PDF as shown in
Fig. 4.25 for the PIAT combinations of r.v.s and for a crack depth equal to 50 mm. The
normal and the log-normal distributions are also plotted for comparative purposes.
These three functions consider the input variabilities involved in the fatigue problem.
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(a) Survival function (SF).
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(b) Cumulative distribution function (CDF).
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(c) Probability density function (PDF).

Figure 4.25. SF, CDF and PDF of the normal, the log-normal and the beta prime distributions
fitted from moments provided by the Pr. Eqs. for 50 mm crack depth for the PIAT r.v.s.

The reliability-based inspection interval definition in Subsection 3.4.3 takes advantage
of the probabilistic information contained in Fig. 4.25. The application of the complete
procedure is detailed in the following.
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4.4.5 Definition of inspection intervals

This subsection defines the inspection intervals based on a conservative estimation of
the lifespan obtained from the probability distribution of the fatigue life N for the
PIAT case. The probability distribution is fitted as illustrated in Subsection 4.4.4,
using the Pearson distribution family together with the FSOA moments. Therefore,
the use of probabilistic fracture mechanics and thus probabilistic fatigue life estimation
to define inspection intervals for railway axles is introduced in the framework of a
damage tolerance concept. At the same time, it enables the analysis of more detailed
scenarios that can only be explored with a complete probabilistic approach. In
addition, for comparative purposes, the deterministic lifespan calculation is also used
as basis for the interval inspection definition. As a result, it is possible to evaluate
the inspection intervals obtained according to the traditional, deterministic, and
proposed, probabilistic, fatigue life calculation procedures.

First of all, in order to apply the reliability-based inspection interval definition
described in Subsection 3.4.3, it is necessary to briefly review the principles and
requirements for the safety, serviceability and durability of structures concerning
the probability of failure and reliability. The Eurocode EN 1990:2002 standard [155]
describes the basis for the design and verification of structures and gives guidelines
for related aspects of structural reliability. It provides recommendation for the
probability of failure, Pf , and its corresponding reliability index, β, for structural
design. It should be emphasized that these values are only notional, and therefore do
not necessarily represent the actual failure rates but, they can be used as operational
values and for comparison of reliability levels of structures. According to the standard,
the equation that relates the probability of failure and the reliability index is as in
Eq. (4.3), where Φ represents the cumulative distribution function for the standard
normal distribution.

Pf = Φ (−β) (4.3)

As for the failure probability of a railway axle, EN 1990:2002 standard [155] defines a
reliability index, β, of 3.8 for a construction during the entire life. By using Eq. (4.3),
the probability of failure, Pf, EN 1990, is 7×10−5.

The reliability function in this context is theoretically defined as the probability of
not failing, i.e. the probability that the crack does not grow up to a final crack depth
afin of 50 mm. Alternatively it can be defined as the probability of survival beyond
any specified time, number of cycles or kilometres travelled. To this end, in [25],
the reliability is expressed by using an exponential survival distribution, where the
probability of failure is the same in every time interval, no matter the age of the axle.
The exponential survival distribution is shown in Eq. (4.4), where λ is the failure
rate in failures/year.

R (t) = e−λt (4.4)
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Then, for 30 years of operation that would roughly correspond to a mileage of 107 km
in a railway axle, the failure rate, λ EN 1990, is 2.33×10−6 failures/year. Hence, on a
fleet of a million axles, this would correspond to approximately two axle failures per
year. This figure is very close to the present situation in Europe [3]. In order to
improve this figure, the failure probability might be reduced one order of magnitude
by setting λ = 2.33×10−7 failures/year, what, doing the calculations in reverse, results
in a probability of failure, Pf , equal to 7×10−6.

In addition to the previous values of Pf , the CEN/TR 17469:2020 technical re-
port [156], states: ‘In reliable approaches, the aim is to have a just necessary design
associated to a probability of failure. For safety critical components, the probability
of failure during the lifetime generally vary from 10−5 to 10−8. In the example given
in [157] on an automotive engine part, the probability is 10−6. For railway safety
applications, if one considers that the number of accidents due to mechanical failures
is rather small, a probability of failure between 10−6 and 10−7 sounds reasonable.’
Note that the preceding paragraph is taken from the article [158]. Additionally, the
observations of the technical committee CEN/TC 256/SC 2/WG 11, also included
in the CEN/TR 17469:2020 technical report [156], add: ‘The probability of failure
value quoted (10−6 to 10−7) is a failure rate per axle during its whole life. It is
approximately in line with the 10−9 failure rate per operational hour defined in
the common safety method for risk evaluation and assessment in the EU regulation
No 402/2013 [159], for technical systems for which a functional failure with immediate
disastrous consequences is assumed.’ The EU regulation No 402/2013 [159] declares:
‘For technical systems where a functional failure has a credible direct potential for a
catastrophic consequence, the associated risk does not have to be reduced further if
the rate of that failure is less than or equal to 10−9 per operating hour.’ All the same,
all these statements and considerations are consistent with the reliability values
previously presented taken from the notions in EN 1990:2002 standard [155].

The recommendations given above shall consider the probability of having a defect on
the axle and the probability that a crack will nucleate from that defect and further
grow during the service life. In practice, disregarding that in a real axle the existence
of a defect and its nucleation to a crack of a sufficient size that is very unlikely,
the hypothesis made here is that according to the probabilistic fracture mechanics
analysis, there is a potential that the actual fatigue life of a proportion of railway
axles could be shorter than deterministically expected, therefore the DTA should
consider a conservative minimum mileage related to a desired reliability.

Taking all these guidance and hypotheses, the probability of failure was chosen to
be 7×10−5 in the present case study, which is consistent with the EN 1990:2002
standard [155] for non-redundant primary components whose failure consequences
are extremely severe. In addition, an improved probability of failure was also selected
to be 7×10−6 as in [25]. Moreover, for the sake of comparison, a third probability



182 Chapter 4. Application examples

of failure is assumed to be 5×10−2 which is three and four orders of magnitude
larger respectively. Therefore, three levels of probability of failure are considered,
5×10−2, 7×10−5 and 7×10−6. Accordingly, the complementary reliability levels are
95 %, 99.993 % and 99.9993 % respectively.

The SF, CDF and PDF of the fatiuge life probability distribution determined in
Subsection 4.4.4, consider the input variabilities involved in the fatigue problem. In
other words, they stand for the probabilistic fatigue life propagation of interest. This
information is exploited during the reliability-based inspection interval definition
included next. The SF of the beta prime distribution fitted based on the FSOA
moments, shown in Fig. 4.25a, was evaluated for a 95 %, 99.993 % and 99.9993 % reliab-
ility percent, following the procedure described in Subsection 3.4.3. The conservative
estimations of the fatigue life based on the Pearson probability distribution for 95 %,
99.993 % and 99.9993 % reliabilities are shown in Fig. 4.26.
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Figure 4.26. Estimation of a conservative number of km for 95 %, 99.993 % and 99.9993 % reliability.

The selected proportion of axles surviving led to a minimum mileage travelled of
1.806×106 km, 9.06×105 km and 8.35×105 km each, that is, according to the probabilistic
FCG simulation, 95 %, 99.993 % and 99.9993 % of axles respectively survive beyond
these conservative mileages. The calculations in Fig. 4.26 are conservative when
compared to the Det. estimation since there is the additional prescription of a
reliability percent during the SF evaluation. Note that apart from a reliability
percent, the shape of the distribution significantly influences the conservative life
estimates. Therefore, the ability of the methodology in describing the lower tail
of the lifespan is a key aspect. Note further that because of the conservatism
introduced in the adoption of the 95 %, 99.993 % and 99.9993 % reliability, the FCG
lifetimes obtained from a probabilistic basis were shorter than the one obtained by
simply using the Det. calculation. This is somehow comparable to the use of safety
factors but, rather than being arbitrarily chosen, this procedure uses the available
knowledge of the lifespan response as a result of the randomness of the input sources,
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and therefore its application has a probabilistic foundation. In this example, the
three conservative lifespans calculated in this manner are obtained according to the
randomness of the combination of all the input r.v.s in the PIAT case, that is, the
set {n, C, Kmax, Kmin, ∆Kth0}, due to their randomness is considered in the lifespan
N moments estimation and in the subsequent probability distribution fit.

The assumptions adopted to calculate the lifetime Ndef , (step 4) in Subsection 3.4.1,
from amin to amax and the number of times that the crack can be detected before
a failure could occur, considered for the inspection interval definition (step 5) are
given in Table 4.17.

Table 4.17. Assumptions on the inspection period definition.

amin amax ntimes

[mm] [mm] [-]
2 50 3

The impact of the reliability values on the calculated conservative lifespan according
to the beta prime distribution fitted from FSOA moments, was assessed by using
the Det. number of km and the 95 %, 99.993 % and 99.9993 % lifetimes as basis for the
interval inspection definition.

Based on the Det. number of km, the suggested inspection interval (step 5) is
calculated according to the algorithm for establishing railway axle maintenance
inspection intervals described in Subsection 3.4.3 using Fig. 3.8, providing the
inspection periodicity Tins, shown in Table 4.18.

Table 4.18. Det. number of km N and corresponding inspection period definition.

N Tins

[km] [km]
Det. 4 287 044 1 429 015

Based on the conservative number of km in Fig. 4.26 obtained from the beta prime
distribution fitted using the FSOA moments, the suggested inspection interval (step 5)
according to the idea depicted in Fig. 3.8, led to the three Tins shown in Table 4.19.

Table 4.19. Conservative number of km N from the beta prime distribution fitted using the FSOA
moments and inspection period definition for the 95 %, 99.993 % and 99.9993 % reliability levels.

Reliability Conservative N Tins

[%] [km] [km]
95 % 1 806 819 602 273
99.993 % 906 666 302 222
99.9993 % 835 800 278 600
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At this point of the methodology, several inspection periodicities are available for the
planning of periodic non-destructive tests during service in order to ensure structural
integrity throughout the useful life of the railway axles. Given these proposals
for inspection intervals, the application of different NDT techniques, i.e. different
POD curves, is further investigated in the next subsection, in order to evaluate the
probabilities of observing cracks and defects in railway axles.

The observations of the results lead to the following general outcomes:

• The stochastic approach provides viable means for evaluating the effect of r.v.s
upon the definition of interval inspections within the damage tolerance concept.

• A probabilistic lifespan prediction can be integrated in the design and inspection
planning of railway axles.

• The methodology devised can handle conservative FCG estimations that are
related to the input variabilities involved in the FCG phenomenon.

4.4.6 Probabilities of successful inspections

This subsection closes with the calculation and discussion of the probabilities of
successful inspections in accordance with the suggested inspection intervals obtained
in Subsection 4.4.5 for the PIAT case scenario. For this purpose, the probability of
crack detection is quantified considering the performance of the NDT techniques.
Notice that, not only the deterministic lifespan calculation, but also the conservative
lifespan estimations are used as basis for the interval inspection definition and the
subsequent calculation of probabilities associated with the selected NDT techniques.
Inspection intervals must be defined so that the CPOD or POD of potential cracks,
ensure the safety of the axle under service conditions. Therefore, the NDT techniques
affect directly to the selection of the best interval periodicity.

As introduced, the suggested inspection intervals are assessed by means of quantifying
the probability of crack detection. Given the length of the inspection intervals, the
CPOD in successive inspections considering the forward and backward detection
schemes in Fig. 3.12a and the POD considering the last chance detection scheme
in Fig. 3.12b, are calculated according to the performance of the NDT methods.
The NDT techniques that are frequently used in the railway industry are: the
ultrasonic testing (UT) in the far-end and near-end scan application conditions, and
the magnetic particle testing (MT) also referred to as magnetic particle inspection
(MPI). The POD curves of these methods are presented in Fig. 3.10.

The damage tolerance inspection plan must be designed as a function of the crack
evolution expected during the service lifetime and of the inspection technique em-
ployed to detect such defect. The four inspection periodicities, Tins, suggested in
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Subsection 4.4.5 are assessed. In order to check which Tins is more suitable, the
actual crack growth evolution in a given freight axle is considered to be equal, for
example, to the computed Det. results. In other words, the assumed history values,
a [mm] vs. N [km] to be analysed as the pertinent crack growth, correspond with the
the Det. case shown in Fig. 4.26. Consequently, the four Tins, one of them obtained
based on the Det. number of km, and the other three obtained based on the 95 %,
99.993 % and 99.9993 % reliability levels, are evaluated in the same FCG life situation,
obtaining the corresponding values of probabilities of successful inspections. The
four different Tins are 1 429 000 km, 602 000 km, 302 000 km, and 278 000 km as shown in
Tables 4.18 and 4.19.

To begin with, the results of probability of detection are discussed from a visual per-
spective in order to illustrate the general trends and make comparisons. Afterwards,
an in-depth analysis of the specific values of probabilities of detection and failure
is provided. The analyses consider all the different alternatives to understand the
effects of: (i) the various Tins studied, (ii) the three crack detection schemes, and
(iii) the three characteristic NDT techniques. For the ease of understanding, the
appearance of all figures uses the same stiles and color pattern which is as follows:
(i) the sizes of the markers vary from small to large according to the length of Tins;
(ii) the colors of the lines and the colors of the fillings and edges of the markers
match the colors of the different alternatives for the detection schemes shown in
Fig. 3.12, i.e. all black for the cumulative forward detection scheme, all grey for the
cumulative backward detection scheme, and a marker filled in grey with black edge
for the last chance detection scheme, in which the use of lines is not necessary; and
(iii) the shapes of the markers agree with the ones used in the NDT performance
in Fig. 3.10, that is, a square for UT far-end scan, a circle for UT near-end, and a
triangle for MPI.

The history values of CPOD in successive inspections using the forward and backward
detection schemes and the values of POD considering the last chance detection scheme,
are shown for the UT near-end scan in Fig. 4.27.
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Figure 4.27. History of CP ODi/P OD vs. mileage [km] for near-end scan.
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It can be observed an increase in instantaneous CPOD value due to the repetition
inspections. Note that, the individual POD increases with increasing crack length,
and thus the CPOD in successive inspections becomes also higher. Note further that
the final CPOD value corresponds to the overall accumulated CPOD, and thus it is
the maximum one. From the previous curves, it is also evident that the shorter the
Tins is, the earlier a high CPOD is reached, what was obviously expected. The POD
last chance values show the shorter the inspection interval the longest the distance
travelled at the last inspection based on the backward configuration and thus the
larger the crack, and therefore the higher its probability of detection.

There are clear differences in the history evolution of CPOD and also in the PODs
when comparing the 1 429 000 km and the 602 000 km inspection intervals, providing
higher values in the 602 000 km schedule. These differences are even more pro-
nounced when comparing the two aforementioned Tins with the shorter 302 000 km
and 278 000 km periodicities, which outperform in detectability. The CPOD histories
in successive inspections corresponding to 302 000 km and 278 000 km Tins are almost
superimposed, for all the situations considered. The same happens in their PODs.

The FCG curve assumed as reference, and the PODs according to the last chance
detection scheme obtained for the three NDT techniques and using the four Tins

proposed are shown in Fig. 4.28. Note that the PODs appear in annotations whose
markers are located in the corresponding (mileage [km], a [mm]) coordinates.
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(b) Near-end scan.
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Figure 4.28. Fatigue crack growth a [mm] vs. mileage [km] and P OD last chance.

Given the four inspection intervals, the last chance detection scheme provides the
POD of a crack that corresponds only to the last useful inspection before failure
according to the backward detection scheme. In consequence, the POD last chance
values show that the shorter the inspection interval the longest the distance travelled
at the last inspection before failure and thus the larger the crack, and therefore the
larger its probability of detection with whatever NDT method used. As general
outcome, the UT far-end scan provides poor POD according to the last chance
detection scheme, the UT near-end scan configuration gives POD values that range
in the 70–79 % range increasing as the Tins reduces, and the POD when using



4.4. Putting It All Together (PIAT) 187

MPI is approximately 97 % not showing a significant variation with the different
Tins considered. It is important to note that the drawback of a shorter inspection
periodicity is that it involves a more expensive maintenance schedule. The above
representation is intended to increase understanding of the POD values as they
establish a simple relationship between the inspection intervals and the POD. It also
gives further insight regarding the importance of the NDT method used, as they
provide really different probabilities at the same mileage points. Once again, it can
be seen here that the POD in the last chance configuration that correspond to the
302 000 km and 278 000 km are almost equivalent.

The history values of CPOD in successive inspections for the four inspection peri-
odicities are shown in Fig. 4.29, for the three NDT methods combined with the
backward detection scheme.
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(a) Tins = 1 429 000 [km].
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(b) Tins = 602 000 [km].
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(c) Tins = 302 000 [km].
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(d) Tins = 278 000 [km].

Figure 4.29. CP ODi vs. mileage [km] for the three NDT and backward scheme.

It can be seen an increase in the successive CPOD values due to the repetition
inspections and accumulation of POD. The first inspection falls into early stages of
the crack growth, and therefore the crack is still short and thus the POD no matter
what NDT, is in its lower range. Then, the successive inspections take into account
increasing crack lengths, and so the individual PODs increase and thus the CPOD
becomes also higher. For the specific lengths of Tins, the application of different NDT
techniques with different POD curves leads to significantly different values for the
total CPOD. In this representation, the different pace until reaching a high CPOD for
each Tins, depends on the NDT method used. This is due to the fact that the mileage
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is the same for a given a Tins but the POD to accumulate changes. Furthermore,
it can be observed that the shorter the inspection interval, the fastest the pace for
reaching a high CPOD. This is because the shorter the inspection periodicity the
more number of inspections, and therefore the earlier a high CPOD arises. For the
periodicities of 302 000 km and 278 000 km, the highest values for CPOD are obtained.

The history values of CPOD or the value of POD, for the four inspection periodicities
is shown in Fig. 4.30, considering the three detection schemes combined with the
near-end scan NDT method. Note that the y-axis label stands for CPOD for the
forward and backward detection schemes, and stands for POD in the last chance.
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(a) Tins = 1 429 000 [km].
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(b) Tins = 602 000 [km].
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(c) Tins = 302 000 [km].
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(d) Tins = 278 000 [km].

Figure 4.30. CP ODi/P OD vs. mileage [km] for the three schemes and Near-end.

The impact of the detection scheme considered for the calculation of the CPOD or
the POD is signified here. First, it is explicit the offset between the different mileages
that come from the different consideration of the starting and final inspection controls
as explained in Section 3.5. In the forward detection, it starts from the initial crack,
while, in the backward detection, it goes back from the final failure. On the other
hand, the last chance scheme considers only the last inspection based on the backward
configuration.

For a Tins short enough, the curves from the forward and the backward detection
scheme intersect. It is important to highlight that they intersect in a different
inspection number. For instance, for a Tins of 302 000 km, approximately at the
fourth inspection in the forward detection scheme and at the third inspection for the
backward. It means that in this case both schemes provides approximately the same
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CPOD but with different number of inspections, what would involve a different cost.
Focusing on the CPOD values, for both the forward and backward schemes, from
the fourth inspection onwards, the tendency of the CPOD values seems to be flat
but in fact the cumulative probability always increases. This behaviour is significant
and makes a difference when evaluating these values in detail, as it is done in the
later comprehensive analysis based on the specific probability values.

Additional calculations of CPODs and PODs are performed to construct trend
curves. The Tins used for the trends calculation sweep the lifespan space in the
100 000–2 500 000 km range with 25 different levels. The range limits are approximately
60 % below and above of the lowest and the highest of the four Tins proposed. The
trends of the overall CPOD for the backward detection scheme and POD for the last
chance, for the different inspection periodicities are plotted in Fig. 4.31, for each of
the three NDT methods. Note that the lines that join the different markers are only
intended to be a guide to the eye, as their individual data are calculated separately
from point to point depending on each particular Tins.
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Figure 4.31. CP OD/P OD trend varying the Tins. The lines are a guide to the eye.

It can be observed that the final CPOD value for each Tins, that corresponds to
the overall accumulated CPOD and thus it is the maximum for each Tins, always
decreases as the length of the inspections increase, whatever NDT method used.

To conclude, an in-depth analysis of the specific probability values is provided here.
Given the length of the inspection intervals suggested, the CPOD in successive
inspections considering the forward and backward detection schemes and the POD
considering the last chance detection scheme are evaluated. The comparison of all
the probability of detection results for the UT far-end scan technique, are shown
in Table 4.20, for the UT near-end scan technique in Table 4.21, and for the MPI
technique in Table 4.22. Note that, as mentioned, in the case of forward and backward
detection schemes, the results are cumulative so CPOD values are used. On the
other hand, in the case of the last chance detection scheme, the probability result is
computed in a single inspection and, thus, the results are expressed in terms of POD.
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Table 4.20. CPOD and POD probabilities in the case of UT far-end scan technique.

Far-end scan
Tins No. of ins. CPOD CPOD POD
[km] [-] Forward Backward Last chance
1 429 000 3 0.950 095 921 7 0.050 799 868 1 0.026 462 930 4

602 000 7 0.428 784 473 0 0.160 298 702 3 0.066 043 630 3
302 000 14 0.586 526 771 6 0.346 257 964 4 0.116 161 407 3
278 000 15 0.489 225 612 9 0.375 073 290 7 0.125 574 192 1

Table 4.21. CPOD and POD probabilities in the case of UT near-end scan technique.

Near-end scan
Tins No. of ins. CPOD CPOD POD
[km] [-] Forward Backward Last chance
1 429 000 3 0.998 110 076 4 0.972 719 048 4 0.707 172 570 5

602 000 7 0.999 934 199 2 0.999 808 081 5 0.740 534 011 0
302 000 14 0.999 999 991 5 0.999 999 970 4 0.778 712 395 1
278 000 15 0.999 999 995 4 0.999 999 991 8 0.785 394 962 0

Table 4.22. CPOD and POD probabilities in the case of MPI magnetic particle inspection.

MPI
Tins No. of ins. CPOD CPOD POD
[km] [-] Forward Backward Last chance
1 429 000 3 0.999 967 520 8 0.999 933 661 5 0.961 131 885 6

602 000 7 0.999 999 999 9 0.999 999 999 9 0.966 780 739 6
302 000 14 1 1 0.971 725 640 2
278 000 15 1 1 0.972 438 831 5

Furthermore, the Pf can be considered as the probability of non-detection of a crack
throughout the axle lifetime. Therefore, the Pf can be calculated as Pf = 1 − CPOD

in the forward or backward schemes, or Pf = 1 − POD in the last chance. This
hypothesis is valid since the existence of a crack is considered as premise, and thus
the Pf equals the probability of not-detecting the crack that would certainly grow
during service life. This Pf should then be multiplied by the probability of having a
surface defect on the axle, e.g. a corrosion pit or an impact, and by the probability of
nucleation from the initial defect to a small fatigue crack during service life. When
these probabilities are considered, the actual probability of failure of railway axles
commonly moves towards the 10−9–10−10 range. Considering these probabilities is
out of the scope of this thesis. Then, the comparison of all the Pf computed as
described for the UT far-end scan technique, are shown in Table 4.23, for the UT
near-end scan technique in Table 4.24, and for the MPI technique in Table 4.25.
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Table 4.23. Probability of failure, Pf , in the case of UT far-end scan technique.

Far-end scan
Tins No. of ins. Pf Pf Pf

[km] [-] Forward Backward Last chance
1 429 000 3 4.9904×10−2 9.4920×10−1 9.7354×10−1

602 000 7 5.7122×10−1 8.3970×10−1 9.3396×10−1

302 000 14 4.1347×10−1 6.5374×10−1 8.8384×10−1

278 000 15 5.1077×10−1 6.2493×10−1 8.7443×10−1

Table 4.24. Probability of failure, Pf , in the case of UT near-end scan technique.

Near-end scan
Tins No. of ins. Pf Pf Pf

[km] [-] Forward Backward Last chance
1 429 000 3 1.8899×10−3 2.7281×10−2 2.9283×10−1

602 000 7 6.5801×10−5 1.9192×10−4 2.5947×10−1

302 000 14 8.5292×10−9 2.9589×10−8 2.2129×10−1

278 000 15 4.6405×10−9 8.2208×10−9 2.1461×10−1

Table 4.25. Probability of failure, Pf , in the case of MPI magnetic particle inspection.

MPI
Tins No. of ins. Pf Pf Pf

[km] [-] Forward Backward Last chance
1 429 000 3 3.2479×10−5 6.6339×10−5 3.8868×10−2

602 000 7 7.6251×10−11 1.4492×10−10 3.3219×10−2

302 000 14 0 0 2.8274×10−2

278 000 15 0 0 2.7561×10−2

Notice that the maintenance plan of railway axles prescribes additional off-service
inspection during main wheelset overhauling, typically every ≈ 1×106 km for freight
application. This inspection of axles is performed by using MPI. Performing such an
inspection is not considered in the previous calculations, what would further increase
the CPOD values and it would decrease the Pf values.

Since the four suggested Tins were evaluated considering the same FCG life situation,
i.e. assuming that the actual scenario would follow an identical a [mm] vs. N [km]
evolution, and since the four Tins are of different km in length, the number of possible
inspections that would be performed within the studied span would be different
for each one. Three inspections were possible for the span of the Tins defined from
the Det. calculation. Seven, fourteen and fifteen inspections were possible for the
span of the Tins defined from the conservative FCG estimations for the 95 %, 99.993 %
and 99.9993 % reliability levels. It can be observed in Tables 4.20 to 4.22, that the
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CPOD and the POD always increase when reducing the Tins except for the case that
combines the far-end scan and the forward scheme. This is due to the fact that the
forward scheme is highly dependent on when the last inspection falls within the a

vs. N curve. This can be inferred since the growth rate of long cracks is usually
high due to its exponential nature, in consequence the crack size and its associated
POD change extremely depending on the given number of km set for calculation.
Therefore, in some circumstances, the CPOD calculated using the forward scheme
may not be trustworthy. This is more evident when considering the far-end scan,
which provides relatively low PODs for small cracks, and therefore the overall CPOD
is highly influenced on the POD of larger cracks as it is the case of the last inspection.

The previous issue does not emerge when using the backward scheme due to the
fact that the effect of the last inspection in the CPOD is not so pronounced because
the computation scheme goes back from the final failure. Additionally, it can be
seen that the backward provides more conservative results when compared with
the forward, as it always provides smaller probabilities under the same conditions.
Furthermore, it must be highlighted that the last chance scheme gives even more
conservative results. This is clearly because the last chance scheme only considers
the POD of the last inspection according to the backward scheme, and therefore it
does not accumulate the previous PODs of smaller cracks. For these reasons, the
results combining far-end NDT and forward scheme will not be considered for further
analysis from now on. It should be noted that the same conclusions are reached from
the Pf analysis since it is the complementary of the CPOD or POD values.

First, analysing the results obtained for each of the Tins, the differences between
CPOD values and POD for the three NDT techniques are remarkable. Notice that if
only one inspection were performed, both the backward and the last chance values
would be coincident. Focussing on the CPOD, high differences are obtained between
UT far-end scan and the other two NDT methods due to the better performance of
the UT near-end and the even better MPI. This fact is more significant when a longer
Tins is considered because of the lower number of inspections possible. Regarding
the POD, the significant differences between the three NDT techniques are directly
related to the NDT performance as a result of the last chance calculation procedure.

Secondly, comparing the results between the four Tins, it can be observed that UT
near-end scan and MPI reach higher CPOD or POD values even with lower number
of inspections than the UT far-end scan. This fact exposes the worse performance
of the far-end condition even when many inspections are done. As mentioned, the
CPOD in the backward scheme, and the POD in the last chance scheme, always
increase when reducing the Tins. The reason is clear when analysing the POD last
chance values, as they show that the shorter the inspection interval, the longest the
distance travelled at the last inspection based on the backward configuration, and
therefore the larger the crack and thus the larger its probability of detection with
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whatever NDT method used. The same reasoning can be extended to the backward
scheme, where, the intermediate successive inspections also accumulate probability
of detection and, the shorter the Tins the more number of inspections are performed.

Now, it is time to analyse which is the best and just necessary Tins with a permissible
level of Pf . A crucial question is what permissible Pf is really justifiable in practice.
For safety critical components, the Pf during the lifetime generally ranges from 10−5

to 10−8. Recall that the Pf considered in EN 1990:2002 standard [155] is 7×10−5.
Note further that the technical report CEN/TR 17469:2020 [156] states that a Pf

between 10−6 and 10−7 seems reasonable in railway applications, since the number of
mechanical failures is rather small. Given these notions, the permissible level for Pf

is selected as the threshold of Pf ≤ 7×10−6, reducing the probability of Pf, EN 1990 by
one order of magnitude. This can be considered as part of the actions for improving
the reliability of axles. As a result, the analysis is performed in terms of Pf as
it is meaningful to interpret and also has a sound basis from the standards. The
objective in the design of the maintenance inspection plan is to achieve a Pf lower
than the previous specific threshold by selecting an appropriate Tins. Two additional
postulates have to be considered here. The first one is to consider the backward
scheme since it is more trustworthy than the forward scheme and also it is more
realistic than the last chance due to the fact that several inspections are performed,
so the backward Pf is the most representative. The second is to consider as NDT
technique the UT near-end scan as its conditions take place frequently, has a better
performance than the UT far-end and, additionally, the MPI is reserved for the
overhauling inspections. It should also be added that the MPI is more expensive
as it is necessary to disassemble the axle or, in the case of a mounted axle, it does
not allow inspecting the axle transitions. In summary, the three assumptions are:
(i) Pf ≤ 7×10−6, (ii) backward detection scheme, and (iii) UT near-end scan NDT.

Finally, given these premises, a detailed analysis of the Pf in Table 4.24, that encloses
the results for the UT near-end scan, is provided. Focusing on the backward scheme,
it can be observed that the Pf for an Tins of 1 429 000 km is 2.7281×10−2 what is
not compliant with the acceptable Pf selected as the threshold Pf ≤ 7×10−6. It can
also be observed that the Pf for an inspection interval of 602 000 km is 1.9192×10−4,
again not complying with the threshold defined. Lastly, the two Tins that comply
with the Pf ≤ 7×10−6 when using the backward scheme are 302 000 km and 278 000 km,
providing Pf = 2.9589×10−8 and Pf = 8.2208×10−9 respectively. Moreover, it should
be highlighted here that the latter two Tins, which meet all assumptions established,
are really close in terms of distance, and consequently in terms of Pf , providing values
close enough to consider the differences between them negligible. Since the purpose
of DTA is to inform the maintenance managers about the impacts of a particular
inspection interval, from the results analysed, it is advisable to perform NDT using
the UT in the near-end application condition every ≈ 300 000 km.
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The present analysis of the PIAT case scenario, though based on assumptions that are
fairly important such as severe service conditions, shows how a probabilistic damage
tolerance approach can be assumed as a complement to the classic fatigue design
for railway axles. From the results analysed, the most important outcome is that it
is possible to safely assume inspection intervals every ≈ 300 000 km using the UT in
the near-end application condition. It is demonstrated that the selected inspection
interval was adequate to ensure a high CPOD prior to the potential failure.

The observations of the results lead to the following general outcomes:

• For a specific length of inspection interval, the application of different NDT
techniques with different POD curves leads to significantly different values for
the overall probability of detecting cracks and defects in railway axles.

• According to the assumptions of: (i) Pf ≤ 7×10−6, (ii) backward detection
scheme, and (iii) UT near-end scan NDT, it is recommended to perform NDT
using the UT in the near-end application condition every ≈ 300 000 km.

• The analysis shows that the probability of successful detection is high, having
few inspections with high CPOD provided by the near-end scan NDT technique.

• If the probability of having a defect, and the probability of nucleation from the
initial defect to a small crack were considered, the inspection intervals would
be longer than those considered here since the actual probabilities of failure
would be smaller by several orders of magnitude. The calculated probabilities
of failure shall not be taken for their absolute values, but the approach enables
comparison between different scenarios.

• The CPOD values would further increase, and, accordingly, the Pf values would
decrease, provided that the previous calculations considered the prescribed
additional off-service MPI inspection during the main wheelset overhauling,
commonly every ≈ 1×106 km.

• A damage tolerance assessment based on a probabilistic fatigue crack growth
life estimation, can optimize the definition of inspection intervals of railway
axles that could reduce the total life cycle cost of wheelsets.

• The procedure presented establishes a reliability-based inspection planning, and
thus enables the optimization of maintenance expenses selecting an appropriate
inspection periodicity.
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Conclusions and Outlook

5.1 Conclusions

This thesis is intended to take the readers on a journey that starts with the evolution
of railway axles safety assessment, probabilistic aspects of damage tolerance and the
principles of probabilistic analysis methods for fatigue crack growth in metal compon-
ents and ends with a thorough illustration of the probabilistic methodology devised
to be applied to the damage tolerance assessment of railway axles, progressively
developed over the past few years and brings this thesis to an end.

This thesis has presented new probabilistic analyses for the maintenance planning for
railway axles within the damage tolerance concept. The most relevant conclusions are:

• It presents a procedure devised for the determination of inspection intervals
within the damage tolerance analysis of railway axles that is based on a
probabilistic description of fatigue lifespan. It considers the input uncertainties
through a conservative fatigue crack growth life estimation based on the lifespan
probability distribution, benefiting from the knowledge available at the lower tail
of the distribution. The most important advantage of this approach is that it is
based on a probabilistic fatigue crack growth life that is more conservative than
the deterministic one. The benefit consists in a simple relationship between the
adopted reliability in the probabilistic lifespan and the conservative prediction
of the residual fatigue lifetime for practical use. Moreover, this methodology
allows focusing on establishing an optimum inspection interval combining
probabilistic approaches into the damage tolerance assessment phase. However,
it must also balance a number of safety, economic and vehicle availability issues.

195



196 Chapter 5. Conclusions and Outlook

• This work presents a novel uncertainty propagation methodology, also known
as stochastic moment approximation, for efficiently estimating the probability
distribution of the fatigue crack growth lifetime. It implements the Pearson
distribution family and takes advantage of the statistical moments of the lifetime
predicted via innovative approaches based on NASGRO model. The main
advantages that are worth mentioning include: (i) the ability to automatically
determine the pertinent distribution shape using a simple and uniform criterion
for choosing the corresponding Pearson distribution type and thus avoiding
the need to assume a probability distribution in advance; (ii) the versatility
for constructing probability distributions with more than two parameters if
required, given that in the current methodology the skewness and the kurtosis
are calculated in addition to the expected value and variance; (iii) the significant
improvement in the accuracy of the probability density function constructed in
fatigue crack growth life analysis, especially in the lower tail of the distribution
of life which is of notable interest in reliability assessment. It demonstrates that
in practical engineering it is relevant to determine the third and fourth central
moments for a precise description of the probabilistic fatigue crack growth life.

• This research offers a full second-order probabilistic formulation to predict the
statistical moments, expected value, variance, skewness, and kurtosis, of the
fatigue crack growth lifetime based on NASGRO model, using information
about the input random variables distribution. These four moments are used to
estimate the parameters of the Pearson distribution to represent the underlying
lifespan distribution. The probability distribution constructed from the first
four prescribed is helpful to describe the crack growth phenomenon and infer its
probability distribution, under stochastic conditions such as a real service load
spectrum acting on a component combined with a random bending moment
loading and also considering the scatter of material properties.

• The accuracy of the fatigue lifetime moments obtained via the full second-order
approach presented, and its efficiency when compared to an equivalent Monte
Carlo method analysis, prove the good performance of the proposed approach.
Its performance, or balance of accuracy and efficiency, is the most important
advantage of this method. The present uncertainty propagation methodology
is found to be advantageous compared with the Monte Carlo method analysis.
It is remarkable that the provided method can be used for predicting stochastic
effects on fatigue life history in applications that require a low computation
time, for example, in reliability studies implemented in design stages.

• The damage tolerance assessment of components such as railway axles can
benefit from the results provided to define interval inspections with a certain
level of safety, optimizing maintenance costs. The present approach offers
potential application in practice, and it could have a remarkable effect on
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the definition of inspection intervals. This analysis proposal can be used as a
complementary support to current standards and practices and also to get a
more accurate assessment in complex geometrical sections of the railway axle
that are of special interest to the designer.

• It is worth emphasizing that the probabilistic approach proposed is significantly
relevant in the definition of inspection intervals of components, as in the railway
axle investigated, where the low resolution of commonly used non-destructive
testing techniques provides a short crack detection range from detectable cracks
to failure, and thus narrows the analysis of fatigue cycles to a short fraction of
the entire fatigue life.

• The advances in this thesis contribute to the competitiveness of the railway
sector and its environmental sustainability through the integration of prob-
abilistic simulation techniques and damage tolerance analysis concepts, that
allow predicting the functional behaviour and the service life of railway axles
to improve the final performance of the products and to extend their service
life by making efficient use of materials and energy. The methods provided are
expected to have an impact on the optimization of maintenance intervals, thus
promoting efficient use of rail transport to carry people and freight. In this
sense, its implementation would also decrease the environmental impact of the
mankind due to air pollution caused by transport, as it helps rail transport to
become a more environmentally friendly alternative.

• All in all, this thesis results in a probabilistic analysis method for fatigue
crack growth in metal components which has a positive and comprehensive
effect in engineering applications such as in the probabilistic life prediction.
The lifespan probability distribution provided has the potential to be used in
probabilistic damage tolerance design and integrity assessment of components
and structures. Therefore, the novel operational framework for uncertainty
analysis in this thesis is expected to be a promising asset in a broad range of
engineering problems dealing with random variables.
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5.2 Conclusiones

Esta tesis pretende llevar a los lectores en un viaje que comienza con los primeros
desarrollos en la evaluación de la seguridad de ejes ferroviarios y su evolución,
aspectos probabilistas de tolerancia al daño y los principios de los métodos de análisis
probabilista para el crecimiento de grieta por fatiga en componentes metálicos, y
termina con una ilustración exhaustiva de la metodología probabilista concebida para
ser aplicada en la evaluación de tolerancia al daño de ejes ferroviarios, desarrollada
progresivamente en los últimos años y que pone fin a esta tesis.

En esta tesis se han presentado nuevos tratamientos probabilistas para la planificación
del mantenimiento de ejes ferroviarios dentro del concepto de tolerancia al daño. Las
conclusiones más relevantes son las siguientes:

• Esta tesis presenta un procedimiento desarrollado para la determinación de
intervalos de inspección dentro del análisis de tolerancia al daño de ejes fe-
rroviarios que se basa en una descripción probabilista de la vida a fatiga. El
procedimiento considera las incertidumbres de entrada a través de una esti-
mación conservadora de la vida en crecimiento de grieta por fatiga basada en
la distribución de probabilidad de la vida, beneficiándose del conocimiento
disponible en la cola inferior de la distribución. La ventaja más importante de
este enfoque es que se basa en una vida en crecimiento de grieta por fatiga
probabilista que es más conservadora que la determinista. La ventaja consiste
en una relación sencilla entre la fiabilidad adoptada en la vida probabilista y
la predicción conservadora de la vida residual a fatiga para su uso práctico.
Además, esta metodología permite centrarse en establecer un intervalo de
inspección óptimo combinando enfoques probabilistas en la fase de análisis
de tolerancia al daño. Sin embargo, hay que tener en cuenta que también
debe equilibrar una serie de cuestiones en cuanto a seguridad, economía y de
disponibilidad de vehículos.

• Este trabajo presenta una novedosa metodología de propagación de incerti-
dumbre, también conocida como aproximación estocástica de momentos, para
estimar eficazmente la distribución de probabilidad de la vida en crecimiento
de grieta por fatiga. La metodología implementa la familia de distribuciones de
Pearson y aprovecha los momentos estadísticos de la vida estimados mediante
enfoques innovadores basados en el modelo NASGRO. Las principales ventajas
que cabe mencionar son: (i) la capacidad para determinar automáticamente la
forma de la distribución pertinente utilizando un criterio simple y uniforme
para elegir el tipo de distribución de Pearson correspondiente y evitando así la
necesidad de asumir de antemano una distribución de probabilidad; (ii) gran
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versatilidad para construir distribuciones de probabilidad con más de dos pa-
rámetros si es necesario, dado que en la metodología actual se calculan la
asimetría y la curtosis además del valor esperado y la varianza; (iii) una mejora
significativa de la precisión de la función de densidad de probabilidad construida
en el análisis de la vida en crecimiento de grieta por fatiga, especialmente en la
cola inferior de la distribución de vida que es de notable interés en la evaluación
de la fiabilidad. La metodología demuestra que en la práctica ingenieril es
relevante determinar el tercer y cuarto momento central para obtener una
descripción precisa de la vida probabilista en crecimiento de grieta por fatiga.

• Esta investigación ofrece una formulación probabilista de segundo orden comple-
to para predecir los momentos estadísticos, valor esperado, varianza, asimetría,
y curtosis, de la vida en crecimiento de grieta por fatiga basada en el modelo
NASGRO, utilizando información sobre la distribución de las variables aleato-
rias de entrada. Estos cuatro momentos se usan para estimar los parámetros
de la distribución de Pearson que representa la distribución de vida subyacente.
La distribución de probabilidad construida a partir de los cuatro primeros
momentos prescritos es útil para describir el fenómeno de crecimiento de grieta
e inferir su distribución de probabilidad, bajo condiciones estocásticas como un
espectro de carga de servicio real actuando sobre un componente combinado
con una carga de momento de flexión aleatoria y considerando también la
dispersión de las propiedades del material.

• La precisión de los momentos de la vida a fatiga obtenidos mediante el enfoque
de segundo orden completo presentado, y su eficiencia cuando se comparan
con un análisis equivalente mediante el método de Monte Carlo, demuestran
el buen rendimiento del enfoque propuesto. Su rendimiento, o equilibrio entre
precisión y eficiencia, es la ventaja más importante de este método. La presente
metodología de propagación de incertidumbre resulta ventajosa en comparación
con el método Monte Carlo. Cabe señalar que el método proporcionado puede
ser utilizado para predecir efectos estocásticos en la historia de la vida a fatiga
en aplicaciones que requieren un bajo tiempo computacional, por ejemplo, en
estudios de fiabilidad implementados en etapas de diseño.

• El análisis de tolerancia al daño de componentes como ejes ferroviarios puede
beneficiarse de los resultados proporcionados para definir intervalos de inspec-
ción con un cierto nivel de seguridad, optimizando los costes de mantenimiento.
El presente enfoque ofrece una potencial aplicación práctica, y podría tener un
efecto notable en la definición de intervalos de inspección. El análisis propuesto
puede servir de complemento a las normas y prácticas actuales y también para
obtener una evaluación más precisa en secciones geométricas complejas del eje
ferroviario que son de especial interés para el diseñador.
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• Cabe destacar que el enfoque probabilista propuesto es significativamente
relevante en la definición de intervalos de inspección de componentes, como el
eje ferroviario investigado, en el que la baja resolución de las técnicas de ensayo
no destructivas comúnmente usadas proporciona un corto rango de detección de
grieta desde grietas detectables hasta el fallo, y por lo tanto reduce el análisis
de los ciclos de fatiga a una fracción corta de toda la vida a fatiga.

• Los avances en esta tesis contribuyen a la competitividad del sector ferroviario
y a su sostenibilidad medioambiental mediante la integración de técnicas de
simulación probabilista y conceptos de análisis de tolerancia al daño, que
permiten predecir el comportamiento funcional y la vida de ejes ferroviarios
para mejorar el comportamiento final de los productos y alargar su vida útil
haciendo un uso eficiente de los materiales y la energía. Se espera que los
métodos aportados tengan repercusión en la optimización de los intervalos de
mantenimiento, promoviendo así un uso eficiente del transporte ferroviario
para desplazar personas y mercancías. En este sentido, su implementación
también disminuiría el impacto medioambiental de la humanidad debido a la
contaminación atmosférica causada por el transporte, ya que ayuda a que el
transporte ferroviario se convierta en una alternativa más respetuosa con el
medio ambiente.

• En definitiva, esta tesis constituye un método de análisis probabilista para
el crecimiento de grieta por fatiga en componentes metálicos que tiene un
efecto positivo y global en aplicaciones de ingeniería como es la predicción
probabilista de la vida a fatiga. La distribución de probabilidad de vida a
fatiga proporcionada tiene el potencial de ser utilizada en el diseño probabilista
de tolerancia al daño y en la evaluación de la integridad de componentes y
estructuras. Por lo tanto, se espera que el novedoso marco operativo para el
análisis de incertidumbres en esta tesis sea un recurso prometedor para una
amplia gama de problemas de ingeniería que tratan con variables aleatorias.
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5.3 Original contributions

This section includes the main novelties in the state of the art introduced by this
thesis. The original contributions are the following:

• Proposal and development of a novel computational methodology for the
probabilistic analysis of fatigue crack growth life in metal components.

• Derivation of the full second-order approach for the first to fourth moments of
functions of random variables using matrix and summation notation.

• Original expressions of the probabilistic NASGRO equations for the calculation
of the expected value, first raw moment; the variance, second central moment;
the skewness, third central standardized moment; and the kurtosis, fourth
central standardized moment, of the fatigue life, based on the Taylor series
approximation.

• Efficient and accurate estimation of the statistical moments of the variable of
interest, fatigue life.

• Incorporation of the Pearson distribution family in the reconstruction of the
underlying fatigue lifespan probability distribution.

• Combination of probabilistic fatigue life estimation results with reliability
principles and damage tolerance concepts.

• Establishment of a reliability-based inspection planning that enables the op-
timization of maintenance costs selecting an appropriate inspection periodicity.

• Objectively assessment and quantification of the reliability of a railway axle,
according to damage tolerance criteria through the use of probabilities of crack
detection.

• A tool for its integration in design stages, which represents a leap forward in
the use of probabilistic approaches in the decision-making process of selecting
inspection intervals of maintenance that affect the life cycle of a product. That
is, the methodology developed helps to reduce the maintenance works and costs,
which reduces the environmental footprint of the rail system, and therefore
contributes to the protection of the environment to reach climate neutrality.
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5.4 Aportaciones originales

Esta sección recoge las principales novedades en el estado del arte introducidas por
esta tesis. Las aportaciones originales son las siguientes:

• Propuesta y desarrollo de una metodología computacional novedosa para
el análisis probabilista de la vida en el crecimiento de grieta por fatiga en
componentes metálicos.

• Derivación de la aproximación de segundo orden completo para los momen-
tos primero a cuarto de funciones de variables aleatorias utilizando notación
matricial y sumatoria.

• Expresiones originales de las ecuaciones probabilistas de NASGRO para el
cálculo del valor esperado, primer momento; la varianza, segundo momento
central; la asimetría, tercer momento central estandarizado; y la curtosis,
cuarto momento central estandarizado, de la vida a fatiga, basadas en una
aproximación en serie de Taylor.

• Estimación eficiente y precisa de los momentos estadísticos de la variable de
interés, la vida a fatiga.

• Incorporación de la familia de distribuciones de Pearson en la reconstrucción
de la distribución de probabilidad subyacente de la vida a fatiga.

• Combinación de los resultados de la estimación probabilista de la vida a fatiga
con principios de fiabilidad y conceptos de tolerancia al daño.

• Establecimiento de una planificación de inspecciones basada en la fiabilidad que
permite optimizar los costes de mantenimiento seleccionando una periodicidad
de inspección adecuada.

• Evaluación y cuantificación objetiva de la fiabilidad de un eje ferroviario, de
acuerdo con criterios de tolerancia al daño mediante el uso de probabilidades
de detección de grieta.

• Una herramienta para su integración en las fases de diseño, que supone todo
un salto en el uso de enfoques probabilistas en el proceso de toma de decisiones
de selección de intervalos de inspección de mantenimiento que inciden en el
ciclo de vida de un producto. Es decir, la metodología desarrollada ayuda a
reducir los trabajos y costes asociados a su mantenimiento, lo que reduce la
huella ambiental del sistema ferroviario y, por tanto, contribuye a la protección
del medio ambiente con el fin alcanzar la neutralidad climática.
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5.5 Future work

The work presented opens interesting new possibilities for future research in prob-
abilistic fatigue. In the following, a number of selected issues and proposals that
promise potential for further increasing the safety level of axles are discussed. Some
possible future works are:

• Consideration of more input variables of interest as random due to the inherent
randomness of the variables involved in the fatigue process. The approach
presented provides a stochastic model of fatigue crack growth, with respect to
whatever random variables that are selected. Therefore, the applicability of the
full second-order approach goes beyond the illustrated example that considers
the variability in the loading conditions and in some material properties,
that is, {n, C, Kmax, Kmin, ∆Kth0}. As an example, the scatter of the fatigue
crack growth curve can be additionally represented by means of considering the
remaining material parameters involved in the NASGRO equation, i.e. {Kc, p, q}
as random variables. It is important to remark that the method proposed
takes into account the relationships among the random variables in terms
of probability in addition to the statistical moments of the random variables
individually. Notice that disregarding the inherent correlations between random
variables could lead to incorrect results. The strategy to include the variability
and correlations between the aforementioned parameters into the method
architecture is straightforward. This suggested work would allow the results
presented to be extended, contributing to a better knowledge of the distribution
of fatigue life.

• Further investigations should focus on more accurately characterizing the
statistical variability of the NASGRO model material parameters for typical
EA4T and EA1N steels for railway axles. In this respect, it would be useful
to dedicate further effort to obtain a comprehensible characterization of the
variability of the parameters from specimen to specimen, via their statistical
moments as the empirical mean value, the empirical variance, as well as
correlation coefficients for the model parameters, especially the latter as they
are indispensable for proper probabilistic fatigue crack growth assessment. This
input variability investigation should also be broadened to cover the randomness
of relevant geometrical input variables such as initial crack geometry and size,
component dimensional tolerances and expected crack location and orientation.

• Extension of the experimental campaigns on full-scale railway axles to ob-
tain the fatigue crack growth rate versus the stress intensity range, that is,
the da/dN–∆K curve. The fatigue crack growth curve can be obtained by
using traditional measurement methods such as crack opening displacement
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extensometers or using novel alternatives such as the use of experimental
full-field non-contact measurement techniques like the digital image correlation
in combination with numerical post-processing methods.

• The cumulative probability of detection in successive inspections, the probability
of detection and the probability of failure calculated are very sensitive to the
input random variables used in the probabilistic approximation, particularly the
input of loading conditions. Thus, it is necessary to have a complete database,
representative of all situations that may be encountered in service. The way
the data are extrapolated to relevant mileage needs to be improved to make it
more statistically relevant. In addition, the assumptions taken to simplify the
measurements and translate them to an equivalent spectrum of bending loads
can have an important impact on the final result. Future research is required
including additional measurements in order to cover a wider range of vehicles,
especially freight wagons for which very little data are available, and routes, in
order to take into account all circumstances that may occur.

• The damage tolerance methodology considers as premise the existence of a
crack due to the most commonly reasons for fatigue crack initiation which are
corrosion pits, damage due to flying ballast impacts, non-metallic inclusions in
the material, damages during maintenance, etc. However, for the calculation
of the probabilities of failure, it does not take into account the probability of
having a defect or the probability of fatigue crack nucleation from the initial
defect to a small crack. More sophisticated approaches could be to consider
these sources of uncertainty in order to calculate more realistic probabilities of
failure that would be smaller by several orders of magnitude, and therefore the
inspection intervals would be longer than those considered in this work.

• Regarding non-destructive testing reliability, the probability of detection using
different methods has been evaluated. Besides the probabilistic fracture mechan-
ics based residual lifetime estimation, the probability of detection performance
of the non-destructive testing technique is the second essential parameter for
establishing inspection intervals. Therefore, any improvement of the probability
of detection vs. crack size curve is of great importance for reliable damage
tolerance design.

• In the present approach, the probability of failure is calculated by considering
that the state of the component remains the same during its life. It means that
it is assumed that thanks to the maintenance, the strength of the axle remains
the same during its whole life and that the calculation can be performed the
way described. Further investigations regarding time-variant and time-invariant
component assumptions, limit state functions, intersection probabilities, condi-
tional probability events linked to fatigue failure, crack detection and reliability
updating by actual observations events are suggested.
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• Combination of the methodology developed with a digital twin, fed by exper-
imental measurements obtained by sensors, such as those used in structural
health monitoring, for updating the prediction on-line so that predictive main-
tenance can be performed during operation based on the condition of the
component.

• Integration of extensive probabilistic analyses when dealing with random vari-
ables in fatigue design and damage tolerance assessment of railway axles. For
that, continued efforts are needed to make reliability-based procedures and
probabilistic analyses more integrated into the maintenance planning of damage
tolerant railway axles. Moreover, further efforts are needed to gradually im-
prove and adapt the current methods for the design and assessment of railway
axles that are mainly based on conventional analytical calculations, towards
the new design concept and assessment process that relies on larger statistical
input data, specific probabilistic formulations embedded in innovative software
and enhanced engineering capabilities. Probabilistic fatigue life estimations,
rather than being used only for establishing inspection intervals, should also be
adopted as a complementary approach to traditional fatigue strength design.
It would give wheelset designers the chance to gain experience for further
improvement. These differences in approach should be identified when choosing
the methodology for design, as they have an impact on the costs throughout
the life cycle of the component, from design to final operation.
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5.6 Trabajo futuro

El trabajo presentado abre nuevas e interesantes posibilidades para futuras investiga-
ciones en fatiga probabilista. A continuación, se abordan una serie de cuestiones y
propuestas de trabajo futuro que prometen tener potencial para seguir aumentando
el nivel de seguridad de los ejes. Algunos posibles trabajos futuros son:

• Consideración de más variables de entrada de interés como aleatorias debido a
la aleatoriedad inherente de las variables que intervienen en el proceso de fatiga.
El enfoque presentado proporciona un modelo estocástico de crecimiento de
grieta por fatiga, con respecto a cualquier parámetro que se seleccione. Por lo
tanto, la aplicabilidad del enfoque de segundo orden completo va más allá del
ejemplo ilustrado que considera la variabilidad en las condiciones de carga y
en algunas propiedades del material, es decir, {n, C, Kmax, Kmin, ∆Kth0}. Como
ejemplo, la dispersión de la curva de crecimiento de grieta por fatiga puede
representarse adicionalmente mediante la consideración del resto de parámetros
del material que intervienen en la ecuación NASGRO, es decir, {Kc, p, q} como
variables aleatorias. Es importante señalar que el método propuesto tiene en
cuenta las relaciones entre parámetros aleatorios en términos de probabilidad,
además de los momentos estadísticos de los parámetros individualmente. Cabe
señalar que no tener en cuenta las inherentes correlaciones entre parámetros
aleatorios podría conducir a resultados incorrectos. La estrategia para incluir la
variabilidad y correlaciones entre los parámetros mencionados en la arquitectura
del método es directa. Este trabajo propuesto permitiría ampliar los resultados
presentados, contribuyendo a un mejor conocimiento de la distribución de la
vida a la fatiga.

• Investigaciones posteriores deberían centrarse en caracterizar con mayor pre-
cisión la variabilidad estadística de los parámetros del material del modelo
NASGRO para los aceros EA4T y EA1N típicos en ejes ferroviarios. En este
sentido, sería útil dedicar más esfuerzos a obtener una caracterización exhausti-
va de la variabilidad estadística de los parámetros de una muestra a otra, a
través de sus momentos estadísticos como el valor medio empírico, la varianza
empírica, así como los coeficientes de correlación para los parámetros del mode-
lo, especialmente estos últimos, ya que son indispensables para una evaluación
probabilista rigurosa del crecimiento de grieta por fatiga. Esta investigación de
la variabilidad de los datos de entrada también debería ampliarse para abarcar
la aleatoriedad de las variables geométricas de entrada pertinentes, como la
geometría y el tamaño inicial de la grieta, las tolerancias dimensionales de los
componentes y la ubicación y orientación probables de la grieta.
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• Ampliación de las campañas experimentales en ejes ferroviarios a escala real
para obtener la tasa de crecimiento de grieta por fatiga frente al rango de
intensidad de tensiones, es decir, la curva da/dN–∆K. La curva de crecimiento de
grieta por fatiga puede obtenerse utilizando métodos de medición tradicionales
como los extensómetros de desplazamiento de apertura de grieta o utilizando
novedosas alternativas como el uso de técnicas experimentales de medición
de campo completo y sin contacto como la correlación digital de imágenes en
combinación con métodos numéricos de postproceso.

• La probabilidad acumulada de detección en inspecciones sucesivas, la probabili-
dad de detección y la probabilidad de fallo calculadas son muy sensibles a los
parámetros aleatorios de entrada utilizados en la aproximación probabilista,
en particular las condiciones de carga. Por ello, es necesario disponer de una
base de datos completa, representativa de todas las situaciones que pueden
darse en servicio. Es necesario mejorar la forma de extrapolar los datos al
kilometraje pertinente para que sea más relevante desde el punto de vista
estadístico. Además, las hipótesis adoptadas para simplificar las mediciones
y traducirlas a un espectro equivalente de cargas de flexión pueden tener un
impacto importante en el resultado final. Es necesario realizar futuras inves-
tigaciones que incluyan mediciones adicionales para abarcar una gama más
amplia de vehículos, especialmente los vagones de mercancías de los que se
dispone de muy pocos datos, y de rutas, con el fin de tener en cuenta todas las
circunstancias que pueden darse.

• La metodología de tolerancia al daño considera como premisa la existencia
de una grieta debida a las causas más comunes de iniciación de grietas por
fatiga, que son las picaduras de corrosión, los daños debidos a impactos de
balasto volante, las inclusiones no metálicas en el material, los daños durante
el mantenimiento, etc. Sin embargo, para el cálculo de las probabilidades de
fallo, no se tiene en cuenta la probabilidad de tener un defecto o la probabi-
lidad de nucleación de la grieta por fatiga desde el defecto inicial hasta una
pequeña grieta. Enfoques más sofisticados podrían considerar estas fuentes de
incertidumbre para calcular probabilidades de fallo más realistas que serían
más reducidas en varios órdenes de magnitud y, por tanto, los intervalos de
inspección serían más largos que los considerados en este trabajo.

• En cuanto a la fiabilidad de los ensayos no destructivos, se ha evaluado la
probabilidad de detección utilizando diferentes métodos. Además de la estima-
ción probabilista de la vida a fatiga basada en la mecánica de la fractura, la
probabilidad de detección de la técnica de ensayo no destructivo es el segundo
parámetro esencial para establecer los intervalos de inspección. Por lo tanto,
cualquier mejora de la curva de probabilidad de detección vs. tamaño de la
grieta es de gran importancia para un diseño seguro en la tolerancia al daño.
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• En el presente enfoque, la probabilidad de fallo se calcula considerando que
el estado del componente es el mismo durante su vida útil. Esto significa que
se supone que, gracias al mantenimiento, la resistencia del eje sigue siendo la
misma durante toda su vida y que el cálculo puede realizarse de la forma descrita.
Se plantea realizar investigaciones adicionales en relación con suposiciones de
componentes variables e invariables en el tiempo, funciones de estado límite,
probabilidad de la intersección de sucesos, eventos de probabilidad condicional
relacionados con el fallo por fatiga, la detección de grieta y la actualización de
la fiabilidad mediante eventos de observaciones reales.

• Combinación de la metodología desarrollada con un gemelo digital, alimentado
por medidas experimentales obtenidas por sensores, como los utilizados en la
monitorización de la salud estructural, para actualizar la predicción de forma
on-line de modo que se pueda realizar un mantenimiento predictivo durante la
operación basado en la condición del componente.

• Integración de amplios análisis probabilistas al tratar con variables aleatorias en
el diseño a fatiga y la evaluación de la tolerancia al daño de los ejes ferroviarios.
Por ello, es necesario seguir trabajando para que los procedimientos basados en
fiabilidad y análisis probabilistas estén más integrados en la planificación del
mantenimiento de ejes ferroviarios tolerantes al daño. Además, hay que seguir
trabajando para mejorar y adaptar gradualmente los métodos actuales estándar
de diseño y evaluación de ejes ferroviarios, que se basan principalmente en
cálculos analíticos convencionales, hacia el nuevo concepto de diseño y proceso
de evaluación basado en datos estadísticos de entrada más completos, en
formulaciones probabilistas específicas integradas en software innovador y en
capacidades de ingeniería mejoradas. Las estimaciones probabilistas de la vida
a la fatiga, en lugar de utilizarse únicamente para establecer los intervalos
de inspección, deben adoptarse también como un enfoque complementario al
diseño tradicional para la resistencia a la fatiga. Esto daría a los diseñadores de
ejes montados la posibilidad de ganar experiencia para seguir mejorando. Estas
diferencias de enfoque deben identificarse a la hora de elegir la metodología
para diseñar, ya que tienen un impacto en el coste a lo largo del ciclo de vida
del componente, desde el diseño hasta el funcionamiento final.



A
Full second-order approach assuming
independence

This appendix presents the complete derivation of the expected value, variance, skew-
ness and kurtosis second-order approximations assuming independence between the
input random variables. The first-order approximation is also given for completeness.

A.1 Abbreviations and conventions: moments of the joint
distribution.

This section enlarges the abbreviations and conventions in Section 2.2 for the 5th to
8th higher-order moments of the joint distribution.

• The moments of the joint distribution of X = {X1, X2, . . . ,Xd} random variables are
defined similar to the nth central moments. For d random variables, the number
of non-trivial nth order mixed or often called cross central moments are:

(n + d − 1) !
n! (d − 1) ! − d (A.1)

Non-trivial means that the cross central moments that involve only one variable
are excluded.

The nth central multivariate moments of continuous random variables are denoted
with consecutive indexes, two for the 2nd central moment µjk, three indexes for
the 3rd central moment µjkl, four indexes for the 4th central moment µjklm, five
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for the 5th central moment µjklmr, six indexes for the 6th central moment µjklmrs,
seven indexes for the 7th central moment µjklmrst and eight indexes for the 8th

central moment µjklmrstu. Note that the presence of up to eight indices does not
imply that more than two random variables are involved. Each index runs from 1
to d random variables.

– 5th central moment: Hyperskewness

The fifth central moment indicates the relative importance of tails vs. center in
causing skewness, in other words, measures the asymmetric sensitivity of the
kurtosis. Any symmetric distribution will have a fifth central moment of 0.

The number of random variables d must be at least two for the concept of
hyperskewness to be non-trivial. For two continuous random variables Xj and
Xk, where j ̸= k, the four non-trivial fifth mixed central moments are:

µjjjjk = µ5 (Xj , Xj , Xj , Xj , Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)4 (
xk − µXk

)
fX (xj , xk) dxjdxk

µjjjkk = µ5 (Xj , Xj , Xj , Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)3(
xk − µXk

)2
fX (xj , xk) dxjdxk

µjjkkk = µ5 (Xj , Xj , Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)2(
xk − µXk

)3
fX (xj , xk) dxjdxk

µjkkkk = µ5 (Xj , Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)4
fX (xj , xk) dxjdxk

(A.2)

The special case in which the same variable is considered five times leads:

µjjjjj = µ5 (Xj , Xj , Xj , Xj , Xj) =
∞∫

−∞

(
xj − µXj

)5
fX (xj) dxj (A.3)

The normalized or standardized µjjjjj dividing by the standard deviation raised
to the fifth power σ5

j is known as hyperskewness, denoted as S̃.

S̃ (Xj , Xj , Xj , Xj , Xj) = µjjjjj

σ5
j

(A.4)
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– 6th central moment: Hyperflatness

The sixth central moment measures the combined weight, heaviness, of the
tails relative to the rest of the distribution but with an even heavier focus on
outliers than the fourth central moment.

The number of random variables d must be at least two for the concept of
hyperflatness to be non-trivial. For two continuous random variables Xj and
Xk, where j ̸= k, the five non-trivial sixth mixed central moments are:

µjjjjjk = µ6 (Xj , Xj , Xj , Xj , Xj , Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)5 (
xk − µXk

)
fX (xj , xk) dxjdxk

µjjjjkk = µ6 (Xj , Xj , Xj , Xj , Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)4(
xk − µXk

)2
fX (xj , xk) dxjdxk

µjjjkkk = µ6 (Xj , Xj , Xj , Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)3(
xk − µXk

)3
fX (xj , xk) dxjdxk

µjjkkkk = µ6 (Xj , Xj , Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)2(
xk − µXk

)4
fX (xj , xk) dxjdxk

µjkkkkk = µ6 (Xj , Xk, Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)5
fX (xj , xk) dxjdxk

(A.5)
The special case in which the same variable is considered six times leads:

µjjjjjj = µ6 (Xj , Xj , Xj , Xj , Xj , Xj) =
∞∫

−∞

(
xj − µXj

)6
fX (xj) dxj (A.6)

The normalized or standardized µjjjjjj dividing by the standard deviation raised
to the sixth power σ6

j is known as hyperflatness or hyperkurtosis, denoted as K̃.

K̃ (Xj , Xj , Xj , Xj , Xj , Xj) = µjjjjjj

σ6
j

(A.7)
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– 7th central moment:

The seventh moment measures similarly to the third central moment skewness
but with an even heavier focus on outliers than the fifth moment.

The number of random variables d must be at least two for the concept of 7th

central moment to be non-trivial. For two continuous random variables Xj and
Xk, where j ̸= k, the six non-trivial seventh mixed central moments are:

µjjjjjjk = µ7 (Xj , Xj , Xj , Xj , Xj , Xj , Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)6 (
xk − µXk

)
fX (xj , xk) dxjdxk

µjjjjjkk = µ7 (Xj , Xj , Xj , Xj , Xj , Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)5(
xk − µXk

)2
fX (xj , xk) dxjdxk

µjjjjkkk = µ7 (Xj , Xj , Xj , Xj , Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)4(
xk − µXk

)3
fX (xj , xk) dxjdxk

µjjjkkkk = µ7 (Xj , Xj , Xj , Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)3(
xk − µXk

)4
fX (xj , xk) dxjdxk

µjjkkkkk = µ7 (Xj , Xj , Xk, Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)2(
xk − µXk

)5
fX (xj , xk) dxjdxk

µjkkkkkk = µ7 (Xj , Xk, Xk, Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)6
fX (xj , xk) dxjdxk

(A.8)
The special case in which the same variable is considered seven times leads:

µjjjjjjj = µ7 (Xj , Xj , Xj , Xj , Xj , Xj , Xj) =
∞∫

−∞

(
xj − µXj

)7
fX (xj) dxj (A.9)

The seventh central moment µjjjjjjj can be also normalized or standardized
dividing by the standard deviation raised to the seventh power σ7

j :

µjjjjjjj

σ7
j

(A.10)
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– 8th central moment:

The eighth moment measures similarly to the fourth central moment kurtosis
but with an even heavier focus on outliers than the sixth moment.

The number of random variables d must be at least two for the concept of 8th

central moment to be non-trivial. For two continuous random variables Xj and
Xk, where j ̸= k, the seven non-trivial eighth mixed central moments are:

µjjjjjjjk = µ8 (Xj , Xj , Xj , Xj , Xj , Xj , Xj , Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)7 (
xk − µXk

)
fX (xj , xk) dxjdxk

µjjjjjjkk = µ8 (Xj , Xj , Xj , Xj , Xj , Xj , Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)6(
xk − µXk

)2
fX (xj , xk) dxjdxk

µjjjjjkkk = µ8 (Xj , Xj , Xj , Xj , Xj , Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)5(
xk − µXk

)3
fX (xj , xk) dxjdxk

µjjjjkkkk = µ8 (Xj , Xj , Xj , Xj , Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)4(
xk − µXk

)4
fX (xj , xk) dxjdxk

µjjjkkkkk = µ8 (Xj , Xj , Xj , Xk, Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)3(
xk − µXk

)5
fX (xj , xk) dxjdxk

µjjkkkkkk = µ8 (Xj , Xj , Xk, Xk, Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

)2(
xk − µXk

)6
fX (xj , xk) dxjdxk

µjkkkkkkk = µ8 (Xj , Xk, Xk, Xk, Xk, Xk, Xk, Xk) =
∞∫

−∞

∞∫
−∞

(
xj − µXj

) (
xk − µXk

)7
fX (xj , xk) dxjdxk

(A.11)
The special case in which the same variable is considered eight times leads:

µjjjjjjjj = µ8 (Xj , Xj , Xj , Xj , Xj , Xj , Xj , Xj) =
∞∫

−∞

(
xj − µXj

)8
fX (xj) dxj (A.12)

The eighth central moment µjjjjjjjj can be also normalized or standardized
dividing by the standard deviation raised to the eighth power σ8

j :

µjjjjjjjj

σ8
j

(A.13)
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A.2 Non-linear combinations: summation notation
assuming independence

A.2.1 Expected value second-order

Assuming independence between the random variables, the covariances between the
variables µjk that j ̸=k are equal to 0 and the covariances µjk that j=k lead to the
variance µj,2 = Var (Xj). As a result, the Eq. (2.62) is compacted as:

E [Y ] ≈ gµ + 1
2

d∑
j=1

g,jjµj,2 (A.14)

A.2.2 Expected value first-order

The first order expected value approximation (for general or independent variables)
obtained omitting the corresponding o2 term from the Eq. (2.62) equals:

E [Y ] = µY ≈ gµ (A.15)

A.2.3 Variance second-order

Assuming independence between the random variables, the Eq. (2.76) is compacted
further:

II:

The covariances between the variables µjk that j ̸=k are equal to 0 and the covariances
µjk that j=k lead to the variance µj,2 = Var (Xj).

d∑
j=1

d∑
k=1

g,jg,kµjk =
d∑

j=1
g2

,jµj,2 (A.16)

III:

The fourth mixed or cross central moments between the variables µjklm that j=k ̸=l=m:

1
4

d∑
j=1

d∑
l=1

g,jjg,llµj,2µl,2 (A.17a)

The fourth mixed or cross central moments between the variables µjklm that j=l ̸=k=m:

1
4

d∑
j=1

d∑
k=1

g2
,jkµj,2µk,2 (A.17b)
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The fourth cross central moments between the variables µjklm that j=m̸=k=l (equivalent
to previous case):

1
4

d∑
j=1

d∑
k=1

g2
,jkµj,2µk,2 (A.17c)

The fourth mixed or cross central moments between the variables µjklm that j=k=l=m

lead to the fourth moment µj,4.

1
4

d∑
j=1

g2
,jjµj,4 (A.17d)

Summarizing and reassigning indexes to compact further (indexes j and k are preferred
for clarity purposes, because it does not matter how they are named):

(A.17e)
1
4

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jkg,lmµjklm = 1
4

d∑
j=1

d∑
k=1
k ̸=j

g,jjg,kkµj,2µk,2

+ 1
42

d∑
j=1

d∑
k=1
k ̸=j

g2
,jkµj,2µk,2 + 1

4

d∑
j=1

g2
,jjµj,4

Changing in the symmetric terms, the first upper limit d for d−1, the second lower
limit k=1

k ̸=j for k=j+1 and multiplying by 2 to compensate the symmetry lost with the
limits change:

(A.17f)
1
4

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jkg,lmµjklm = 1
4 · 2

d−1∑
j=1

d∑
k=j+1

g,jjg,kkµj,2µk,2

+ 1
42 · 2

d−1∑
j=1

d∑
k=j+1

g2
,jkµj,2µk,2 + 1

4

d∑
j=1

g2
,jjµj,4
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V :

This term follows the same strategy as in II.

gµ

d∑
j=1

d∑
k=1

g,jkµjk = gµ

d∑
j=1

g,jjµj,2 (A.18)

V I:

The third mixed or cross central moments between the variables µjkl that j ̸=k ̸=l are
equal to 0 and the third cross central moments µjkl that j=k=l lead to the third central
moment µj,3.

d∑
j=1

d∑
k=1

d∑
l=1

g,jg,klµjkl =
d∑

j=1
g,jg,jjµj,3 (A.19)

As a result, the second order approximation for the variance assuming independence
is given by:

(A.20)

Var (Y ) = σ2
Y

≈ g2
µ︸︷︷︸
I

+
d∑

j=1
g2

,jµj,2︸ ︷︷ ︸
II

+ 1
2

d−1∑
j=1

d∑
k=j+1

g,jjg,kkµj,2µk,2 +
d−1∑
j=1

d∑
k=j+1

g2
,jkµj,2µk,2 + 1

4

d∑
j=1

g2
,jjµj,4︸ ︷︷ ︸

III

+ 0︸︷︷︸
IV

+ gµ

d∑
j=1

g,jjµj,2︸ ︷︷ ︸
V

+
d∑

j=1
g,jg,jjµj,3︸ ︷︷ ︸

V I

−µ2
Y

A.2.4 Variance first-order

The variance first-order approximation for independent random variables is derived
from Eq. (2.80) and Eq. (A.20) leading to:

Var (Y ) = σ2
Y ≈

d∑
j=1

g2
,jµj,2︸ ︷︷ ︸

II

(A.21)
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A.2.5 Third central moment skewness second-order

Assuming independence between the random variables, the Eq. (2.96) becomes:

II:

The third mixed or cross central moments between the variables µjkl that j ̸=k ̸=l are
equal to 0 and the third cross central moments µjkl that j=k=l lead to the third central
moment µj,3.

d∑
j=1

d∑
k=1

d∑
l=1

g,jg,kg,lµjkl =
d∑

j=1
g3

,jµj,3 (A.22)

III:

Note that in the following mathematical derivation, several equivalent cases are
grouped together for brevity.

The sixth mixed or cross central moments between the variables µjklmrs that
j=k ̸=l=m̸=r=s:

1
8

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,kkg,llµj,2µk,2µl,2 (A.23a)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = k ̸= l = r ̸= m = s j = k ̸= l = s ̸= r = m l = m ̸= j = r ̸= k = s

l = m ̸= j = s ̸= k = r r = s ̸= j = l ̸= k = m r = s ̸= j = m ̸= k = l

All together reassigning indexes lead to:

1
86

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg2
,klµj,2µk,2µl,2 (A.23b)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = l ̸= k = r ̸= m = s j = l ̸= k = s ̸= m = r j = m ̸= k = r ̸= l = s j = m ̸= k = s ̸= l = r

j = r ̸= k = l ̸= m = s j = r ̸= k = m ̸= l = s j = s ̸= k = l ̸= m = r j = s ̸= k = m ̸= l = r

All together reassigning indexes lead to:

1
88

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jkg,jlg,klµj,2µk,2µl,2 (A.23c)
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The sixth mixed or cross central moments between the variables µjklmrs that:

j = k = l ̸= m = r = s j = k = r ̸= l = m = s l = m = j ̸= k = r = s

l = m = r ̸= j = k = s r = s = j ̸= k = l = m r = s = l ̸= j = k = m

1
86

d∑
j=1

d∑
k=1
k ̸=j

g,jjg,jkg,kkµj,3µk,3 (A.23d)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = l = r ̸= k = m = s j = l = s ̸= k = m = r j = m = r ̸= k = l = s j = m = s ̸= k = l = r

All together reassigning indexes lead to:

1
84

d∑
j=1

d∑
k=1
k ̸=j

g3
,jkµj,3µk,3 (A.23e)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = k ̸= l = m = r = s l = m ̸= j = k = r = s r = s ̸= j = k = l = m

All together reassigning indexes lead to:

1
83

d∑
j=1

d∑
k=1
k ̸=j

g,jjg2
,kkµj,2µk,4 (A.23f)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = l ̸= k = m = r = s j = m ̸= k = l = r = s j = r ̸= k = l = m = s j = s ̸= k = l = m = r

k = l ̸= j = m = r = s k = m ̸= j = l = r = s k = r ̸= j = l = m = s k = s ̸= j = l = m = r

l = r ̸= j = k = m = s l = s ̸= j = k = m = r m = r ̸= j = k = l = s m = s ̸= j = k = l = r

All together reassigning indexes lead to:

1
812

d∑
j=1

d∑
k=1
k ̸=j

g2
,jkg,kkµj,2µk,4 (A.23g)

The sixth mixed or cross central moments between the variables µjklmrs that
j=k=l=m=r=s lead to the sixth moment µj,6.

1
8

d∑
j=1

g3
,jjµj,6 (A.23h)
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Summarizing:

(A.23i)

1
8

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

g,jkg,lmg,rsµjklmrs

= 1
8

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,kkg,llµj,2µk,2µl,2 + 1
86

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg2
,klµj,2µk,2µl,2

+ 1
88

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jkg,jlg,klµj,2µk,2µl,2 + 1
86

d∑
j=1

d∑
k=1
k ̸=j

g,jjg,jkg,kkµj,3µk,3

+ 1
84

d∑
j=1

d∑
k=1
k ̸=j

g3
,jkµj,3µk,3 + 1

83
d∑

j=1

d∑
k=1
k ̸=j

g,jjg2
,kkµj,2µk,4

+ 1
812

d∑
j=1

d∑
k=1
k ̸=j

g2
,jkg,kkµj,2µk,4 + 1

8

d∑
j=1

g3
,jjµj,6

Changing in the symmetric terms (with respect to two indexes), the first upper limit
d for d−1, the second lower limit k=1

k ̸=j for k=j+1 and multiplying by 2 to compensate
the symmetry lost. And changing in the symmetric terms (with respect to three
indexes), the first upper limit d for d−2, the second upper limit d for d−1, the second
lower limit k=1

k ̸=j for k=j+1, the third lower limit l=1
l ̸=k
l ̸=j

for l=k+1 and multiplying by 3 · 2 to
compensate the symmetry lost with the limits change:

1
8

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

g,jkg,lmg,rsµjklmrs

= 1
8 · 3 · 2

d−2∑
j=1

d−1∑
k=j+1

d∑
l=k+1

g,jjg,kkg,llµj,2µk,2µl,2 + 1
86 · 2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g,jjg2
,klµj,2µk,2µl,2

+ 1
88 · 3 · 2

d−2∑
j=1

d−1∑
k=j+1

d∑
l=k+1

g,jkg,jlg,klµj,2µk,2µl,2

+ 1
86 · 2

d−1∑
j=1

d∑
k=j+1

g,jjg,jkg,kkµj,3µk,3 + 1
84 · 2

d−1∑
j=1

d∑
k=j+1

g3
,jkµj,3µk,3

+ 1
83

d∑
j=1

d∑
k=1
k ̸=j

g,jjg2
,kkµj,2µk,4 + 1

812
d∑

j=1

d∑
k=1
k ̸=j

g2
,jkg,kkµj,2µk,4 + 1

8

d∑
j=1

g3
,jjµj,6

(A.23j)
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V :

The covariances between the variables µjk that j ̸=k are equal to 0 and the covariances
µjk that j=k lead to the variance µj,2 = Var (Xj).

3g2
µ

1
2

d∑
j=1

d∑
k=1

g,jkµjk = 3g2
µ

1
2

d∑
j=1

g,jjµj,2 (A.24)

V I:

This term follows the same strategy as in V .

3gµ

d∑
j=1

d∑
k=1

g,jg,kµjk = 3gµ

d∑
j=1

g2
,jµj,2 (A.25)

V II:

The fourth mixed or cross central moments between the variables µjklm that j=k ̸=l=m:

31
2

d∑
j=1

d∑
l=1

g2
,jg,llµj,2µl,2 (A.26a)

The fourth mixed or cross central moments between the variables µjklm that j=l ̸=k=m:

31
2

d∑
j=1

d∑
k=1

g,jg,kg,jkµj,2µk,2 (A.26b)

The fourth cross moments between the variables µjklm that j=m ̸=k=l (equivalent to
previous case):

31
2

d∑
j=1

d∑
k=1

g,jg,kg,jkµj,2µk,2 (A.26c)

The fourth mixed or cross central moments between the variables µjklm that j=k=l=m

lead to the fourth moment µj,4.

31
2

d∑
j=1

g2
,jg,jjµj,4 (A.26d)

Summarizing and reassigning indexes to compact further:

31
2

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jg,kg,lmµjklm = 31
2

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,kkµj,2µk,2

+ 31
22

d∑
j=1

d∑
k=1
k ̸=j

g,jg,kg,jkµj,2µk,2 + 31
2

d∑
j=1

g2
,jg,jjµj,4

(A.26e)
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Changing in the symmetric terms, the first upper limit d for d−1, the second lower
limit k=1

k ̸=j for k=j+1 and multiplying by 2 to compensate the symmetry lost with the
limits change:

(A.26f)

31
2

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jg,kg,lmµjklm = 31
2

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,kkµj,2µk,2

+ 31
22 · 2

d−1∑
j=1

d∑
k=j+1

g,jg,kg,jkµj,2µk,2

+ 31
2

d∑
j=1

g2
,jg,jjµj,4

V III:

The fourth mixed or cross central moments between the variables µjklm that j=k ̸=l=m:

3gµ
1
4

d∑
j=1

d∑
l=1

g,jjg,llµj,2µl,2 (A.27a)

The fourth mixed or cross central moments between the variables µjklm that j=l ̸=k=m:

3gµ
1
4

d∑
j=1

d∑
k=1

g2
,jkµj,2µk,2 (A.27b)

The fourth cross moments between the variables µjklm that j=m̸=k=l (equivalent to
previous case):

3gµ
1
4

d∑
j=1

d∑
k=1

g2
,jkµj,2µk,2 (A.27c)

The fourth mixed or cross central moments between the variables µjklm that j=k=l=m

lead to the fourth moment µj,4.

3gµ
1
4

d∑
j=1

g2
,jjµj,4 (A.27d)
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Summarizing and reassigning indexes to compact further:

3gµ
1
4

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jkg,lmµjklm = 3gµ
1
4

d∑
j=1

d∑
k=1
k ̸=j

g,jjg,kkµj,2µk,2

+ 3gµ
1
42

d∑
j=1

d∑
k=1
k ̸=j

g2
,jkµj,2µk,2 + 3gµ

1
4

d∑
j=1

g2
,jjµj,4

(A.27e)

Changing in the symmetric terms, the first upper limit d for d−1, the second lower
limit k=1

k ̸=j for k=j+1 and multiplying by 2 to compensate the symmetry lost with the
limits change:

3gµ
1
4

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jkg,lmµjklm = 3gµ
1
4 · 2

d−1∑
j=1

d∑
k=j+1

g,jjg,kkµj,2µk,2

+ 3gµ
1
42 · 2

d−1∑
j=1

d∑
k=j+1

g2
,jkµj,2µk,2 + 3gµ

1
4

d∑
j=1

g2
,jjµj,4

(A.27f)

IX:

Note that in the following mathematical derivation, several equivalent cases are
grouped together for brevity. The fifth mixed or cross central moments between the
variables µjklmr that j=k ̸=l=m=r, j=l ̸=k=m=r, j=m ̸=k=l=r and j=r ̸=k=l=m are equivalent.
All together reassigning indexes lead to:

31
44

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jkg,kkµj,2µk,3 (A.28a)

The fifth mixed or cross central moments between the variables µjklmr that j=k=l ̸=m=r

and j=m=r ̸=k=l are equivalent. All together reassigning indexes lead to:

31
42

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jjg,kkµj,3µk,2 (A.28b)
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The fifth mixed or cross central moments between the variables µjklmr that j=k=m ̸=l=r,
j=k=r ̸=l=m, j=l=m ̸=k=r and j=l=r ̸=k=m are equivalent. All together reassigning indexes
lead to:

31
44

d∑
j=1

d∑
k=1
k ̸=j

g,jg2
,jkµj,3µk,2 (A.28c)

The fifth mixed or cross central moments between the variables µjklmr that j=k=l=m=r

lead to the fifth moment µj,5.

31
4

d∑
j=1

g,jg2
,jjµj,5 (A.28d)

Summarizing:

31
4

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

g,jg,klg,mrµjklmr = 31
44

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jkg,kkµj,2µk,3

+ 31
42

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jjg,kkµj,3µk,2

+ 31
44

d∑
j=1

d∑
k=1
k ̸=j

g,jg2
,jkµj,3µk,2 + 31

4

d∑
j=1

g,jg2
,jjµj,5

(A.28e)

X:

This term follows the same strategy as in II.

6gµ
1
2

d∑
j=1

d∑
k=1

d∑
l=1

g,jg,klµjkl = 6gµ
1
2

d∑
j=1

g,jg,jjµj,3 (A.29)
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As a result, the second order approximation for the third central moment assuming
independence leads to:

µ3 (Y, Y, Y ) = µY,3

≈ g3
µ

︸︷︷︸
I

+
d∑

j=1
g3

,jµj,3

︸ ︷︷ ︸
II

+ 3
4

d−2∑
j=1

d−1∑
k=j+1

d∑
l=k+1

g,jjg,kkg,llµj,2µk,2µl,2 + 3
2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g,jjg2
,klµj,2µk,2µl,2

︸ ︷︷ ︸
III

+ 6
d−2∑
j=1

d−1∑
k=j+1

d∑
l=k+1

g,jkg,jlg,klµj,2µk,2µl,2 + 3
2

d−1∑
j=1

d∑
k=j+1

g,jjg,jkg,kkµj,3µk,3︸ ︷︷ ︸
III

+
d−1∑
j=1

d∑
k=j+1

g3
,jkµj,3µk,3 + 3

8

d∑
j=1

d∑
k=1
k ̸=j

g,jjg2
,kkµj,2µk,4 + 3

2

d∑
j=1

d∑
k=1
k ̸=j

g2
,jkg,kkµj,2µk,4

︸ ︷︷ ︸
III

+ 1
8

d∑
j=1

g3
,jjµj,6︸ ︷︷ ︸

III

+ 0

︸︷︷︸
IV

+ 3
2g2

µ

d∑
j=1

g,jjµj,2

︸ ︷︷ ︸
V

+ 3gµ

d∑
j=1

g2
,jµj,2

︸ ︷︷ ︸
V I

+ 3
2

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,kkµj,2µk,2 + 6

d−1∑
j=1

d∑
k=j+1

g,jg,kg,jkµj,2µk,2 + 3
2

d∑
j=1

g2
,jg,jjµj,4

︸ ︷︷ ︸
V II

+ 3
2gµ

d−1∑
j=1

d∑
k=j+1

g,jjg,kkµj,2µk,2 + 3gµ

d−1∑
j=1

d∑
k=j+1

g2
,jkµj,2µk,2 + 3

4gµ

d∑
j=1

g2
,jjµj,4︸ ︷︷ ︸

V III

+ 3
d∑

j=1

d∑
k=1
k ̸=j

g,jg,jkg,kkµj,2µk,3 + 3
2

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jjg,kkµj,3µk,2 + 3
d∑

j=1

d∑
k=1
k ̸=j

g,jg2
,jkµj,3µk,2

︸ ︷︷ ︸
IX

+ 3
4

d∑
j=1

g,jg2
,jjµj,5︸ ︷︷ ︸

IX

+ 3gµ

d∑
j=1

g,jg,jjµj,3︸ ︷︷ ︸
X

−3µY σ2
Y − µ3

Y

(A.30)

Note that the III and IX terms are divided into multiple lines.
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A.2.6 Third central moment skewness first-order

The third central moment skewness first-order approximation for independent random
variables is derived from Eq. (2.99) and Eq. (A.30) leading to:

µ3 (Y, Y, Y ) = µY,3 ≈
d∑

j=1
g3

,jµj,3︸ ︷︷ ︸
II

(A.31)

A.2.7 Fourth central moment kurtosis second-order

Assuming independence between the random variables, the Eq. (2.120) becomes:

II:

The fourth mixed or cross central moments between the variables µjklm that j ̸=k ̸=l ̸=m

are equal to 0 and the fourth cross central moments µjklm that j=k=l=m lead to the
fourth central moment µj,4.

d∑
j=1

d∑
k=1

d∑
l=1

d∑
m=1

g,jg,kg,lg,mµjklm =
d∑

j=1
g4

,jµj,4 (A.32)

III:

Note that in the following mathematical derivation, several equivalent cases are
grouped together for brevity. Moreover, the equivalent combinations of indexes in
this term have been omitted for conciseness.

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k ̸=l=m̸=r=s̸=t=u:

1
16

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m̸=l
m ̸=k
m ̸=j

g,jjg,kkg,llg,mmµj,2µk,2µl,2µm,2 (A.33a)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k ̸=l=m̸=r=t ̸=s=u, and considering up to twelve equivalent combinations lead to:

1
1612

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m ̸=l
m ̸=k
m ̸=j

g,jjg,kkg2
,lmµj,2µk,2µl,2µm,2 (A.33b)
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The eighth mixed or cross central moments between the variables µjklmrstu that
j=l ̸=k=m ̸=r=t ̸=s=u, and considering up to twelve equivalent combinations lead to:

1
1612

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m ̸=l
m ̸=k
m ̸=j

g2
,jkg2

,lmµj,2µk,2µl,2µm,2 (A.33c)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k ̸=l=r ̸=m=t ̸=s=u, and considering up to thirty-two equivalent combinations lead to:

1
1632

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m ̸=l
m̸=k
m̸=j

g,jjg,klg,kmg,lmµj,2µk,2µl,2µm,2 (A.33d)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=l ̸=k=r ̸=m=t ̸=s=u, and considering up to forty-eight equivalent combinations lead to:

1
1648

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m ̸=l
m̸=k
m̸=j

g,jkg,jlg,kmg,lmµj,2µk,2µl,2µm,2 (A.33e)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k ̸=l=r=t̸=m=s=u, and considering up to sixteen equivalent combinations lead to:

1
1616

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg3
,klµj,2µk,3µl,3 (A.33f)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k=l ̸=m=r=s ̸=t=u, and considering up to twenty-four equivalent combinations lead to:

1
1624

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,jkg,kkg,llµj,3µk,3µl,2 (A.33g)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k=l ̸=r=s=t ̸=m=u, and considering up to forty-eight equivalent combinations lead to:

1
1648

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,kkg,jlg,klµj,3µk,3µl,2 (A.33h)
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The eighth mixed or cross central moments between the variables µjklmrstu that
j=k=l ̸=m=r=t ̸=s=u, and considering up to ninety-six equivalent combinations lead to:

1
1696

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg2
,klg,jkµj,3µk,3µl,2 (A.33i)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=l ̸=k=r=t ̸=m=s=u, and considering up to ninety-six equivalent combinations lead to:

1
1696

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jkg,jlg
2
,klµj,2µk,3µl,3 (A.33j)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k=l=m̸=r=s̸=t=u, and considering up to six equivalent combinations lead to:

1
166

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jjg,kkg,llµj,4µk,2µl,2 (A.33k)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k=l=m̸=r=t ̸=s=u, and considering up to twelve equivalent combinations lead to:

1
1612

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jjg2

,klµj,4µk,2µl,2 (A.33l)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k ̸=l=m=r=t ̸=s=u, and considering up to forty-eight equivalent combinations lead to:

1
1648

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,kkg2
,klµj,2µk,4µl,2 (A.33m)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=l=r=t̸=k=m ̸=s=u, and considering up to forty-eight equivalent combinations lead to:

1
1648

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jkg2

,jlµj,4µk,2µl,2 (A.33n)
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The eighth mixed or cross central moments between the variables µjklmrstu that
j=k=l=r ̸=m=t ̸=s=u, and considering up to ninety-six equivalent combinations lead to:

1
1696

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,jkg,klg,jlµj,4µk,2µl,2 (A.33o)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k=l=m ̸=r=s=t=u, and considering up to three equivalent combinations lead to:

1
163

d∑
j=1

d∑
k=1
k ̸=j

g2
,jjg2

,kkµj,4µk,4 (A.33p)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=l=r=t ̸=k=m=s=u, and considering up to eight equivalent combinations lead to:

1
168

d∑
j=1

d∑
k=1
k ̸=j

g4
,jkµj,4µk,4 (A.33q)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k=l=r ̸=m=s=t=u, and considering up to twenty-four equivalent combinations lead to:

1
1624

d∑
j=1

d∑
k=1
k ̸=j

g,jjg,kkg2
,jkµj,4µk,4 (A.33r)

The eighth mixed or cross central moments between the variables µjklmrstu that
j=k=l=m=r=s=t=u lead to the eighth moment µj,8.

1
16

d∑
j=1

g4
,jjµj,8 (A.33s)
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Summarizing:
1
16

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

d∑
t =1

d∑
u =1

g,jkg,lmg,rsg,tuµjklmrstu

= 1
16

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m ̸=l
m ̸=k
m ̸=j

g,jjg,kkg,llg,mmµj,2µk,2µl,2µm,2

+ 1
1612

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m ̸=l
m ̸=k
m ̸=j

g,jjg,kkg2
,lmµj,2µk,2µl,2µm,2

+ 1
1612

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m ̸=l
m ̸=k
m ̸=j

g2
,jkg2

,lmµj,2µk,2µl,2µm,2

+ 1
1632

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m ̸=l
m ̸=k
m ̸=j

g,jjg,klg,kmg,lmµj,2µk,2µl,2µm,2

+ 1
1648

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

d∑
m=1
m ̸=l
m ̸=k
m ̸=j

g,jkg,jlg,kmg,lmµj,2µk,2µl,2µm,2 + 1
1616

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l̸=j

g,jjg3
,klµj,2µk,3µl,3

+ 1
1624

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,jkg,kkg,llµj,3µk,3µl,2 + 1
1648

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,kkg,jlg,klµj,3µk,3µl,2

+ 1
1696

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg2
,klg,jkµj,3µk,3µl,2 + 1

1696
d∑

j=1

d∑
k=1
k ̸=j

d∑
l=1
l̸=k
l̸=j

g,jkg,jlg
2
,klµj,2µk,3µl,3

+ 1
166

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jjg,kkg,llµj,4µk,2µl,2 + 1

1612
d∑

j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jjg2

,klµj,4µk,2µl,2

+ 1
1648

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,kkg2
,klµj,2µk,4µl,2 + 1

1648
d∑

j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jkg2

,jlµj,4µk,2µl,2

+ 1
1696

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,jkg,klg,jlµj,4µk,2µl,2 + 1
163

d∑
j=1

d∑
k=1
k ̸=j

g2
,jjg2

,kkµj,4µk,4

+ 1
168

d∑
j=1

d∑
k=1
k ̸=j

g4
,jkµj,4µk,4 + 1

1624
d∑

j=1

d∑
k=1
k ̸=j

g,jjg,kkg2
,jkµj,4µk,4 + 1

16

d∑
j=1

g4
,jjµj,8

(A.33t)
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Changing in the symmetric terms (with respect to two indexes), the first upper limit
d for d−1, the second lower limit k=1

k ̸=j for k=j+1 and multiplying by 2 to compensate the
symmetry lost. Changing in the symmetric terms (with respect to three indexes), the
first upper limit d for d−2, the second upper limit d for d−1, the second lower limit k=1

k ̸=j

for k=j+1, the third lower limit l=1
l ̸=k
l ̸=j

for l=k+1 and multiplying by 3 · 2 to compensate
the symmetry lost. And changing in the symmetric terms (with respect to four
indexes), the first upper limit d for d−3, the second upper limit d for d−2, the third
upper limit d for d−1, the second lower limit k=1

k ̸=j for k=j+1, the third lower limit l=1
l ̸=k
l ̸=j

for

l=k+1, the fourth lower limit
m=1
m̸=l
m̸=k
m̸=j

for m=l+1, and multiplying by 4 · 3 · 2 to compensate

the symmetry lost with the limits change:
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1
16

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

d∑
t =1

d∑
u =1

g,jkg,lmg,rsg,tuµjklmrstu

= 1
16 · 4 · 3 · 2

d−3∑
j=1

d−2∑
k=j+1

d−1∑
l=k+1

d∑
m=l+1

g,jjg,kkg,llg,mmµj,2µk,2µl,2µm,2

+ 1
1612 · 2 · 2

d−1∑
j=1

d∑
k=j+1

d−1∑
l=1
l ̸=k
l ̸=j

d∑
m=l+1

m ̸=k
m ̸=j

g,jjg,kkg2
,lmµj,2µk,2µl,2µm,2

+ 1
1612 · 4 · 3 · 2

d−3∑
j=1

d−2∑
k=j+1

d−1∑
l=k+1

d∑
m=l+1

g2
,jkg2

,lmµj,2µk,2µl,2µm,2

+ 1
1632 · 2

d∑
j=1

d∑
k=1
k ̸=j

d−1∑
l=1
l̸=k
l ̸=j

d∑
m=l+1

m ̸=k
m ̸=j

g,jjg,klg,kmg,lmµj,2µk,2µl,2µm,2

+ 1
1648 · 4 · 3 · 2

d−3∑
j=1

d−2∑
k=j+1

d−1∑
l=k+1

d∑
m=l+1

g,jkg,jlg,kmg,lmµj,2µk,2µl,2µm,2

+ 1
1616 · 2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g,jjg3
,klµj,2µk,3µl,3 + 1

1624 · 2
d−1∑
j=1

d∑
k=j+1

d∑
l=1
l̸=k
l ̸=j

g,jjg,jkg,kkg,llµj,3µk,3µl,2

+ 1
1648 · 2

d−1∑
j=1

d∑
k=j+1

d∑
l=1
l ̸=k
l ̸=j

g,jjg,kkg,jlg,klµj,3µk,3µl,2 + 1
1696

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l̸=k
l̸=j

g,jjg2
,klg,jkµj,3µk,3µl,2

+ 1
1696 · 2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g,jkg,jlg
2
,klµj,2µk,3µl,3 + 1

166 · 2
d∑

j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g2
,jjg,kkg,llµj,4µk,2µl,2

+ 1
1612 · 2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g2
,jjg2

,klµj,4µk,2µl,2 + 1
1648

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jjg,kkg2
,klµj,2µk,4µl,2

+ 1
1648 · 2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g2
,jkg2

,jlµj,4µk,2µl,2 + 1
1696 · 2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g,jjg,jkg,klg,jlµj,4µk,2µl,2

+ 1
163 · 2

d−1∑
j=1

d∑
k=j+1

g2
,jjg2

,kkµj,4µk,4 + 1
168 · 2

d−1∑
j=1

d∑
k=j+1

g4
,jkµj,4µk,4

+ 1
1624 · 2

d−1∑
j=1

d∑
k=j+1

g,jjg,kkg2
,jkµj,4µk,4 + 1

16

d∑
j=1

g4
,jjµj,8

(A.33u)
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V :

The covariances between the variables µjk that j ̸=k are equal to 0 and the covariances
µjk that j=k lead to the variance µj,2 = Var (Xj).

4g3
µ

1
2

d∑
j=1

d∑
k=1

g,jkµjk = 4g3
µ

1
2

d∑
j=1

g,jjµj,2 (A.34)

V I:

The third mixed or cross central moments between the variables µjkl that j ̸=k ̸=l are
equal to 0 and the third cross central moments µjkl that j=k=l lead to the third central
moment µj,3.

4gµ

d∑
j=1

d∑
k=1

d∑
l=1

g,jg,kg,lµjkl = 4gµ

d∑
j=1

g3
,jµj,3 (A.35)

V II:

Note that in the following mathematical derivation, several equivalent cases are
grouped together for brevity.

The fifth mixed or cross central moments between the variables µjklmr that j=k=l ̸=m=r:

41
2

d∑
j=1

d∑
k=1
k ̸=j

g3
,jg,kkµj,3µk,2 (A.36a)

The fifth mixed or cross central moments between the variables µjklmr that:

j = k ̸= l = m = r j = l ̸= k = m = r k = l ̸= j = m = r

All together reassigning indexes lead to:

41
23

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,kg,kkµj,2µk,3 (A.36b)

The fifth mixed or cross central moments between the variables µjklmr that:

j = k = m ̸= l = r j = k = r ̸= l = m j = l = m ̸= k = r

j = l = r ̸= k = m k = l = m ̸= j = r k = l = r ̸= j = m

All together reassigning indexes lead to:

41
26

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,kg,jkµj,3µk,2 (A.36c)
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The fifth mixed or cross central moments between the variables µjklmr that j=k=l=m=r

lead to the fifth moment µj,5.

41
2

d∑
j=1

g3
,jg,jjµj,5 (A.36d)

Summarizing:

(A.36e)

41
2

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

g,jg,kg,lg,mrµjklmr = 41
2

d∑
j=1

d∑
k=1
k ̸=j

g3
,jg,kkµj,3µk,2

+ 41
23

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,kg,kkµj,2µk,3

+ 41
26

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,kg,jkµj,3µk,2

+ 41
2

d∑
j=1

g3
,jg,jjµj,5

V III:

This term follows the same strategy as in third central moment skewness in
Subsection A.2.5, independence consideration of the III term.

4gµ
1
8

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

g,jkg,lmg,rsµjklmrs

= 4gµ
1
8 · 2 · 3

d−2∑
j=1

d−1∑
k=j+1

d∑
l=k+1

g,jjg,kkg,llµj,2µk,2µl,2

+ 4gµ
1
86 · 2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g,jjg2
,klµj,2µk,2µl,2

+ 4gµ
1
88 · 2 · 3

d−2∑
j=1

d−1∑
k=j+1

d∑
l=k+1

g,jkg,jlg,klµj,2µk,2µl,2

+ 4gµ
1
86 · 2

d−1∑
j=1

d∑
k=j+1

g,jjg,jkg,kkµj,3µk,3 + 4gµ
1
84 · 2

d−1∑
j=1

d∑
k=j+1

g3
,jkµj,3µk,3

+ 4gµ
1
83

d∑
j=1

d∑
k=1
k ̸=j

g,jjg2
,kkµj,2µk,4 + 4gµ

1
812

d∑
j=1

d∑
k=1
k ̸=j

g2
,jkg,kkµj,2µk,4 + 4gµ

1
8

d∑
j=1

g3
,jjµj,6

(A.37)
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IX:

The seventh mixed or cross central moments between the variables µjklmrst that
j=k=l ̸=m=r ̸=s=t, j=m=r ̸=k=l ̸=s=t and j=s=t ̸=k=l ̸=m=r are equivalent. All together reas-
signing indexes lead to:

41
83

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jjg,kkg,llµj,3µk,2µl,2 (A.38a)

The seventh mixed or cross central moments between the variables µjklmrst that:
j = k = l ̸= m = s ̸= r = t j = k = l ̸= m = t ̸= r = s j = m = r ̸= k = s ̸= l = t

j = m = r ̸= k = t ̸= l = s j = s = t ̸= k = m ̸= l = r j = s = t ̸= k = r ̸= l = m

41
86

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jjg2
,klµj,3µk,2µl,2 (A.38b)

The seventh mixed or cross central moments between the variables µjklmrst that:
j = r = t ̸= k = l ̸= m = s j = r = s ̸= k = l ̸= m = t j = m = t ̸= k = l ̸= r = s j = m = s ̸= k = l ̸= r = t

j = l = t ̸= k = s ̸= m = r j = l = s ̸= k = t ̸= m = r j = k = t ̸= l = s ̸= m = r j = k = s ̸= l = t ̸= m = r

j = l = r ̸= k = m ̸= s = t j = l = m ̸= k = r ̸= s = t j = k = r ̸= l = m ̸= s = t j = k = m ̸= l = r ̸= s = t

41
812

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg2
,jkg,llµj,3µk,2µl,2 (A.38c)

The seventh mixed or cross central moments between the variables µjklmrst that:
j = k ̸= l = m = r ̸= s = t j = k ̸= l = s = t ̸= m = r j = l ̸= k = m = r ̸= s = t j = l ̸= k = s = t ̸= m = r

j = m ̸= k = l = r ̸= s = t j = m ̸= r = s = t ̸= k = l j = r ̸= k = l = m ̸= s = t j = r ̸= m = s = t ̸= k = l

j = s ̸= k = l = t ̸= m = r j = s ̸= m = r = t ̸= k = l j = t ̸= k = l = s ̸= m = r j = t ̸= m = r = s ̸= k = l

41
812

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jkg,kkg,llµj,2µk,3µl,2 (A.38d)

The seventh mixed or cross central moments between the variables µjklmrst that:
j = k ̸= l = m ̸= r = s = t j = k ̸= l = r ̸= m = s = t j = k ̸= l = s ̸= m = r = t j = k ̸= l = t ̸= m = r = s

j = l ̸= k = m ̸= r = s = t j = l ̸= k = r ̸= m = s = t j = l ̸= k = s ̸= m = r = t j = l ̸= k = t ̸= m = r = s

j = m ̸= k = r ̸= l = s = t j = m ̸= l = r ̸= k = s = t j = m ̸= r = s ̸= k = l = t j = m ̸= r = t ̸= k = l = s

j = r ̸= k = m ̸= l = s = t j = r ̸= l = m ̸= k = s = t j = r ̸= m = s ̸= k = l = t j = r ̸= m = t ̸= k = l = s

j = s ̸= k = t ̸= l = m = r j = s ̸= l = t ̸= k = m = r j = s ̸= m = t ̸= k = l = r j = s ̸= r = t ̸= k = l = m

j = t ̸= k = s ̸= l = m = r j = t ̸= l = s ̸= k = m = r j = t ̸= m = s ̸= k = l = r j = t ̸= r = s ̸= k = l = m

41
824

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jkg,klg,llµj,2µk,2µl,3 (A.38e)
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The seventh mixed or cross central moments between the variables µjklmrst that:
j = r = t ̸= k = m ̸= l = s j = r = s ̸= k = m ̸= l = t j = l = t ̸= k = m ̸= r = s j = l = s ̸= k = m ̸= r = t

j = m = t ̸= k = r ̸= l = s j = m = s ̸= k = r ̸= l = t j = l = t ̸= k = r ̸= m = s j = l = s ̸= k = r ̸= m = t

j = r = t ̸= k = s ̸= l = m j = m = t ̸= k = s ̸= l = r j = l = r ̸= k = s ̸= m = t j = l = m ̸= k = s ̸= r = t

j = r = s ̸= k = t ̸= l = m j = m = s ̸= k = t ̸= l = r j = l = r ̸= k = t ̸= m = s j = l = m ̸= k = t ̸= r = s

j = k = t ̸= l = m ̸= r = s j = k = s ̸= l = m ̸= r = t j = k = t ̸= l = r ̸= m = s j = k = s ̸= l = r ̸= m = t

j = k = r ̸= l = s ̸= m = t j = k = m ̸= l = s ̸= r = t j = k = r ̸= l = t ̸= m = s j = k = m ̸= l = t ̸= r = s

41
824

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jkg,klg,jlµj,3µk,2µl,2 (A.38f)

The seventh mixed or cross central moments between the variables µjklmrst that:
j = k ̸= m = s ̸= l = r = t j = k ̸= m = t ̸= l = r = s j = k ̸= r = s ̸= l = m = t j = k ̸= r = t ̸= l = m = s

j = l ̸= m = s ̸= k = r = t j = l ̸= m = t ̸= k = r = s j = l ̸= r = s ̸= k = m = t j = l ̸= r = t ̸= k = m = s

j = m ̸= k = s ̸= l = r = t j = m ̸= k = t ̸= l = r = s j = m ̸= l = s ̸= k = r = t j = m ̸= l = t ̸= k = r = s

j = r ̸= k = s ̸= l = m = t j = r ̸= k = t ̸= l = m = s j = r ̸= l = s ̸= k = m = t j = r ̸= l = t ̸= k = m = s

j = s ̸= k = m ̸= l = r = t j = s ̸= k = r ̸= l = m = t j = s ̸= l = m ̸= k = r = t j = s ̸= l = r ̸= k = m = t

j = t ̸= k = m ̸= l = r = s j = t ̸= k = r ̸= l = m = s j = t ̸= l = m ̸= k = r = s j = t ̸= l = r ̸= k = m = s

41
824

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jlg
2
,klµj,2µk,2µl,3 (A.38g)

The seventh mixed or cross central moments between the variables µjklmrst that:

j = k = l = m = r ̸= s= t j= k= l= s= t̸= m = r j = m = r = s = t ̸= k= l

41
83

d∑
j=1

d∑
k=1
k ̸=j

g,jg2
,jjg,kkµj,5µk,2 (A.38h)

The seventh mixed or cross central moments between the variables µjklmrst that:

j = k ̸= l = m = r = s = t j = l ̸= k = m = r = s = t j = m ̸= k = l = r = s = t

j = r ̸= k = l = m = s = t j = s ̸= k = l = m = r = t j = t ̸= k = l = m = r = s

41
86

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jkg2
,kkµj,2µk,5 (A.38i)

The seventh mixed or cross central moments between the variables µjklmrst that:
j = k = l = m = s ̸= r = t j= k = l= m= t ̸= r= s j = k = l = r = s ̸= m = t j= k = l= r= t̸= m = s

j = k = m = r = s ̸= l = t j= k= m = r= t ̸= l= s j = k = m = s = t ̸= l = r j= k= r= s= t ̸= l= m

j = l = m = r = s ̸= k = t j = l= m = r= t ̸= k= s j = l = m = s = t ̸= k = r j = l= r= s= t ̸= k= m

41
812

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jjg2
,jkµj,5µk,2 (A.38j)
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The seventh mixed or cross central moments between the variables µjklmrst that:

j = k = l ̸= m = r = s = t j = m = r ̸= k = l = s = t j = s = t ̸= k = l = m = r

41
83

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jjg2
,kkµj,3µk,4 (A.38k)

The seventh mixed or cross central moments between the variables µjklmrst that:

j = k = l = m ̸= r = s = t j = k = l = r ̸= m = s = t j = k = l = s ̸= m = r = t j = k = l = t ̸= m = r = s

j = k = m = r ̸= l = s = t j = k = s = t ̸= l = m = r j = l = m = r ̸= k = s = t j = l = s = t ̸= k = m = r

j = m = r = s ̸= k = l = t j = m = r = t ̸= k = l = s j = m = s = t ̸= k = l = r j = r = s = t ̸= k = l = m

41
812

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jjg,kkg,jkµj,4µk,3 (A.38l)

The seventh mixed or cross central moments between the variables µjklmrst that:

j = k = m ̸= l = r = s = t j = k = r ̸= l = m = s = t j = k = s ̸= l = m = r = t j = k = t ̸= l = m = r = s

j = l = m ̸= k = r = s = t j = l = r ̸= k = m = s = t j = l = s ̸= k = m = r = t j = l = t ̸= k = m = r = s

j = m = s ̸= k = l = r = t j = m = t ̸= k = l = r = s j = r = s ̸= k = l = m = t j = r = t ̸= k = l = m = s

41
812

d∑
j=1

d∑
k=1
k ̸=j

g,jg,kkg2
,jkµj,3µk,4 (A.38m)

The seventh mixed or cross central moments between the variables µjklmrst that:

j = k = m = s ̸= l = r = t j = k = m = t ̸= l = r = s j = k = r = s ̸= l = m = t j = k = r = t ̸= l = m = s

j = l = m = s ̸= k = r = t j = l = m = t ̸= k = r = s j = l = r = s ̸= k = m = t j = l = r = t ̸= k = m = s

41
88

d∑
j=1

d∑
k=1
k ̸=j

g,jg3
,jkµj,4µk,3 (A.38n)

The seventh mixed or cross central moments between the variables µjklmrst that
j=k=l=m=r=s=t lead to the seventh moment µj,7.

41
8

d∑
j=1

g,jg3
,jjµj,7 (A.38o)
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Summarizing:

41
8

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

d∑
t =1

g,jg,klg,mrg,stµjklmrst

= 41
83

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jjg,kkg,llµj,3µk,2µl,2 + 41
86

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jjg2
,klµj,3µk,2µl,2

+ 41
812

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg2
,jkg,llµj,3µk,2µl,2 + 41

812
d∑

j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jkg,kkg,llµj,2µk,3µl,2

+ 41
824

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jkg,klg,llµj,2µk,2µl,3 + 41
824

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jkg,klg,jlµj,3µk,2µl,2

+ 41
824

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jlg
2
,klµj,2µk,2µl,3 + 41

83
d∑

j=1

d∑
k=1
k ̸=j

g,jg2
,jjg,kkµj,5µk,2

+ 41
86

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jkg2
,kkµj,2µk,5 + 41

812
d∑

j=1

d∑
k=1
k ̸=j

g,jg,jjg2
,jkµj,5µk,2

+ 41
83

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jjg2
,kkµj,3µk,4 + 41

812
d∑

j=1

d∑
k=1
k ̸=j

g,jg,jjg,kkg,jkµj,4µk,3

+ 41
812

d∑
j=1

d∑
k=1
k ̸=j

g,jg,kkg2
,jkµj,3µk,4 + 41

88
d∑

j=1

d∑
k=1
k ̸=j

g,jg3
,jkµj,4µk,3 + 41

8

d∑
j=1

g,jg3
,jjµj,7

(A.38p)
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Changing in the symmetric terms (with respect to two indexes), the first upper limit
d for d−1, the second lower limit l=1

l ̸=k for l=k+1 and multiplying by 2 to compensate the
symmetry lost:

41
8

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

d∑
t =1

g,jg,klg,mrg,stµjklmrst

= 41
83 · 2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g,jg,jjg,kkg,llµj,3µk,2µl,2 + 41
86 · 2

d∑
j=1

d−1∑
k=1
k ̸=j

d∑
l=k+1

l ̸=j

g,jg,jjg2
,klµj,3µk,2µl,2

+ 41
812

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg2
,jkg,llµj,3µk,2µl,2 + 41

812
d∑

j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jkg,kkg,llµj,2µk,3µl,2

+ 41
824

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jkg,klg,llµj,2µk,2µl,3 + 41
824

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jkg,klg,jlµj,3µk,2µl,2

+ 41
824

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,jlg
2
,klµj,2µk,2µl,3 + 41

83
d∑

j=1

d∑
k=1
k ̸=j

g,jg2
,jjg,kkµj,5µk,2

+ 41
86

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jkg2
,kkµj,2µk,5 + 41

812
d∑

j=1

d∑
k=1
k ̸=j

g,jg,jjg2
,jkµj,5µk,2

+ 41
83

d∑
j=1

d∑
k=1
k ̸=j

g,jg,jjg2
,kkµj,3µk,4 + 41

812
d∑

j=1

d∑
k=1
k ̸=j

g,jg,jjg,kkg,jkµj,4µk,3

+ 41
812

d∑
j=1

d∑
k=1
k ̸=j

g,jg,kkg2
,jkµj,3µk,4 + 41

88
d∑

j=1

d∑
k=1
k ̸=j

g,jg3
,jkµj,4µk,3 + 41

8

d∑
j=1

g,jg3
,jjµj,7

(A.38q)

X:

This term follows the same strategy as in V .

6g2
µ

d∑
j=1

d∑
k=1

g,jg,kµjk = 6g2
µ

d∑
j=1

g2
,jµj,2 (A.39)
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XI:

This term follows the same strategy as in third central moment skewness in
Subsection A.2.5, independence consideration of V III term.

(A.40)6g2
µ

1
4

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jkg,lmµjklm = 6g2
µ

1
4 · 2

d−1∑
j=1

d∑
k=j+1

g,jjg,kkµj,2µk,2 + 6g2
µ

1
42

· 2
d−1∑
j=1

d∑
k=j+1

g2
,jkµj,2µk,2 + 6g2

µ

1
4

d∑
j=1

g2
,jjµj,4

XII:

The sixth mixed or cross central moments between the variables µjklmrs that
j=k ̸=l=m̸=r=s:

61
4

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jg,kkg,llµj,2µk,2µl,2 (A.41a)

The sixth mixed or cross central moments between the variables µjklmrs that
j=k ̸=l=r ̸=m=s and j=k ̸=l=s̸=m=r are equivalent. All together reassigning indexes lead to:

61
42

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jg2

,klµj,2µk,2µl,2 (A.41b)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = l ̸= k = m ̸= r = s j = m ̸= k = l ̸= r = s j = r ̸= k = s ̸= l = m j = s ̸= k = r ̸= l = m

61
44

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,kg,jkg,llµj,2µk,2µl,2 (A.41c)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = l ̸= k = r ̸= m = s j = l ̸= k = s ̸= m = r j = m ̸= k = r ̸= l = s j = m ̸= k = s ̸= l = r

j = r ̸= k = l ̸= m = s j = r ̸= k = m ̸= l = s j = s ̸= k = l ̸= m = r j = s ̸= k = m ̸= l = r

61
48

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,kg,jlg,klµj,2µk,2µl,2 (A.41d)
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The sixth mixed or cross central moments between the variables µjklmrs that
j=l=m ̸=k=r=s and j=r=s̸=k=l=m are equivalent. All together reassigning indexes lead to:

61
42

d∑
j=1

d∑
k=1
k ̸=j

g,jg,kg,jjg,kkµj,3µk,3 (A.41e)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = k = l ̸= m = r = s j = k = m ̸= l = r = s j = k = r ̸= l = m = s j = k = s ̸= l = m = r

61
44

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,jkg,kkµj,3µk,3 (A.41f)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = l = r ̸= k = m = s j = l = s ̸= k = m = r j = m = r ̸= k = l = s j = m = s ̸= k = l = r

61
44

d∑
j=1

d∑
k=1
k ̸=j

g,jg,kg2
,jkµj,3µk,3 (A.41g)

The sixth mixed or cross central moments between the variables µjklmrs that
j=k ̸=l=m=r=s:

61
4

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg2

,kkµj,2µk,4 (A.41h)

The sixth mixed or cross central moments between the variables µjklmrs that
j=k=l=m ̸=r=s and j=k=r=s ̸=l=m are equivalent. All together reassigning indexes lead to:

61
42

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,jjg,kkµj,4µk,2 (A.41i)

The sixth mixed or cross central moments between the variables µjklmrs that:

j = k = l = r ̸= m = s j = k = l = s ̸= m = r j = k = m = r ̸= l = s j = k = m = s ̸= l = r

61
44

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg2

,jkµj,4µk,2 (A.41j)
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The sixth mixed or cross central moments between the variables µjklmrs that:

j = l = m = r ̸= k = s j = l = m = s ̸= k = r j = l = r = s ̸= k = m j = m = r = s ̸= k = l

k = l = m = r ̸= j = s k = l = m = s ̸= j = r k = l = r = s ̸= j = m k = m = r = s ̸= j = l

61
48

d∑
j=1

d∑
k=1
k ̸=j

g,jg,kg,jkg,jjµj,4µk,2 (A.41k)

The sixth mixed or cross central moments between the variables µjklmrs that
j=k=l=m=r=s lead to the sixth moment µj,6.

61
4

d∑
j=1

g2
,jg2

,jjµj,6 (A.41l)

Summarizing:

61
4

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

g,jg,kg,lmg,rsµjklmrs

= 61
4

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jg,kkg,llµj,2µk,2µl,2 + 61

42
d∑
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d∑
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k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g2
,jg2

,klµj,2µk,2µl,2

+ 61
44

d∑
j=1

d∑
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k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,kg,jkg,llµj,2µk,2µl,2 + 61
48

d∑
j=1

d∑
k=1
k ̸=j

d∑
l=1
l ̸=k
l ̸=j

g,jg,kg,jlg,klµj,2µk,2µl,2

+ 61
42

d∑
j=1

d∑
k=1
k ̸=j

g,jg,kg,jjg,kkµj,3µk,3 + 61
44

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,jkg,kkµj,3µk,3

+ 61
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d∑
j=1

d∑
k=1
k ̸=j

g,jg,kg2
,jkµj,3µk,3 + 61
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d∑
j=1

d∑
k=1
k ̸=j

g2
,jg2

,kkµj,2µk,4

+ 61
42

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,jjg,kkµj,4µk,2 + 61

44
d∑

j=1

d∑
k=1
k ̸=j

g2
,jg2

,jkµj,4µk,2
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48

d∑
j=1
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k ̸=j

g,jg,kg,jkg,jjµj,4µk,2 + 61
4

d∑
j=1

g2
,jg2

,jjµj,6

(A.41m)



242 Appendix A. Full second-order approach assuming independence

Changing in the symmetric terms (with respect to two indexes), the first upper limit
d for d−1, the second lower limit k=1

k ̸=j for k=j+1 and multiplying by 2 to compensate
the symmetry lost:
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4

d∑
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d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

d∑
s =1

g,jg,kg,lmg,rsµjklmrs

= 61
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d∑
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k ̸=j

d∑
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42 · 2
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d∑
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d∑
l=1
l ̸=k
l ̸=j

g,jg,kg,jlg,klµj,2µk,2µl,2 + 61
42 · 2

d−1∑
j=1

d∑
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,jjµj,6
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XIII:

This term follows the same strategy as in V I.

12g2
µ

1
2

d∑
j=1

d∑
k=1

d∑
l=1

g,jg,klµjkl = 12g2
µ

1
2

d∑
j=1

g,jg,jjµj,3 (A.42)



A.2. Non-linear combinations: summation notation assuming independence 243

XIV :

This term follows the same strategy as in third central moment skewness in
Subsection A.2.5, independence consideration of the V II term.

(A.43)

12gµ
1
2

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

g,jg,kg,lmµjklm = 12gµ
1
2

d∑
j=1

d∑
k=1
k ̸=j

g2
,jg,kkµj,2µk,2

+ 12gµ
1
22 · 2

d−1∑
j=1

d∑
k=j+1

g,jg,kg,jkµj,2µk,2

+ 12gµ
1
2

d∑
j=1

g2
,jg,jjµj,4

XV :

This term follows the same strategy as in third central moment skewness in
Subsection A.2.5, independence consideration of the IX term.

12gµ
1
4

d∑
j =1

d∑
k =1

d∑
l =1

d∑
m =1

d∑
r =1

g,jg,klg,mrµjklmr = 12gµ
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44
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d∑
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g,jg,jkg,kkµj,2µk,3

+ 12gµ
1
42

d∑
j=1

d∑
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k ̸=j

g,jg,jjg,kkµj,3µk,2

+ 12gµ
1
44

d∑
j=1

d∑
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k ̸=j

g,jg2
,jkµj,3µk,2

+ 12gµ
1
4

d∑
j=1

g,jg2
,jjµj,5

(A.44)

In the following equation, the terms III, IX and XII are referenced owing to space
limitations as they are too long expressions to be transcribed here entirely. As a
result, the second order approximation for the fourth central moment assuming
independence leads to:
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µ4 (Y, Y, Y, Y ) = µY,4

≈ g4
µ︸︷︷︸
I

+
d∑

j=1

g4
,jµj,4︸ ︷︷ ︸

II

+ (Eq. (A.33u))︸ ︷︷ ︸
III

+ 0︸︷︷︸
IV

+ 2g3
µ

d∑
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g,jjµj,2︸ ︷︷ ︸
V

+ 4gµ
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j=1

g3
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︸ ︷︷ ︸
V I
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︸ ︷︷ ︸
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µ
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g,jg,jjµj,3︸ ︷︷ ︸
XIII
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XIV
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︸ ︷︷ ︸
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−4µY µY,3 − 6µ2
Y σ2

Y − µ4
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(A.45)
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A.2.8 Fourth central moment kurtosis first-order

The fourth central moment kurtosis first-order approximation for independent random
variables is derived from Eq. (2.123) and Eq. (A.45) leading to:

µ4 (Y, Y, Y, Y ) = µY,4 ≈
d∑

j=1
g4

,jµj,4︸ ︷︷ ︸
II

(A.46)
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B
Variance of the sum of random variables

This appendix presents the succinct derivation of the formula for the variance of
the sum of random variables in Eq. (B.1), applying basic properties of sums, the
linearity of expectation, and definitions of variance and covariance.
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B.1 Proof

Var
(

ns∑
i=1

Xi

)
= E

( ns∑
i=1

Xi

)2
−

(
E
[

ns∑
i=1

Xi

])2

definition of variance Eq. (2.9)

= E

 ns∑
i1=1

ns∑
i2=1

Xi1Xi2

−

E

 ns∑
i1=1

Xi1

2

basic properties of sums

=
ns∑

i1=1

ns∑
i2=1

E[Xi1Xi2 ] −

 ns∑
i1=1

E[Xi1 ]

2

linearity of expectation

=
ns∑

i1=1

ns∑
i2=1

E[Xi1Xi2 ] −
ns∑

i1=1

ns∑
i2=1

E[Xi1 ] E[Xi2 ] basic properties of sums

=
ns∑

i1=1

ns∑
i2=1

(
E[Xi1Xi2 ] − E[Xi1 ] E[Xi2 ]

)
combine the sums

=
ns∑

i1=1

ns∑
i2=1

Cov(Xi1 , Xi2) identify the covariance Eq. (2.18)

=
ns∑

i1=1
Var(Xi1) +

ns∑
i1=1

ns∑
i2=1
i2 ̸=i1

Cov(Xi1 , Xi2) rearrange sum

=
ns∑

i1=1
Var(Xi1) + 2

ns−1∑
i1=1

ns∑
i2=i1+1

Cov(Xi1 , Xi2) symmetric terms

(B.1)
Note that in the rearrange sum stage, the covariances that i1=i2 lead to the variance
Var

(
Xi1

)
. Note further that in the symmetric terms, the first upper limit ns is changed

for ns−1, the second lower limit i2=1
i2 ̸=i1

for i2=i1+1 and the whole term is multiplied by 2
to compensate the symmetry lost with the limits change.

Equivalent derivations can be found for the third and fourth central moments of the
sum of random variables.



C
Full second order approach application to
NASGRO

This appendix encloses equations to exemplify the prediction of fatigue crack growth
life moments according to the NASGRO model. The equations presented here consist
of the expected value, the variance, the third central moment, and the fourth central
moment, for the consideration of only two random variables, Kmax and Kmin, for
the sake of simplicity. These formulations are obtained from the FSOA application,
therefore, the Taylor approximation up to second order is used. The aim of these
mathematical formulations is to better illustrate the methodology presented and to
promote the FSOA application when considering a larger number of r.v.s.

The NASGRO system in Fig. C.1 represents the multi-input single-output crack
growth propagation.

X1

X2

Xd

...

... dN NASGRO i

i

i

i

Figure C.1. Multi-variable NASGRO real-valued function.

Note that from the system in Fig. C.1, the input random variables and the output
are evaluated at every crack growth, i.e. at every time increment i. The assumption
of two random variables Kmax and Kmin implies d = 2 in the present case.
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C.1 Taylor approximation up to second order

Starting from the dN i function Eq. (3.12), with two random input variables Ki
max

and Ki
min and rewriting it by means of the multivariate Taylor series up to second

order about the mean value vector at every ith increment P i =
(

µKi
max

, µKi
min

)
leads

to Eq. (C.1).

dN i ≈ dai

C
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1−fi

1−Ri ∆Ki
)n

(
1 − Ki

max
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)q

(
1 − ∆Ki

th

∆Ki

)p

∣∣∣∣∣∣∣∣µ
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max
µ
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min

+ ∂dN
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∣∣∣∣µKi
max

µ
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min

(
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max − µKi
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+ ∂dN
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µ
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+ 1

2
∂2dN

∂Kmax
2

∣∣∣∣µKi
max

µ
Ki

min

(
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max − µKi
max

)2

+ 1
2

∂2dN

∂Kmin
2

∣∣∣∣µKi
max

µ
Ki

min

(
Ki

min − µKi
min

)2

+ 1
22 ∂2dN

∂Kmax∂Kmin

∣∣∣∣µKi
max

µ
Ki

min

(
Ki

max − µKi
max

)(
Ki

min − µKi
min

)

(C.1)

C.2 First moment: expected value

The expected value of dN i, E
[
dN i

]
, is obtained by applying the equation developed to

obtain the first moment, Eq. (2.62). In the present case, considering the approximated
dN i function Eq. (C.1), it gives the following second order approximation for the
expected value Eq. (C.2).
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E
[
dN i

]
= µdNi

≈ dai

C
(
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1−Ri ∆Ki
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(
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µ
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(
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)
(C.2)

Furthermore, since the Cov
(
Ki

max, Ki
max

)
= Var

(
Ki

max

)
and Cov

(
Ki

min, Ki
min

)
=

Var
(
Ki

min

)
, the equation can be rewritten as:

E
[
dN i

]
= µdNi

≈ dai

C
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1−Ri ∆Ki
)n

(
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)
(C.3)

C.3 Second central moment: variance

Likewise, the variance of dN i, Var
(
dN i

)
, is calculated by applying the equation

developed to obtain the second central moment, Eq. (2.77). The full second order
approximation of the variance in the present case, considering the approximated dN i

function Eq. (C.1), is shown in Eq. (C.4).

For the variance formulation, the following equivalences are directly considered:
Cov

(
Ki

max, Ki
max

)
= Var

(
Ki

max

)
and Cov

(
Ki

min, Ki
min

)
= Var

(
Ki

min

)
. Note that in the

variance equation, the discretised NASGRO and the partial derivatives are evaluated
at
∣∣∣µKi

max
µ

Ki
min

, but it is omitted for brevity. Note further that the E
[
dN i

]
is the second

order approximation for the expected value.



252 Appendix C. Full second order approach application to NASGRO

Var
(
dN i

)
= σ2

dNi ≈

 dai

C
(

1−fi

1−Ri ∆Ki
)n

(
1 − Ki

max
Kc

)q

(
1 − ∆Ki

th

∆Ki

)p


2

+
(

∂dN

∂Kmax

)2
Var

(
Ki

max

)

+ 2
(

∂dN

∂Kmax

)(
∂dN

∂Kmin

)
Cov

(
Ki

max, Ki
min

)
+
(

∂dN

∂Kmin

)2
Var

(
Ki

min

)
+ 1

4

[(
∂2dN

∂Kmax
2

)2

µ4
(
Ki

max, Ki
max, Ki

max, Ki
max

)
+ 4

(
∂2dN

∂Kmax
2

)(
∂2dN

∂Kmax∂Kmin

)
µ4
(
Ki

max, Ki
max, Ki

max, Ki
min

)
+ 2

(
∂2dN

∂Kmax
2

)(
∂2dN

∂Kmin
2

)
µ4
(
Ki

max, Ki
max, Ki

min, Ki
min

)
+ 4

(
∂2dN

∂Kmax∂Kmin

)(
∂2dN

∂Kmax∂Kmin

)
µ4
(
Ki

max, Ki
min, Ki

max, Ki
min

)
+ 4

(
∂2dN

∂Kmax∂Kmin

)(
∂2dN

∂Kmin
2

)
µ4
(
Ki

max, Ki
min, Ki

min, Ki
min

)
+
(

∂2dN

∂Kmin
2

)2

µ4
(
Ki

min, Ki
min, Ki

min, Ki
min

)]

+

 dai

C
(

1−fi

1−Ri ∆Ki
)n

(
1 − Ki

max
Kc

)q

(
1 − ∆Ki

th

∆Ki

)p

[( ∂2dN

∂Kmax
2

)
Var

(
Ki

max

)

+ 2
(

∂2dN

∂Kmax∂Kmin

)
Cov

(
Ki

max, Ki
min

)
+
(

∂2dN

∂Kmin
2

)
Var

(
Ki

min

)]
+
(

∂dN

∂Kmax

)(
∂2dN

∂Kmax
2

)
µ3
(
Ki

max, Ki
max, Ki

max

)
+ 2

(
∂dN

∂Kmax

)(
∂2dN

∂Kmax∂Kmin

)
µ3
(
Ki

max, Ki
max, Ki

min

)
+
(

∂dN

∂Kmax

)(
∂2dN

∂Kmin
2

)
µ3
(
Ki

max, Ki
min, Ki

min

)
+
(

∂dN

∂Kmin

)(
∂2dN

∂Kmax
2

)
µ3
(
Ki

min, Ki
max, Ki

max

)
+ 2

(
∂dN

∂Kmin

)(
∂2dN

∂Kmax∂Kmin

)
µ3
(
Ki

min, Ki
min, Ki

max

)
+
(

∂dN

∂Kmin

)(
∂2dN

∂Kmin
2

)
µ3
(
Ki

min, Ki
min, Ki

min

)
−
(
E
[
dN i

])2

(C.4)



C.3. Second central moment: variance 253

C.4 Third central moment: skewness
Recall that the skewness of dN i can be determined from the third central moment
µ3
(
dN i, dN i, dN i

)
= µdNi,3 divided by the standard deviation raised to the third

power. Then, the moment µ3 of dN i is obtained by applying the equation developed
to obtain the third central moment, Eq. (2.96). The full second order approximation
of the third central moment in the present case, considering the approximated dN i

function Eq. (C.1), is shown in Eq. (C.5).
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Again, in the third central moment equation, the discretised NASGRO and the
partial derivatives are evaluated at

∣∣∣µKi
max

µ
Ki

min

, but it is omitted for brevity. Note that
E
[
dN i

]
and the Var

(
dN i

)
are the second order approximations for the expected value

and for the variance respectively. Note further that only the I, II and last terms have
been replaced here for the sake of brevity.
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C.5 Fourth central moment: kurtosis

Recall that the kurtosis of dN i can be determined from the fourth central moment
µ4
(
dN i, dN i, dN i, dN i

)
= µdNi,4 divided by the standard deviation raised to the fourth

power. Then, the moment µ4 of dN i is obtained by applying the equation developed to
obtain the fourth central moment, Eq. (2.120). The full second order approximation
of the fourth central moment in the present case, considering the approximated dN i

function Eq. (C.1), is shown in Eq. (C.6).

Once again, in the fourth central moment equation, the discretised NASGRO and
the partial derivatives are evaluated at

∣∣∣µKi
max

µ
Ki

min

but it is omitted for brevity. Note that
E
[
dN i

]
, the Var

(
dN i

)
, and the µ3

(
dN i, dN i, dN i

)
are the second order approximations

for the expected value, for the variance and for the third central moment respectively.
Note further that only the I, II and last terms have been replaced here for the sake
of brevity.
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