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A mi familia






Las ideas no se muestran fecundas con quien las sugiere o las aplica por primera
vez, sino con los tenaces que las sienten con vehemencia y en cuya virtualidad
ponen toda su fe y todo su amor. Bajo este aspecto, bien puede afirmarse que las
conquistas cientificas son creaciones de la voluntad y ofrendas de la pasion.

Santiago Ramén y Cajal

Capitulo IV
Recuerdos de mi vida (1901-1904)

Migration and transformation of the granule cells of the cerebellum.
From Ramén y Cajal, 1917. Recuerdos de mi vida (1901-1904), Capitulo VIIL.






Abstract

Cell migration is fundamental for life and development. Unfortunately, cell motility is
also associated with some of the leading causes of morbidity and mortality, including
immune, skeletal, and cardiovascular disorders as well as cancer metastasis. Cells rely
on their ability to perceive and respond to external stimuli in many physiological and
pathological processes (e.g., embryonic development, angiogenesis, tissue repair, and
tumor progression). The global objective of this doctoral thesis was to investigate
the migratory response of individual cells to biochemical and biophysical cues.
In particular, the focus of this research was on the mechanisms enabling cells to
perceive and internalize biochemical and biophysical cues and the influence of these

stimuli on the migratory response of individual cells.

The first study aimed at establishing a methodology to facilitate the integration
of theoretical studies with experimental data. By minimizing user intervention, the
proposed framework based on Bayesian optimization techniques efficiently handled
the otherwise tedious and error-prone calibration of in silico models. Afterward,
an in silico model was built to investigate how biochemical and biophysical stimuli
influence three-dimensional cell motion. This computational model integrated some
of the main actors enabling cells to probe and respond to external cues, which
may act at different scales and interact with each other. The results showed, on
the one hand, that cells change their migratory behavior based on the slope of
chemical gradients and the absolute concentration of chemical factors (e.g., growth
factors) around them. On the other hand, these results revealed that cells’ migratory
response to matrix stiffness and density depends on their phenotype. Overall, this
thesis highlights the dependence of three-dimensional cell migration on both cells’
phenotype (i.e., nucleus size, deformability) and the properties of the surrounding

microenvironment (e.g., chemical profile, matrix rigidity, confinement).






Resumen (Abstract in Spanish)

La migracién celular es fundamental para la vida y el desarrollo. Desafortunada-
mente, la movilidad celular también esta asociada con algunas de las principales
causas de morbilidad y mortalidad, incluidos los trastornos inmunitarios, esqueléticos
y cardiovasculares, asi como la metastasis del cancer. Las células dependen en
su capacidad para percibir y responder a estimulos externos en muchos procesos
fisiolégicos y patolégicos (p. €j., desarrollo embrionario, angiogénesis, reparacién de
tejidos y progresion tumoral). El objetivo global de esta tesis doctoral fue investigar
la respuesta migratoria de células individuales a senales bioquimicas y biofisicas.
En particular, el enfoque de esta investigacién se centrd en los mecanismos que
permiten a las células percibir e internalizar seniales bioquimicas y biofisicas y la

influencia de estos estimulos en la respuesta migratoria de las células individuales.

El primer estudio tuvo como objetivo establecer una metodologia para facilitar
la integracion de estudios tedricos con datos experimentales. Al minimizar la
intervencién del usuario, el sistema propuesto basado en técnicas de optimizacion
Bayesiana gestioné de manera eficiente la calibracién de los modelos in silico, que
de otro modo seria tediosa y propensa a errores. Posteriormente, se construyé un
modelo in silico para investigar cémo los estimulos bioquimicos y biofisicos influyen
en el movimiento celular en tres dimensiones. Este modelo computacional integré
algunos de los principales actores que permiten a las células percibir y responder
a senales externas, que pueden actuar a diferentes escalas e interactuar entre si.
Los resultados mostraron, por un lado, que las células cambian su comportamiento
migratorio en funcién de la pendiente de los gradientes quimicos y la concentracién
absoluta de factores quimicos (por ejemplo, factores de crecimiento) a su alrededor.
Por otro lado, estos resultados revelaron que la respuesta migratoria de las células
a la rigidez y densidad de la matriz depende de su fenotipo. En general, la tesis
destaca la dependencia de la migracion celular tridimensional al fenotipo de las
células (es decir, el tamano de su nicleo, la deformabilidad del mismo) y las
propiedades del microambiente circundante (por ejemplo, el perfil quimico, la

rigidez de la matriz, el confinamiento).
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2 1.1. Relevance of cell migration and its clinical significance

1.1 Relevance of cell migration and its clinical
significance

Cell migration is fundamental for life and development. Key physiological processes
of multicellular organisms depend on cell migration, from embryonic development to
the more specific bone formation and angiogenesis. For example, neural crest cells
(NCC) migrate through prescribed regions of vertebrate embryos and contribute
to tissue and organ formation (Figure 1.1a) [1, 2]. Also, migration of progenitor
and stem cells (e.g., mesenchymal and hematopoietic stem cells; MSC and HSC) to
the bone surface and throughout the bone matrix is a key step for bone formation
and remodeling (Figure 1.1d). Once at their final location, these progenitor and
stem cells differentiate into different cell types, which coordinately turn cartilage
templates into an organized bone matrix. During angiogenesis, endothelial cells
(EC) migrate from a pre-existing vascular bed to form new capillaries [3]. Indeed,
ECs sprout out in response to signaling molecules secreted when tissues need more
oxygen or become wounded (Figure 1.1b). Indeed, different types of ECs known as
tip and stalk cells collaborate to create a vascular network with a tubular structure.
Thus, cell motility is not only deeply involved in the development of multicellular

organisms but also in their maintenance through protection and healing mechanisms.

Cells’ ability to migrate is also critical during the immune response and tissue
repair. For one, the migration and accurate positioning of dendritic cells (DCs; bone
marrow-derived leukocytes) is fundamental for immune surveillance [4]. Moreover,
the immune response depends on leukocyte recruitment to tissues under pathological
conditions [5, 6]. During the initial inflammatory phase of acute traumatic
injury, immune cells (e.g., lymphocytes, macrophages, neutrophils) clear dead
cells, pathogens, and debris from the site of injury (Figure 1.1e) [7]. Afterward,
reparative cells such as fibroblasts actively divide and migrate into the wound bed
to deposit a disorganized provisional matrix tissue and promote wound contraction
[7]. All these migratory events are tightly regulated, and minor perturbations may

result in different pathological conditions.

Aberrant cell motility is associated with a wide array of pathologies. For example,
minor perturbations in the regulators of NCC migration can lead to a wide variety
of syndromes and diseases called Neurocristopathies (NCP; e.g., Branchio-Oculo-
Facial Syndrome, Hirschsprung’s Disease, Mowat-Wilson syndrome, and piebaldism)
[8-11]. The broad spectrum of congenital malformations associated with NPCs
affects a significant percentage of newborns. Also, abnormal motility of MSCs would
drive a homeostatic imbalance of bone and may cause different skeletal disorders,

including osteoporosis, fracture, and osteoarthritis [12]. By controlling the growth
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and regression of blood capillaries, angiogenic therapies could improve the survival
of poorly perfused essential tissues (e.g., heart, brain, skeletal muscle). These
therapies could also free the body of unwanted tissues (i.e., tumors). Migration
disorders of immune cells can be associated with autoimmune diseases (e.g., Crohn’s
disease, multiple sclerosis, rheumatoid arthritis, type I diabetes, and psoriasis) and
chronic inflammation [13]. A dysregulated migration of DCs could lead to their
abnormal activation or positioning [14]. Such behaviors would result in an imbalance
of immune responses and even immune pathologies, including allergic and infectious
diseases, as well as tumors. Cell migration is also linked to another leading cause
of death: cancer metastasis (Figure 1.1c). The ability to block metastatic cells
from leaving the primary tumor or intravasating into blood or lymph vessels would
represent a huge step forward in our fight against cancer. These pathologies result

in a huge socio-economic burden to our communities.

Pathologies associated with abnormal cell motility have a huge impact on
our societies. For instance, cancer, heart diseases, and more than 70 of life’s
most threatening medical conditions could be cured by angiogenic therapies [15].
According to the Angiogenesis Foundation, angiogenic therapies could improve the
lives of at least 1 billion people worldwide. In the United States, autoimmune
diseases are a leading cause of death among young and middle-aged women [16].
The Autoimmune Association estimates that autoimmune diseases affect more than
24 million people in the United States, with roughly 80 % of all patients being
women [17, 18]. Moreover, in 2001, the annual cost of treating autoimmune diseases
in the United States was estimated at more than $100 billion. Globally, there were
an estimated 19.3 million new cases of cancer in 2020 alone [19]. Accounting for
about 90% of cancer deaths (9 million deceases worldwide in 2020), metastasis is the
leading cause of cancer morbidity and mortality [20]. The economic burden of cancer
in the United States and the European Union was estimated at $497.14 billion
and €145.29 billion per year, respectively [21-23]. Remarkably, a dysregulation
of DCs migration was also related to the coronavirus disease 2019 (COVID-19),
which has caused the first pandemic of the 21st century with more than 350 million
confirmed cases and 5.6 million deaths to date [24]. A comprehensive understanding

of this biological process is therefore essential.
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Figure 1.1: Clinical relevance of cell migration (a) Neural crest cells (NCC) migrate
through prescribed regions of vertebrate embryos and contribute to tissue and organ
formation. (b) During angiogenesis, endothelial cells (EC) migrate from a pre-existing
vascular bed to form new capillaries. (c) Cell migration is also linked to some of the
leading causes of death such as cancer metastasis. (d) Progenitor and stem cells (e.g.,
mesenchymal and hematopoietic stem cells; MSC and HSC) migrate to the bone surface
and throughout the bone matrix during bone formation and remodeling, respectively. (e)
Cell motility is fundamental for wound healing and tissue repair.
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Biochemical cues and the biophysical properties of the surrounding microen-
vironment have a leading role in cells’ migratory response during many of the
aforementioned scenarios. For example, gradients of chemical factors throughout the
extracellular matrix (ECM) guide the formation of new vessels during angiogenesis,
and enable immune cells to locate foreign invaders. Unfortunately, angiogenesis
also promotes invasive tumor growth and metastasis, and an excessive recruitment
of leukocytes results in tissue damage and chronic inflammatory disease. Likewise,
an heterogeneous biophysical profile of the matrix (e.g., differences in stiffness,
density, composition, organization) is essential in physiological processes such
as embryonic development [25]. Still, tweaking some of these properties (e.g.,
increasing matrix rigidity) may lead to pathological processes such as cancer
dissemination. Hence, an in-depth knowledge of how these stimuli influence cell
migration would drastically improve our life expectancy and quality of life. Such
an exhaustive understanding of cell migration will require a collaborative effort

between theoreticians and experimentalists.

CLINICAL CHALLENGE
Developing new therapies to control cell motility in vivo

The translation of migrating principles to therapeutic solutions would enable
a cure for some of the leading causes of morbidity and mortality, improving
the lives of billions of people worldwide. Some of these therapies could avoid
congenital malformations affecting some newborns. Also, we could enhance
bone regeneration and tempo-spatially restrict the growth and regression of
blood capillaries. These therapeutic solutions could hinder the metastatic
invasion of cancer cells. Further, they could allow for bioartificial organs.

1.2 Need for theoretical studies and computational
models

Theoretical studies and computational models (also known as in silico models) can
help us overcome some of the challenges of experimental research and advance our
understanding of complex biological phenomena such as cell migration. For instance,
theoretical studies and computational predictions connect experimental results to
first principles. They can also describe the behavior of biological systems as a
function of just a few variables—a scenario sometimes unattainable with current
experimental techniques. Computational models allow us to efficiently quantify
elements that may otherwise be technically difficult to measure experimentally.
Also, in silico models enable us to carry out experiments that are extremely time-

consuming, financially prohibitive, or otherwise technically impossible. Simulations
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can be executed in high throughput computing (HPC) environments, and their
results automatically analyzed. Furthermore, these models can be a valuable
resource to design future experiments and predict their outcomes. For example, by
identifying key parameters that play a central role in defining the overall behavior
of the biological system. These studies could also drastically reduce the sample
space of potential targets, allowing researchers to focus on a more manageable set
of experiments. Therefore, theoretical research is a valuable asset for deciphering

the intricacies of complex biological phenomena.

Unraveling the intricacies of some of the mechanisms involved in these biological
processes can be extremely difficult. The multi-scale nature of these phenomena
stands out as one of the main obstacles in this effort. At the atomic scale, researchers
can study the structure and dynamic properties of different polymers (e.g., proteins,
peptides, lipids) and their dependency on the features of the environment or ligand
binding. Conversely, the molecular scale allows researchers to investigate signaling
mechanisms regulating biological systems. The microscopic scale may include the
cellular and multicellular or tissue scales, describing both single-cell and tissue
behaviors and properties. Lastly, the macroscopic scale considers the dynamics of
the gross organ or tumor behavior (e.g., their morphology, shape, vascularization).
Further, elucidating multi-scale interactions and reciprocity can be remarkably
challenging, particularly in large systems. Multi-scale models enable researchers to
integrate players and events associated with different scales. Sustained advances and
improvements in the computational power and data storage capabilities enhance the
potential of in silico models. As a result, these computational replicas characterize
and quantify biological systems much more accurately. Overall, multi-scale models

have become an extremely valuable tool to investigate complex biological systems.

Over the last several decades, the research community has developed a wide
variety of in silico models, aiming to further our knowledge of cell migration.
Theoreticians and modelers may be interested in players and events occurring
at a specific scale, such as the molecular or the microscopic one. Regarding the
molecular scale, Borau and colleagues [26] studied the mechanosensing properties
of the actomyosin network. Fatunmbi and colleagues [27] were interested in the
recruitment of actin nucleating proteins at the membrane interface. Conversely,
Hopkins and Camley [28] studied cells’ ability to accurately process external signals
in uncertain environments using an in silico model. At the microscopic scale,
Aubry and colleagues [29] focused on the mechanical behavior of the cytoplasm
and the nucleus during confined cell migration to study the link between cell
morphology and the relationship between cell-channel and cell-substrate surface

forces. Gonzalez-Valverde and Garcia-Aznar [30] were interested in epithelial
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tissue mechanics associated with collective cell motility. Zheng and colleagues [31]
studied the influence of ECM-mediated mechanical communication between cells
on multicellular dynamics. Lastly, Gongalves and Garcia-Aznar [32] established a
relation between ECM density and individual cell migration. Still, the current trend
is toward multi-scale models [33-36]. Notably, Fletcher and Osborne [37] reviewed
the recent progress of the research community in multi-scale models of tissues. Hence,
theoretical studies and computational models have enabled important advances in

the quest for a comprehensive understanding of cell migration.

1.3 Motivation

Cell migration is an extremely complex phenomenon involving a wide variety of bio-
logical processes. Factors such as cell phenotype or the properties of the surrounding
ECM regulate the activation of some of these processes. Note that cells produce
the ECM to surround themselves with a scaffolding structure [38—40]. Therefore,
cells can modulate the properties of their surrounding ECM. Different external
cues, including chemical and biophysical stimuli from their microenvironment,
influence cell migration [41], promoting cell invasion, immune cell motility, and
facilitating tumor cell dissemination [42-45]. Notably, cells’ phenotype, as well as

their microenvironment, determine if and how cells migrate [46-49].

More than a century of research in the field [52-60] has allowed us to understand
many of the intricacies of cell migration. However, because of its inherent complexity,
plenty of unanswered questions still need to be addressed. Besides, much of what
we know about cell migration (and of cell biology, for that matter) is based on cells
cultured on Petri dishes or rigid flat sheets of plastic. Still, many are the differences
between these two-dimensional (2D) substrates and the more physiological three-
dimensional (3D) matrices (Figure 1.2). For one, soluble gradients are absent on
plated cultures, whereas they may be present in 3D. While an apical-basal polarity
is forced on 2D substrates, there is no prescribed polarity in 3D environments.
Instead of the high stiffnesses (GPa range) associated with plated cultures, the
stiffness of gels in 3D is in the lower kPa range. Also, 3D matrices are more pliable
than 2D substrates. As a result, cells can alter ECM compliance more easily in 3D
domains. Cells also behave differently within 3D matrices than on 2D substrates
(Figure 1.2) [61-63], including during migration [41, 64, 65]. Although spreading and
migration are unconstrained on the x-y plane on flat surfaces, they may be sterically
hindered in 3D. Cells in 3D environments adopt a thinner and more elongated shape.
They also follow a more persistent and direct trajectory than those on 2D surfaces.

Adhesions are restricted to the x-y plane in 2D substrates but are distributed in
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Figure 1.2: Cells in 2D vs 3D Cells in (a) 2D and (b) 3D microenvironments interact
differently with their surroundings. Three modes of 3D migration have been identified
so far: mesenchymal, amoeboid, and lobopodial migration. In mesenchymal migration,
cells attach very strongly to the extracellular matrix through mature stress fiber-linked
focal adhesions. These cells also exhibit a high matrix-degrading activity. The centrosome
is in front of the nucleus and the cytoskeletal networks are polarized in the direction of
migration. In contrast, amoeboid migration involves very few adhesions and low protease
activity. Cells migrate through the formation of contraction-based blebs or use actin-
driven protrusions to glide on the substrate. The centrosome is usually behind the nucleus
during amoeboid migration. Lastly, during lobopodial migration, tightly adherent cells
use actomyosin contractility, hydrostatic pressure, and nuclear pistoning to form bleb-like
blunt protrusions called lobopodia. These cells exhibit very low protease activity. Adapted
from [50, 51].
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all three dimensions in these gels. Nuclear positioning is much more complex for
cells migrating within 3D domains [66]. Another source of complexity in the study
of cell migration is that its regulation depends on the biochemical and biophysical
features of the pericellular space [67, 68]. Therefore, cells must integrate concurrent,
potentially cooperative, or opposing inputs in their decision-making process [69-72].
These external cues can modulate cellular properties and events, from cell shape
and polarity to cell-cell and cell-matrix interactions. Likewise, cells adjust their
trajectory, speed, and mode of migration accordingly (Figure 1.2) [71, 73]. Even
modest variations in the biochemical or biophysical stimuli can dramatically impact
cells’ migratory phenotype [74]. Thus, we still need to fill in some gaps in our
knowledge of how cells (i) probe the surrounding environment, (ii) integrate these

cues, as well as (iii) adapt and respond to them.

Replicating scenarios closer to in wvivo conditions, though, is a challenging
endeavor [63, 75-77]. For instance, if we focus on the mechanical response of
in vivo environments, they have been identified as viscoelastic [78, 79] (they
present properties observed in solids and fluids) and exhibit stress relaxation
[80]. Interestingly, the impact of stress relaxation speed on 3D cell migration
may be modulated by the material’s steric hindrance [81]. Still, hydrogels used
as synthetic substrates for 3D culture and tissue engineering in vitro are typically
elastic. Measuring some features of these 3D matrices with the current technologies
may be extremely difficult or even impossible [62, 79, 82-84]. Besides, in 3D
domains, the underlying conditions must be more tightly controlled [51, 68, 85, 86].
Hence, studying cell migration under more physiologically relevant scenarios is

not an easy task.

1.4 Research objectives

Global research objective

Investigate the influence of biochemical and biophysical stimuli from
the surrounding microenvironment on mesenchymal migration within 3D
matrices by combining in vitro and in silico models.

To achieve the global research objective of this doctoral thesis, three partial
objectives were defined. The first goal of the research carried out by the Ph.D.
candidate was to assess the suitability of Bayesian optimization techniques to
integrate experimental data with theoretical studies and computational models.
The second objective was to determine the influence of biochemical stimuli from

the surrounding ECM on mesenchymal migration within 3D matrices. The third
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goal was to establish how biophysical cues from the local microenvironment around

cells regulate the motion of cells exhibiting a mesenchymal phenotype.

To address these objectives, three hypotheses have been defined and supported by
the research presented in Chapter 3, Chapter 4, and Chapter 5 of this doctoral thesis.

Research hypothesis 1

A framework based on Bayesian optimization techniques enhances the
integration of experimental data with in silico models.

Research hypothesis 2

A multi-scale computational framework that links intracellular signaling
networks to cytoskeletal and nuclear dynamics predicts cells’ migratory
response to different biochemical stimuli.

Research hypothesis 3

A multi-scale computational framework that links cell-matrix adhesions to
cytoskeletal and nuclear dynamics through mechanotransduction predicts
cells’ migratory response to different biophysical stimuli.

Testing these hypotheses enabled the candidate to tackle the aforementioned
research objectives. Overall, the proposed research offers an integrative framework
to improve our knowledge of cell migration within 3D environments. Moreover, this
methodology combines experimental data with multi-scale computational models
to shed some light on how cells internalize a variety of inputs and adapt their

migratory behavior accordingly.

1.5 Outline

This thesis covers the research carried out by the candidate during his doctoral
studies and is divided into six chapters. Chapter 1 highlights the relevance of cell
migration and its clinical significance, as well as the value of theoretical studies.
It also presents the motivation and main objectives of the candidate’s doctoral
studies. Chapter 2 reviews the literature on cell migration, including the main
biological processes, events, and players involved. It also summarizes the current
state of the art in in silico modeling of cell motility. Chapter 3 introduces Bayesian
optimization techniques and highlights their suitability to integrate experimental and
theoretical works. The interest in using these techniques lies in their applicability
to optimize expensive-to-evaluate functions, such as those assessing the response

of in silico models to changes in their inputs. This allows for an efficient and
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fully-automated workflow to calibrate computational models. Chapter 4 presents
a hybrid modeling approach for analyzing cell motion within 3D matrices. In
particular, it studies mesenchymal-like migration guided by biochemical stimuli.
This modeling approach focuses on how biochemical cues from the ECM trigger
a signaling cascade to internalize such stimuli. As a result, cells remodel their
cytoskeleton, generating pushing and pulling forces that enable cells to translocate
their nucleus, which guides their trajectory. Chapter 5 extends the modeling
framework from Chapter 4 to describe how biophysical cues from the surrounding
microenvironment influence mesenchymal-like cell migration within 3D matrices.
It pays special attention to the cell mechanics associated with the mesenchymal
phenotype, that is, those related to the expansion and contraction of cellular
protrusions, as well as nucleus translocation. This in silico model considers the
heterogeneous nature of the ECM and relates the matrix rigidity and pore size to
the contractile forces regulating cells’ trajectories and speeds. Finally, Chapter 6
presents the general conclusions and original contributions of this doctoral thesis.
Further, this chapter introduces some possible future lines of research that would
expand the capabilities of this modeling approach and other biological problems

that can be simulated using these frameworks.
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2.1 Mechano-chemo biology of cell biology

This chapter aims to give a global overview of our current understanding of cell
migration and the different processes and players involved. We will start at the cell
surface, where transmembrane receptors enable cells to sense external stimuli from
their surroundings. Then, we will focus on the mechanics of cell motility. Different
adhesive complexes, also located at the surface, allow cells to interact with one
another and with the ECM. By binding to and interacting with all these players
from the plasma membrane, the cytoskeleton can receive, process, and respond to
signals from the outside. The cytoskeleton is also coupled to the nucleus. As a
result, cells nuclei can adapt and react to the relayed signals initiated by external
stimuli. Next, we will review different approaches to model some aspects of cell
motility. Finally, we will discuss some of the current and future challenges for the
research community. Note there are many excellent reviews about specific players
or events associated with cell migration (e.g., [45, 46, 62, 71, 87]). We will refer

the reader to some of them throughout the text.

2.1.1 Perceiving biochemical stimuli

Cells can change their migratory patterns and bias their trajectories in response to
different biochemical stimuli, such as soluble ligands (chemotaxis) or cues fastened
either to cell surfaces or to the substrate (haptotaxis) [39, 88-90]. Haptotaxis seems
cell-type specific, dependent on cell-induced tractions, and therefore limited by
substrate adhesiveness. Cells’ ability to respond to biochemical stimuli (chemoat-
traction) is crucial in multicellular organisms. For instance, it allows the sperm to
locate the egg during fertilization [91, 92]. Neural crest cells are guided toward their
appropriate destination during embryogenesis [93-96]. Chemoattraction also enables
immune cells to locate foreign invaders [97-99]. Hence, by allowing cells to read
the biochemical profile of their surroundings and adapt their behavior accordingly,

chemoattraction is essential for the proper functioning of multicellular organisms.

Biochemical cues

Cells can sense differences in concentrations of organic and inorganic substances.
As a result, cells move toward and away from the gradients of these ligands, from
bacterial peptides and ECM degradation products to chemokines and growth factors.
Some of these proteins can exist in the fluid phase or immobilized (surface-bound).
Several cell types can secrete chemokines into the surrounding environment. As a

result, they can induce the migration of endothelial cells and promote angiogenesis.
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Chemokines can also attract angiogenesis-promoting immune cells. Interestingly,
cells can even create their own attractant gradients [87], which allow them to migrate
collectively [100], and navigate complex routes using self-generated chemotaxis [101].
D’Alessandro and colleagues [102] recently demonstrated that on one-dimensional
(1D) and 2D confined spaces, motile cells leave long-lived footprints along their
way. Such footprints act as spatial memory of their path and determine their future
trajectories. Thus, cells produce and respond to biochemical cues diffused into the

matrix or surface-bound, guiding other cells and their future selves.

Secreted proteins can induce distinct cellular responses (e.g., their migratory
phenotype). For example, different growth factors, including vascular endothe-
lial (VEGF) and epidermal growth factor (EGF), as well as cytokines such as
transforming growth factor beta (T'GF(), stimulate epithelial to mesenchymal
transition (EMT). Such transition enables individual cancer cells to detach from an
epithelial cluster and move freely, promoting tumor progression. Notably, TGF(
not only drives fibrosis, invasion, and metastasis [103, 104] but also induces highly
motile amoeboid phenotypes [74]. Furthermore, Lopez-Luque and colleagues [105]
demonstrated that some tumoral cells respond to TGF( inducing and epithelial
to amoeboid transition (EAT), after silencing epidermal growth factor receptors
(EGFRs). Interestingly, metabolic challenges such as hypoxia can also induce
collective to amoeboid transition (CAT) in cancer cells [106]. Independent works
have pointed toward TGF{ promoting EMT. Still, some of these studies showed an
atypical response to TGF(, which stimulated different cell types to an incomplete
EMT phenotype [107, 108]. Cells exhibiting such hybrid EMT phenotype, which
promote metastasis, acquire mesenchymal features while maintaining cell-cell
adhesions and therefore acting as collectives [109, 110]. These findings may suggest
that, in the metastatic progress, the role of TGFB strongly depends on context,
including cell and cancer type. Ligand concentration may also influence other cell
behaviors. For instance, low concentrations of platelet-derived growth factor (PDGF)
can promote cell migration, whereas high concentrations may induce proliferation
[111]. Hence, cells acting individually or as a collective can determine not only

their own fate but also the fate of other cellular organisms.

For further insight into the principles of directed cell migration in general or

in cancer see [112] and [113], respectively.

Internalization of biochemical stimuli

Biochemical cues bind to transmembrane receptors, triggering cascades of signaling

pathways. As a result, the signals initiated by these receptors are transmitted across
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the plasma membrane and inside the cytosol. There are several classes of these
receptors (ion channel-linked receptors, enzyme-linked receptors, and G protein-
coupled receptors), which bind to and sense different types of chemoattractants.
Receptor tyrosine kinase (RTKs) are the enzyme-linked receptors with the largest
population and the widest application, and detect many different growth factors
(e.g., EGF, PDGF, and VEGF). In contrast, G protein-coupled receptor (GPCR) is
the largest receptor superfamily in eukaryotic cells and recognizes many different
ligands (e.g., chemokines, hormones, neurotransmitters, and photons). The spatial
distribution of transmembrane receptors over the cell surface was initially considered
homogeneous. Subsequent works discovered that the plasma membrane is divided
into nanometre-scale domains that can be extended over macrodomains and exhibit
different membrane receptor profiles. Some domains may have different amounts of
the distinct cell surface receptors, including EGFRs and vascular endothelial growth
factor receptors (VEGFRs) [114]. Also, those transmembrane receptors might be
present in different configurations (monomeric, dimeric, higher-order oligomers, or
clusters) even in the absence of ligands [115-117]. A high surface abundance of a
particular transmembrane receptor may promote homodimerization and clustering.
Conversely, a high surface abundance of distinct transmembrane receptors would
promote heterodimer pairing. Other factors, such as the cytoskeleton organization
and ligand stimuli, may bias such membrane receptor profile too (Figure 2.1) [111,
114, 118]. At the tissue scale, cells can establish larger macrodomains of the plasma
membrane. In such scenarios, cell-cell contacts regulate membrane asymmetry,
allowing cells to sense and respond to each other. Transmembrane receptors,
which enable cells to probe and internalize external stimuli, are continually being

synthesized, internalized, recycled, and degraded.

Cells degrade and recycle surface receptors through membrane trafficking using
membrane-bound transport vesicles (Figure 2.1) [111, 119]. Different factors, such
as ligand concentration, distinct types of stresses, and hypoxia, seem to influence the
preferred internalization route of RTKs, that is, their sorting toward degradation
or recycling. Different GPCR~interacting proteins and arrestins can also influence
the GPCR internalization route [120]. Various studies showed that distinct RTK
classes remain active during their internalization [111, 114, 117]. Indeed, in some
cases, RTK and GPCR internalization is required for a complete signaling response
[121, 122]. Whatsmore, transmembrane receptors can activate different effectors
depending on whether they are at the plasma membrane or in endosomes. Changes
in the spatial distribution generate variations in the internalized signals [111]. For
instance, these signals can be localized and amplified over a specific area of the

cell surface. Besides, an altered expression of transmembrane receptors can change
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Figure 2.1: Sensing biochemical cues The surface abundance and distribution
of transmembrane receptors, such as receptor tyrosine kinase (RTK) and G-protein-
coupled receptor (GPCR), is a key regulatory step. Locally high surface levels of an
individual surface receptor may promote homodimerization and/or clustering, and high
surface abundance of two or more of these receptors may also increase heterodimer
pairing. Distinct domains within the plasma membrane, as well as the closely apposed
and dynamic cortical actin cytoskeleton, affect this key step in receptor activation. The
surface abundance of transmembrane receptors is predominantly controlled by receptor
endocytosis, which ultimately leads to receptor degradation or recycling. When localized in
specific plasma membrane domains, stimulated (ligand-bound) or unstimulated (unbound)
surface receptors are endocytosed or sequestered. Adapted from [114].

their spatial distribution, which may impact cell tracking, polarity, adhesion, and
cytoskeletal organization during pathological processes (e.g., cancer development
and progression) [114, 123, 124]. Thus, the internalization of transmembrane
receptors allows for their dynamic organization over the plasma membrane and
may be required for an appropriate signaling response.

Although some receptor classes access many of the same signaling pathways, their
dynamics are significantly different. Each cell surface receptor may be activated
by distinct ligands, triggering different signaling outcomes [125]. Some ligands can
activate different RTKs too [116]. Interestingly, the activity of transmembrane
receptors is even possible in the absence of ligands (basal activity). Ligand-bound
GPCRs can also trigger the activation of unbound EGFRs through transactivation
[126]. In addition, some ligands can bind different receptors together, mediating
distinct biological responses. Besides, RTKs directly interact with the plasma
membrane and the cytoskeleton. Altogether, surface receptors translate the
biochemical profile of the ECM into biochemical signals inside the cell through

many different interactions, occurring under a wide variety of circumstances.
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Figure 2.2: Extrinsic regulators of 3D cell migration. Different properties of
the surrounding microenvironment can regulate or modulate cell migration. (a) The
concentration of each extracellular matrix (ECM) component can vary locally creating,
for example, gradients of stiffness (durotaxis) or ligand concentration (haptotaxis), biasing
cell motility. (b) The presence and size of pores within the 3D environment—which can
be altered by ECM crosslinking and may be dependent on ECM or tissue stiffness—and
the level of confinement of cells mediated by the ECM modulate spatial obstruction of
the substrate (steric hindrance) to cell migration. (c) Local remodeling (for example,
by proteases or local force causing physical displacement of ECM components) can also
influence cell motion. The features of the local microenvironment can be overlapping; for
example, increasing the concentration of ECM components can increase local stiffness and
alter the sizes of pores. Adapted from [41].

By initiating these downstream signaling, chemoattractants influence cells
internal organization and their transcriptional regulation. As a result, these ligands
may initiate changes in cell polarity. Thus, chemoattractants may bias influence
cells’ trajectories, enabling directed migration and different physiological processes,

including immune response, wound repair, and tissue homeostasis.

For further review of specific aspects of cells’” ability to probe and internalize
biochemical cues see [111, 114, 116-118, 124, 125, 127-129].

2.1.2 Perceiving biophysical stimuli

Recently, much interest has focused on how biophysical factors, such as the
stiffness and the microarchitecture of the ECM, influence cell migration. Still,
our understanding of the role of these factors in cell motility is far from complete.
Partially, at least, because many of these biophysical cues cannot be incorporated
into and studied on flat surface assays. Indeed, 2D studies about the impact of
biophysical stimuli in cell migration are limited to planar substrates with stiffness
gradients [130], micropatterned barriers (e.g., slabs, micropillars, or microstencils)
[131], and other nanometer- to micrometer-scale topographies (e.g., nanoscale ridges,
needles, cones, sawtooth structures, or grooves) [132-135]. In 3D environments,
cells use different modes of migration (e.g., mesenchymal, amoeboid, lobopodial,
collective) based on the local ECM (Figure 1.2) [65, 76, 131]. For instance,

macrophages use an amoeboid-like migration in porous substrates, whereas in dense
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matrices such as Matrigel they use a mesenchymal-like one [97]. Furthermore, in
vitro studies suggest that the speed of migrating macrophages is stiffness-dependent.
Substrate stiffness can also guide cell migration (durotaxis) [46, 136, 137]. Indeed,
mesoderm stiffening is required and sufficient to trigger the collective migration
of neural crest cells during morphogenesis [138]. However, cells may also migrate
toward softer environments to generate higher traction forces [139]. The biophysical
properties of the tumor microenvironment contribute to cancer development and
progression too [140-143]. For example, increasing substrate stiffness led to a switch
from proteolytically-independent invasion to a proteolytically-dependent phenotype
in breast cancer cells [144]. Substrate stiffening also promotes EMT by controlling
the subcellular localization of downstream effectors [104]. Interestingly, ECM-
induced EMT correlates with TGFp activation by resident epithelial cells. Also, the
inhomogeneity of 3D environments may promote clustered cells to switch to a single
cell-dominated invasion [145]. Conversely, denser substrates and decreased porosity
would lead to the opposite switch, from individual to collective cell migration.
Thus, cells can sense the biophysical cues from the microenvironment and adapt

their behavior accordingly.

We refer the curious reader to other excellent reviews focused on the specifics of
how cells integrate biophysical cues from their surroundings and how they adapt
to such external stimuli [41, 75, 78, 112, 135, 141, 142, 146-149].

Biophysical cues

Many biophysical cues from the surrounding microenvironment can influence cell
migration. A list of the primary ECM features regulating or modulating cell
migration may include at least the following: (i) ECM topology, (ii) the molecular
composition of the ECM, and (iii) the local concentration of each ECM component
(Figure 2.2) [41]. However, many other factors influence cell motility too, such as (i)
ECM crosslinking, (ii) gradients of stiffness or ligand concentration, (iii) porosity
and pore size within the ECM, (iv) ECM stiffness, (v) ECM (visco-)elastic behavior,
and (vi) ECM confinement of cells. Whatsmore, some of these properties may be
overlapping [150]. For example, collagen alignment can alter the ECM pore size
and the micro-scale stiffness. Fibril diameter and intrafibrillar crosslinking control
fibril bending stiffness independently, which correlates with matrix mechanical
properties [151]. Increasing the concentration of Matrigel or ECM components
(e.g., collagen) can also increase ECM stiffness and alter the size of its pores [41,
152]. Therefore, we must study how distinct architectural features (e.g., geometry,
porosity, topology) affect cell behavior in these matrices. Lastly, during tumor

progression, the organization and composition of the ECM are altered [43]. As
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a result, tumoral tissue exhibits biophysical properties strikingly different than
those of its healthy equivalent. In summary, a wide variety of biophysical features
associated with the ECM affect cell motility.

The response of cells to ECM stiffness is cell-type specific [139, 146, 153, 154].
Still, there is ample evidence that substrate stiffness plays a role in cancer metastasis
as tumoral tissue is stiffer than its normal counterpart [40, 137, 142, 155]. Increased
stiffness may hinder cell migration due to an excessive steric hindrance [156, 157].
Besides, substrate rigidity in 3D may also impact cell-matrix interactions and
intracellular activity [63]. Preliminary reports from Higgins and colleagues [158]
suggest that decreased cell stiffness drives tumor-cell detachment and migration.
On the other hand, in stiffened matrices, cells must either soften or remodel the
surrounding environment to avoid migration arrest. Recent studies suggested that

ECM rigidity and deformation mediate cell mechanosensing [159].

Fibers comprising the ECM are usually aligned in a specific direction, anisotrop-
ically. Moreover, in mammary tumors, aligned collagen fibers are oriented perpen-
dicular to the tumor boundary [160]. Enhanced fiber alignment promotes a more
directed cell polarization and migration [161]. Indeed, elongated cells respond more
strongly to fiber alignment than those with a rounded morphology. Of note, cell-
matrix adhesions and Rho-mediated actomyosin contractility modulate cell responses
through the mesenchymal to amoeboid transition (MAT). Besides, the degree of
fiber alignment regulates the transition rates between elongated and rounded
morphologies. Notably, cells respond to ECM fiber alignment differently based on
dimensionality. Fiber alignment modulates protrusion rate and orientation [162].
It also promotes the directed migration of cells [163]. For instance, recent in vitro
studies suggest that, by aligning collagen fibers, cancer-associated fibroblasts may

help tumor cells migrate toward blood vessels during the initial stage of metastasis.

When ECM pores are about the size of cells or slightly smaller, cells seem to
migrate more effectively [74, 160]. However, if pores are significantly smaller than
cells, their nuclei may impede cell migration because of their size, rigidity, and
limited deformability [164]. On the other hand, pores bigger than the cell size
may also impede migration as cells cannot develop protrusions and adhere to the
ECM properly [165]. ECM architectures with narrow pores and short fibers seem
to confine cells to a rounded shape and altered protrusion dynamics independently
of substrate rigidity or bulk collagen density [166]. Hence, understanding the
intricacies of how cells sense all these features may allow us, for example, to develop

novel and effective techniques against metastasic diseases.
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Tweaking the biophysical properties of the substrate in vitro

The ability to modify and customize the biophysical profile of the microen-
vironment is essential to understand how it affects cell migration. We already
know how to tweak in vitro some of the biophysical properties of the ECM to
study different setups. For example, the presence of polyethylene glycol (PEG)
crowding agent during low-density collagen polymerization produces a more confined
architecture [166]. Particularly, fiber length and pore size decrease to levels that
more closely resemble high-density collagen matrices. However, the mechanical
properties of such substrates are still those of low-density collagen matrices. In
alginate-PEG hydrogels, PEG density modulates stress relaxation [167]. Mason and
colleagues [168] tuned the mechanical properties of collagen-based scaffolds using
non-enzymatic glycation of the collagen before polymerization. As a result, they
produced collagen gels with a threefold increase in compressive modulus without
significantly altering the matrix architecture. Matrigel, on the other hand, increases
the stiffness and pore size of otherwise collagen-based hydrogels but decreases
the number of pores [152]. Polymerization temperature also modulates network
architecture [150]. Indeed, increasing polymerization temperature increases network
connectivity and decreases pore size. Besides, aligned and random matrices were
significantly stiffer at 25°C than at 37°C. Wisdom and colleagues [169] designed a
series of hydrogels for 3D cell culture with modulated plasticities. Such hydrogels
presented stiffness akin to that of tumoral tissue, equal concentrations of basement
membrane (BM) ligands, nanoporosity analogous to BM, and limited susceptibility
to cell-mediated degradation. Increasing covalent crosslinking of reconstituted
basement membrane (rBM) matrices reduces mechanical plasticity and contributes
to tissue stiffening too [40, 170]. Besides, even though Tissue transglutaminase
(TG2)-mediated crosslinking does not prominently increase the shear modulus at
low strains, it promotes earlier stiffening [171]. Hence, it is already possible to study
the effects of many of these biophysical properties in isolation. Nonetheless, the
scientific community is still interested in uncovering new ways of fine-tuning some
of these properties, not only in isolation but also in aggregate [152, 172]. Next, we
will describe the players and mechanisms allowing cells to sense such biophysical

stimuli and how these cues influence cell migration.

Internalization of biophysical stimuli

Mechanotransduction enables cells to probe for biophysical features. It involves
different membrane receptors (e.g., ion channels and growth factor receptors), and

a wide range of proteins and assemblies, such as integrins and integrin adhesion
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complexes (TACs) [159, 173-175]. Ion channels tightly control cellular voltage
through the influx or efflux of ions, which trigger downstream signaling cascades
[176-179]. They are activated by distinct stimuli, including ligands, temperature,

and force (e.g., tensional stretch, shear stress, membrane tension).

Integrins are one of the primary transmembrane receptors that play a central
role in cell-matrix interactions [179-182]. These receptors also act as biomechanical
sensors of the microenvironment. As a result, integrins allow cells to sense
haptotactic gradients composed of ECM components too [112]. Each integrin binds
to specific ECM components and cell surface molecules with specific spatiotemporal
distribution patterns in a given tissue [180, 183]. Distinct integrins can have
overlapping ligand specificity. In such cases, integrins may synergize, antagonize,
or complement their activities [184]. Moreover, every cell type has its specific
integrin profile, and they can modulate it to adapt to new substrates [69]. Note
that altered integrin expression is associated with several types of cancer and
other diseases [180, 181, 185, 186].

Integrins are activated through biochemical interactions and by forces trans-
mitted between intracellular and extracellular spaces (Figure 2.3) [179, 181, 182].
While activated, integrins have an increased affinity for ligand binding. In turn,
extracellular binding and force application promote integrin clustering, triggering
signaling pathways that couple integrins to the actin cytoskeleton [155, 181, 187,
188]. These integrin clusters, together with force-induced catch bonds, extend the
lifetime of adhesion sites. Their targeted downstream effectors are essential for
many processes such as cytoskeletal dynamics and cellular structure. Moreover,

some of these processes are fundamental for maintaining cell polarity.

Integrin traffic not only regulates their spatial distribution (i.e., their cell-surface
availability) but also IACs turnover [183, 189], based, among other factors, on
biophysical stimuli [190]. The specifics of integrin trafficking pathways, though,
depend on context and cell type [184]. As with other surface receptors (e.g., RTKs,
and GPCR), endocytosis allow integrins to be efficiently recycled back to the plasma
membrane or degraded by lysosomes (Figure 2.3). These processes are essential
for regulating integrin function and therefore to cell migration and invasion in 3D
substrates [189]. Interestingly, crosstalk with RTKs and other co-receptors modulate
integrin functions in migrating cells [116, 174, 175, 191]. This crosstalk between
integrins and growth factor receptors can enhance growth factor receptor activation
and focal adhesion kinase (FAK) phosphorylation [174]. Whatsmore, mechanical
stimuli can independently activate growth factor receptors without ligand-induced
activation [135, 174, 184]. The dynamics of these processes allow for adhesion

turnover, which is essential for mesenchymal cell migration.
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Figure 2.3: Sensing biophysical cues by means of the integrin dynamics. On
the plasma membrane, different factors (e.g., the forces from the ECM) enable integrin
activation and increased affinity for ligand binding. Inside-out signals regulate displacement
of intracellular integrin inhibitors and allow talin to bind to integrins, tightly controlling
integrin affinity for ECM ligands. In fibroblasts, recruitment of focal adhesion kinase
(FAK) to integrins has been suggested to precede talin recruitment. Integrin activation is
also promoted by an outside-in mechanism through ECM binding and force application
that slows the diffusion of integrin dimers within the plasma membrane. Force application
leads to integrin clustering and the initiation of integrin downstream signaling through
the coupling of integrins via talin and vinculin to the actin cytoskeleton. Reciprocally,
actin can pull on integrins, further contributing to force generation. In fibroblasts, focal
adhesions can mature further to fibrillar adhesions where talin is replaced by tensin.
Trafficking of integrins regulates their availability at the plasma membrane. Integrins are
constantly endocytosed from the plasma membrane. They are then efficiently recycled,
with a small subset of the receptors targeted to lysosomal degradation. Integrins can
be endocytosed via multiple different routes depending on the cell type, adhesion status,
and cellular signaling pathways that are activated. Force regulates integrin properties.
Integrin-ligand binding follows a catch bond behavior. When force (F') applied to the
ligand-bound integrin is below the optimal bond force (Fg), the strength (lifetime) of
the bond increases with force. When F' exceeds Fg, the bond lifetime decays with force.
Mechanical force (F') acting on integrins through their ligands can favor integrin unbending
and subsequent activation, thereby triggering outside-in integrin signaling. Activation
increases catch bond behavior, further strengthening the bond. If a given F' is applied
to an adhesion site, further integrin clustering decreases the force applied to individual
integrin dimers. This minimizes elastic energy since it decreases the applied strain, and
could thus be promoted. Adapted from [182].
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Integrin clustering initiates TACs formation [180, 183, 188, 192]. These IACs
allow cells to adhere to their surrounding ECM, probing biophysical cues and
transmitting forces. Of note, substrate stiffness and ligand spacing determine an
optimal force threshold for TACs formation and coordination with downstream
cascades [193]. During this initial stage of IACs formation, several proteins, such
as tensin and talin, are recruited to nascent adhesions [160, 182, 194]. As a result,
downstream effectors, including Ras-related C3 botulinum toxin substrate 1 (Racl)
and the Actin-related protein 2/3 (Arp2/3) complex, are activated, which induces
protrusions formation. These nascent adhesions are also critical for ECM haptotaxis
[112]. Integrin-mediated force transmission between cells and the ECM mature
nascent adhesions to focal adhesions, recruiting other proteins such as paxillin,
vinculin, and FAK [187, 195, 196]. In turn, FAK activates downstream pathways
controlling different cell behaviors such as adhesion and motility [40, 172, 197].
Recently, nuclear paxillin was also associated with enhanced tumor angiogenesis,
growth, and metastasis [198]. Focal adhesions may mature further to fibrillar
adhesions in some cell types (e.g., fibroblasts, platelets) [182, 184]. These are
long, thin, and centrally located adhesions, which enable fibronectin fibrillogenesis.
Interestingly, mechanotransduction on stiffer surfaces alters EGFR organization and
induces their clustering at focal adhesions [174]. Besides, IACs are not limited to
actin-binding cell ECM adhesions [184]. Instead, distinct proteins, when recruited
to integrins, allow for specialized functions and connections with the cytoskeleton.
The presence of Matrigel in collagen hydrogels increases the number and size of
focal adhesions [152]. Focal adhesions also serve as signaling hubs where several
signaling proteins group because of integrin activation and clustering [41]. Recent
studies have demonstrated that focal adhesions also form nutrient-sensing hubs,
which mediate, among others, spatially restricted growth factor receptor signaling
and nutrient uptake [199]. Consequently, these macromolecular assemblies transmit

mechanical forces and regulatory signals between cells and the ECM.

For more details about the main players and processes involved in the probe
and internalization of biophysical cues, we refer the inquisitive reader to other
comprehensive reviews [69, 117, 175, 176, 179-187, 190, 197, 200, 201].

2.1.3 Mechanics of cell migration

Cells rely on the coordination of four core biophysical processes to interact with and
migrate through 3D environments: (i) adhesion, (ii) cytoskeletal, and (iii) nuclear
dynamics, as well as (iv) matrix remodeling through cell-matrix interactions. The
biophysical properties of the ECM modulate several of these biophysical processes.

Migration through dense environments requires enhanced cytoskeletal remodeling
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to displace the surrounding ECM and enable cells to squeeze themselves through
narrower pores [106]. Cells also increase their protrusive activity to enhance matrix
remodeling and the probe for cell tracks, which would enable a more efficient
migration. As a result, cells increase their metabolism while migrating through
dense environments to meet higher energy demands [202-204]. Multiple signaling
mechanisms tightly regulate these processes [205, 206].

The Rho family of small guanosine triphosphatases (GTPases) is involved in
many signaling pathways activated during cell migration [207, 208]. Rho GTPases
such as Rho-related BTB domain-containing protein 1 (RhoBTB1) inhibit invasion
[209]. Besides, an altered expression of several Rho GTPases appears in different
human tumors and cancers [104, 206, 210-212]. Rho proteins are also involved in
the epithelial to mesenchymal transition (EMT). As a result, they enable carcinoma
cells to metastasize [206]. Hence, Rho GTPases are critical for cell motility.

The opposing actions of guanine nucleotide exchange factors (GEFs) and GTPase-
activating proteins (GAPs) regulate the activity of Rho GTPases [104, 209, 211].
Such dynamic regulation depends on a coordinated and localized activation and
inactivation of multiple proteins such as PI3K, FAK, and Src. Indeed, the ability
of RhoGEFs and RhoGAPs to form complexes with such proteins is fundamental
to spatiotemporal regulation of Rho GTPase activation in migration and invasion
[205, 213]. Notice that cellular events can be regulated by integrated signaling
networks instead of a specific signaling cascade. Therefore, the same stimuli in
different cell contexts could promote distinct responses. The dynamics of such
signaling events are thus varied and tightly regulated.

Distinct authors have reviewed in more detail specific players and events
involved in the mechanics of cell motility (see [49, 65, 86, 104, 160, 172, 205-208,
210-212, 2147226]).

Next, we will summarize our current knowledge of the aforementioned four
core biophysical processes enabling cells to interact with and migrate within 3D
environments. In particular, we will highlight the roles of (i) cell-matrix and
cell-cell adhesions; (ii) the cytoskeletal actin microfilaments, microtubules, and
intermediate filaments; (iii) the nucleus; and (iv) cell-matrix interactions enabling
matrix remodeling through alignment, degradation, deposition and crosslinking.

Adhesion dynamics

Different modes of migration depend on adhesive complexes. For example, individual
fibroblasts may use mesenchymal migration mediated by cell-matrix adhesions during
wound healing. However, collective migration used by neural crest cells during
embryogenesis requires cell-cell junctions [87]. Besides, cell-matrix and cell-cell
contacts play an important role in mechanotransduction [159, 174].
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Cell-matrix adhesions for individual migration

Cell-matrix adhesions, essential for mesenchymal cell migration, support force
transmission between extra- and intra-cellular spaces (Figure 2.4a). They also allow
cells to probe the biophysical properties of the substrate. These adhesions are
of particular importance in 3D scenarios where cells have to squeeze themselves
across ECM pores. In 3D microenvironments, cell-matrix adhesions are longer
and more elongated than the 2D counterpart. Indeed, fibroblasts seem to attach
more strongly to the ECM in 3D domains than on flat surfaces. Still, integrin-
mediated adhesions are not essential for 3D cell migration. More confining ECM
architectures (i.e., smaller pores and shorter fibers) alter protrusion dynamics by
reducing, but not eliminating, cell adhesions to the substrate [166]. Moreover,
high confined spaces featuring low-adhesion properties abolish focal adhesions.
Fast actomyosin retrograde flow allows cells to generate sufficient friction. As a
result, cells switch to rapid amoeboid-like cell migration, propelling themselves
forward. Active water transport through the cell membrane may induce an osmotic
pressure gradient, which can also initiate and sustain friction-driven cell migration
in 3D surroundings [160]. However, although cells can migrate without cell-matrix
adhesions under specific circumstances, such adhesive complexes are fundamental

for many biological responses.

Cells’ ability to adhere to the substrate involves different players. Adaptor
proteins, such as talin and vinculin, couple integrins located at TACs to actin
microfilaments. As a result, cells’ cytoskeleton binds to the substrate [155, 172, 227].
Adaptor proteins also interact with cells’ cytoskeleton through intermediate filaments
and microtubules [228]. However, the scientific community still lacks a detailed view
of how adaptor proteins behave under different conditions. For example, Kluger
and colleagues [229] recently unveiled that vinculin acts as a mechanosensitive
logical gate, converting the input forces, pulling geometry (e.g., zipper-like vs.
shear-like), and magnitude into distinct structural outputs. Mechanical forces
generated during actin polymerization or by myosin motors initially exerted to actin
microfilaments are transmitted to different adaptor proteins. Then, these forces are
transmitted to transmembrane proteins, such as integrins, linking adaptor proteins
to the surrounding ECM. According to the molecular clutch hypothesis, contractile
forces are only optimally transmitted if the whole system (from actin microfilaments
to these adaptor proteins) is engaged. Otherwise, the adhesion complex cannot
maintain high force transmission because of an unstructured or fluidized, softened
cytoskeleton [230]. Also, preliminary reports from Newman and colleagues [231]

showed that IACs in protrusions enable actomyosin-mediated force transmission to
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Figure 2.4: Cell adhesions. Non-migratory cells must be stimulated to migrate by
transcription factors, growth factors, chemokines or physical forces. (a) They can migrate
as loose cohorts of individually migrating cells. (b) Cells can also maintain cohesiveness
by adherence using cell-cell adhesion molecules. (b1) When migrating collectively, cells
can organize into leaders and followers, in which the leaders—established by signaling
cues (for example, by diffusible growth and other factors) or by mechanical cues such
as those generated by neighboring cells—provide guidance as long as the biochemical
or biophysical signaling is maintained. Cohesive migration of cell populations can be
supported by two types of cell-cell interactions: contact inhibition of migration or contact
stimulation of migration. (b2) Contact inhibition of migration is a mechanism in which
colliding cells migrate in new directions after collision rather than cohering; however, on a
population level, this mechanism ensures that cells maintain similar polarities, thereby
resulting in directionality of migration in collectives. (b3) Contact stimulation of migration
provides a direct mechanism for maintaining cohesion. In this case, cells that migrate
away from contact with their neighbors cease migrating and resume migration only after
being contacted by another migrating cell. Adapted from [41].
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the nucleus. The ECM is paramount for this mechanism because substrate rigidity
directly controls when contractile forces are optimally transmitted. In fibrilar
collagen substrates, effective cell adhesion may require proteolytic activity [166].
Thus, adaptor proteins and other proteins, different factors such as ECM stiffness,

and processes (e.g., matrix degradation) play a part in cell-matrix adhesions.

Cell-cell adhesions for collective migration

Collective migration depends on cell-cell interactions coordinated with the actin
cytoskeleton (Figure 2.4b) [48, 131]. By establishing attachments between cells and
coupling their cytoskeletons, cells can sense and transmit forces between them [174].
These attachments also enable stress distribution between cells [47, 228]. As a result,
cells can integrate external signals from and communicate over longer distances,
which allows them to sense shallow biochemical and biophysical gradients [130].
Cell-cell coupling enables multicellular assemblies to migrate and rearrange during
morphogenesis and tissue repair [131, 232]. These cohesive cell groups ensure the
proper formation and repair of organs. Unfortunately, cell-cell adhesions can also
drive cancer cell invasion [233]. Multicellular assemblies may display front-to-back
polarity, where leading cells coordinate the migration at the front edge [131, 232,
234]. For instance, in epithelial monolayers exposed to an empty edge, leader cells
drag follower cells by forming large lamellipodia and maintaining robust cell-cell
adhesions with them (Figure 2.4bl). Therefore, cell-cell interactions and collective

migration are critical for other fundamental biological processes.

Different cell-cell adhesion systems are fundamental for collective migration,
including but not limited to adherens junctions and tight junctions [48, 174].
Adherens junctions are central hubs that control cell-cell cohesion and collective
cell migration during tissue dynamics and remodeling [48]. Although usually
associated with epithelial and endothelial tissues, adherens junctions may also
transiently form in mesenchymal cells. Distinct mechanisms (e.g., endocytosis,
cytoskeletal regulation) control adherens junctions’ stability. Rho GTPases are also
involved in these mechanisms [48, 131, 207]. Actin cytoskeleton coupling enables
contractile forces transmission across adherens junctions [131, 174]. On the other
hand, tight junctions form a central hub between cell-cell interactions and actin
dynamics. The primary role of tight junctions is to function as paracellular gates
restricting diffusion based on size and charge. Tight and adherens junctions seal
the paracellular space and adhere epithelial cells to one another [235]. They also
bind with the actomyosin cytoskeleton. Actomyosin dynamics are essential for the

formation, structure, and function of junctions during epithelium homeostasis and
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morphogenesis. Altogether, each cell-cell junctions have a different role, but all

are essential for cells to migrate collectively.

Cells may also repolarize and change their trajectory upon contact with one
another. An example of this phenomenon is contact inhibition of locomotion. This
mechanism of cell repulsion moves cells away from cell-cell contacts (Figure 2.4b2)

[62, 236-238], and can occur between cells of the same or different type.

Contact inhibition of locomotion is a multistep phenomenon, which initiates upon
a collision. Colliding cells accelerate toward each other and form cadherin-based cell-
cell adhesions. Then, their protrusive structures toward the contact collapse. Finally,
cells develop new protrusions away from cell-cell contacts, separate, and move
away. Note that cell-matrix adhesions play different roles in contact inhibition of
locomotion (e.g., inducing lamellae paralysis upon collision and enabling separation
by disassembling themselves near the contact afterward). Besides, cell-cell and
cell-matrix adhesions directly crosslink to actin and regulate cytoskeleton dynamics.
Cytoskeletal rearrangements are essential in contact inhibition of locomotion. In
particular, the importance of actin microfilaments and microtubules has been
demonstrated during the different stages of contact inhibition of locomotion. Small
GTPases, which regulate cytoskeletal dynamics, play also a fundamental role in
contact inhibition of locomotion. Racl activity, initially elevated in the leading edge
of the cell, is suppressed near the contact upon collision. In contrast, Rho activity
is stimulated around that contact region. Lastly, Racl activation is triggered in

the edge driving cells repolarization and separation.

Contact inhibition of locomotion opposes cell propulsion [46]. When migrating
collective, cells at the edge experience less contact inhibition of locomotion and
therefore have more propulsion than those at the core of the cluster. In this scenario,
edge cells also have stronger alignment interactions. Further, the collision properties

of malignant tumoral cells may influence the alignment of cell motion.

A less recognized phenomenon where cells change their migratory phenotype
upon contact with one another is contact stimulation of locomotion [41, 239)].
Complementary to contact inhibition of locomotion, in contact stimulation of
locomotion, cell-cell contacts stimulate collective migration (Figure 2.4b3). As a
result, cells that race ahead of the migrating cohort lose contact with the rest and
migrate poorly (if at all) when isolated. Only after restimulation by the group
of migrating cells, do these isolated cells regain the initial migratory phenotype.
Initially observed in neural crest cells by Thomas and Yamada [239], contact
stimulation of locomotion has more recently been observed in prostate cancer cells

[240] and myoblast-forming myotubes [241].
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Interactions between different adhesive complexes and with other cellular

components

Different adhesive complexes, such as cell-matrix and distinct cell-cell adhesions
(e.g., adherens junctions, tight junctions), seem to communicate with each other
[174, 242]. The regulation of cell-cell junction stability allows for different collective
migration modes and patterns [46, 131, 174]. Furthermore, EMT depends on the
regulation of cell-cell adhesions. The stability and strength of these adhesions
modulate the degree of the transition. Cell junctions provide positional cues that
guide the distribution of RTKs and their ligands [114]. They also transmit physical
information, regulating RTKs more directly. Whatsmore, cell-cell contacts can
inhibit RTK signaling. The interplay between cell-cell and cell-matrix interactions
enables cell monolayers to self-organize, migrate, and evolve [153, 243]. This interplay
regulates different phenomena such as tissue morphogenesis, EMT, wound healing,
and tumor progression. Cell-cell and cell-matrix adhesion are not only interconnected
[47]. Instead, the crosstalk between them affects downstream adhesion dynamics
and signaling transduction [174]. For example, cadherins and integrins activate
different Rho GTPases such as Rac, Ras homolog family member A (RhoA), and
cell division control protein 42 homolog (Cdc42). At the same time, Rho GTPases
intervene in regulating the formation of integrin-based focal adhesions and cadherin-
based adherens junctions. Other studies have revealed pathways controlled by
growth factor receptors and cadherins that regulate cell-cell adhesion and cell
migration [244]. The coupling to common cytoskeletal and scaffolding structures
is fundamental for the cadherin-integrin crosstalk. Therefore, tightly regulated

adhesion dynamics are required to enable cell migration plasticity.

Cytoskeletal dynamics

To navigate through complex and constraining environments and overcome physical
barriers, cells may remodel their cytoskeleton [39]. The cytoskeleton (Figure 2.5) is
a dynamic network of fibrillar structures located in the cytoplasm of cells [245-247].
This fibrillar network allows cells to modulate their shape and migrate by creating a
viscoelastic environment within themselves [50, 248]. In eukaryotes, the cytoskeleton
comprises actin microfilaments, microtubules, and intermediate filaments. These
three cytoskeletal components have starkly different stiffnesses and mechanical
behaviors. Besides, they could often spread over the entire cell because of their
length and straight shape [248]. Next, we will take a closer look at each of these

cytoskeletal components and how they are involved in cell migration.
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Figure 2.5: Cytoskeletal dynamics. (a) Assembly and organization of the actin
microfilament network. The Arp2/3 complex nucleate branched actin microfilaments.
Conversely, unbranched filaments may be nucleated de novo by the formins or generated
from a preexisting Arp2/3-nucleated network. Actin filaments grow toward the plasma
membrane, generating forces that move forward the leading edge. In filopodia, fascin
is the main actin microfilament cross-linking/bundling protein. Cofilin triggers actin
microfilament disassembly. (b) Microtubule structure and functions. Microtubules are
anchored at the centrosome and grow toward the cell cortex. Microtubule stiffness
paired with the viscosity of the cytoplasm allows them to resist large compressive
forces. Microtubule assembly and disassembly result in pushing and pulling forces. Stiff
microtubules may provide mechanical support against membrane retraction when actin
polymerization is driving membrane protrusion. Also, the growth of microtubules leads to
actin polymerization in protrusions. The binding of actin microfilaments and microtubules
through crosslinks allows actin microfilaments to guide microtubule growth toward focal
adhesions. (c) Organization and assembly of intermediate filaments. Monomers associate
to form dimers, dimers then associates to form a staggered tetramer, eight tetramers
associate to form a unit-length filament (ULF), ULFs anneal to form a thick filament, and
further annealing of ULFs results in filament elongation, which is followed by compaction
to achieve the final intermediate filament. By organizing into a cytoplasmic nuclear
cage, intermediate filaments protect the nucleus against compressive forces. Intermediate
filaments also provide mechanical support for the plasma membrane in contact sites with
other cells and the ECM. (d) Cytoskeletal interactions. Both actin microfilaments and
microtubules can act as transport tracks of ULFs and bind to intermediate filaments
through crosslinks. Further, microtubules act as transport tracks, enabling the delivery
and recycling or sequestering of integrins and other signaling molecules, such as guanine
nucleotide exchange factors (GEFs). As a result, microtubules regulate different processes,
such as mechanotransduction and actomyosin contractility.
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Actin microfilaments

Actin (de)polymerization Cell migration depends, among others, on the
dynamic formation and disassembly of actin microfilament networks (e.g., filopo-
dia, lamellipodia, invadopodia), which differ in their structure and functionality
(Figure 2.5a) [205, 249, 250]. These different actin-based structures are also
located in specific subregions of the plasma membrane. Distinct external cues
and downstream effectors are involved in actin dynamics. For one, the (dis)assembly
of actin microfilaments and monomer recycling in lamellipodia are regulated by
actin-binding proteins. Capping protein, cofilin, profilin, and cyclase-associated
protein are some examples of actin-binding proteins. Kinase-phosphatase networks,
small GTPases, and membrane phospholipids such as phosphatidylinositol 4,5-
bisphosphate (PI(4,5)P3) tightly regulate the activities of these actin-binding
proteins [251]. Receptors located at the plasma membrane, including RTKs, can
initiate signaling pathways where Rho GTPases may take part. Indeed, the Rac,
Cdc42, and Rho subfamilies promote actin cytoskeleton reorganization: from the
formation of actin-based structures and cell polarization to stress fiber formation
and Rho-mediated contractility [218, 252]. For instance, different stimuli, including
growth factors (e.g., PDGF, EGF) and integrin-mediated cell-matrix adhesions,
activate Rac. In turn, Rac activation stimulates PI3K and the Arp2/3 complex
[223]. Rac activation also creates a positive feedback loop that promotes active
Rac accumulation at the cell front. Note that PI3K is paramount for distinct
mechanotransduction pathways of, among others, the cardiovascular system [253].
Also, PI3K inhibition reverse fish keratocytes directed migration in electric fields
(galvanotaxis) [254]. However, during collective migration, PI3K inhibition does
not reverse the directed migration of large groups of these cells. Notably, smaller

groups do not exhibit persistent directional migration.

The Arp2/3 complex initiates the growth of new actin microfilaments, branches
of older actin microfilaments (Figure 2.5a). Interestingly, the Arp2/3 complex acts as
an actin amplifier as it stimulates the production of its own drivers (positive fedback
loop) [255]. Conversely, formins and enabled /vasodilator-stimulated phosphoprotein
(Ena/VASP) proteins promote nucleation and elongation of unbranched actin
microfilaments at the barbed end of actin microfilaments (Figure 2.5a) [206, 223,
256, 257]. Indeed, the formin Diaphanous-related formin-1 (mDial) localizes at the
leading edge of some cells (e.g., T-cells) and cooperates with the Arp2/3 complex
to initiate lamellipodium formation. The activation of Cdc42 stimulates PI3K,

the Arp2/3 complex, and Rho-associated protein kinase (ROCK)-mediated myosin
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contractility [256]. Heavily branched actin microfilaments made up the cytoskeleton
of lamellipodia (Figure 2.5a). Conversely, filopodia consist of tightly packed, paral-
lelly aligned actin microfilaments, with fascin as their main cross-linking/bundling
protein (Figure 2.5a) [206, 252]. Indeed, Racl and Cdc42 stimulate lamellipodia and
filopodia formation, respectively [218, 252, 256]. As actin microfilaments grow, they
push and protrude the plasma membrane forward [228]. By pushing the plasma
membrane, actin microfilaments increase membrane tension, which may act as a long-
range inhibitor for protrusions anywhere else under specific conditions [217]. Recent
reports on flat surfaces showed that protrusion initiation requires local depletion of
actin-plasma membrane links acting in coordination with actin polymerization [258].
The density of membrane-proximal actin microfilaments is low at the leading front
and high at the rear [259]. Cells migrating in one, two, or three dimensions exhibit
stable gradients of membrane-proximal actin microfilaments. By locally decreasing
the density of membrane-proximal actin microfilaments through cofilin, cells may

enable Rac-mediated protrusions onset, directing and promoting cell migration.

In contrast, ADF /cofilin, a family of actin-binding proteins, is associated with
the rapid depolymerization of actin microfilaments (Figure 2.5a). Of note, ADF
and Cofilinl are also required to prevent over-accumulation of stress fibers and
associated focal adhesions. They promote cortical actin flow as well as the leader
bleb-based migration of constricted cells [260]. Also, they modulate nuclear shape,

movement, and integrity [261].

Proteins involved in signaling pathways activated by extracellular cues, such
as PI3K, Racl, and FAK, influence actin dynamics in different ways, regulating
protrusion formation, stabilization, length, and lifetime [262—-264]. Interestingly,
in 3D substrates, protrusive activity increases with collagen density [202]. Cells’
dependency on ECM remodeling to migrate in dense environments could explain such
behavior. Furthermore, substrate stress relaxation regulates filopodial protrusions
(i.e., their lifetime, length, and number) and cell migration [265]. Overall, actin
microfilaments dynamics, which are tightly regulated (in time and space), are

fundamental for cell polarity and motility.

Contractile forces through the actin-myosin complex Rho/ROCK signaling,
including the RhoA effector, promotes focal adhesion formation and actomyosin-
mediated contractility upon integrin-ECM engagement [206, 223, 256, 266]. Rho/ROCK
suppression triggers the amoeboid to mesenchymal transition (AMT). The ser-
ine/threonine kinase ROCK cooperates with mDia to assemble actomyosin bundles
(e.g., stress fibers). Besides, Rac and ROCK negatively regulate each other [206].

Actomyosin contractility, together with Arp2/3-mediated actin polymerization,
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generates a retrograde flow of actin microfilaments [267]. When engaged by focal
adhesions, this retrograde flow of actin microfilaments promotes traction force. Focal
adhesions transmit pulling forces generated by these bundles to the ECM. Moreover,
as traction forces increase, so does the size of focal adhesions [268]. As a result, cells
can propel themselves forward, not only reorienting and lengthening the surrounding
substrate fibers but also increasing their density [269-271]. Of note, according to
the molecular clutch hypothesis, such forces may not be optimally transmitted
depending on substrate features (e.g., stiffness, viscoelasticity, and stored strain
energy) [159, 265, 272]. An enhanced actomyosin activity and cell contractility
enable cells to migrate against stiffness gradients [273]. Therefore, metastatic
cells (e.g., mammary, lung, prostate) may exhibit an adurotactic behavior in their

tumor-specific niche. However, less contractile cells tend to durotax on flat surfaces.

In collective migration, contractile actin cables may appear across neighboring
cells [131]. The associated actomyosin structures are coupled through adherens
junctions or tight junctions to propagate tension, for instance, during tissue repair.
Notably, cells seem to migrate along stress orientations, minimizing shear stresses.
The alignment of actin microfilaments influences how much tension can be generated
by these myosin motors [266]. Besides, cortical tension presents a biphasic response
on the level of connectivity. In networks too loosely connected, stresses do not
propagate, but those densely connected are too rigid and, although stresses do
propagate, such networks cannot actively be remodeled. As a result, cells may
actively regulate the connectivity of their actin cortex while changing their shape.
In summary, the Rho/ROCK signaling is essential for cells to exert actomyosin-

generated contractile forces over the ECM.

Stress fibers are essential for adhesive-dependent migration, as they couple
focal adhesions to the cytoskeleton and the nucleus [274-276]. Different stress
fiber subtypes (based on their location, composition, and anchorage to focal
adhesions) bear unique mechanical properties and structural roles [277]. Vignaud
and colleagues [278] demonstrated that stress fibers are not independent structures
with discrete connections between them. Instead, stress fibers are embedded
entirely in a contractile cortical actin network. This cortical meshwork allows
for contractile forces exerted by stress fibers to propagate across the entire cell,
actively contributing to traction force transmission to focal adhesions. Consequently,
the contraction of the cortical meshwork impacts the overall magnitude of cells’
contractile energy. Interestingly, Tavares and colleagues [279] demonstrated that
a transient accumulation of stress fibers increases cell rigidity before cells acquire
malignant features. Later on, a higher Src contractility would disassemble stress

fibers to facilitate cell migration.
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Although initially stress fibers were thought to be an artifact of 2D culture, more
recent publications indicated that contractile stress fibers are also fundamental in
vivo [275]. For instance, transmembrane actin-dependent nuclear lines, stress fibers
crossing the nuclear envelope and essential for nuclear movement, are also present
in cells within 3D cultures [280]. Distinct cell types exhibit differences in stress fiber
organization in 3D [281]. For example, pancreatic fibroblasts cultured in soft matrices
displayed randomly organized stress fibers, while in those within stiffer ECMs, stress
fibers presented a more organized pattern. Conversely, cancer-associated fibroblasts
exhibited well-organized stress fibers. Still, mammary epithelial cells (MEC) within
mechanically tunable 3D culture models did not present stress fibers [282], which
may suggest that stress fibers formation is context-dependent. Indeed, amoeboid-
like migration seem to lack stress fibers [50] and does not require Rac/Cdc42-driven
actin polymerization [206]. Thus, mesenchymal migration requires stress fibers to

transmit pulling forces across cells’ cortical actin meshwork.

For further details about actin dynamics see [249, 251, 252, 257, 266, 275, 283,
284].

Microtubules

Microtubules are also involved in several processes associated with cell migration.
For one, their ability to resist high compressive loads and generate pushing forces
makes them a relevant contributor to protrusion formation and maintenance [285,
286] (Figure 2.5b). They can also generate pulling forces to move the cell nucleus and
facilitate rapid and directional transport of specific cellular components based on cell
polarity. Microtubules growth would activate Rac-mediated actin polymerization,
whereas depolymerizing microtubules would increase actomyosin contractility via
Rho activation [286—289]. Note that microtubule outgrowth promotes a reduction
in focal adhesion size and disassembly [268, 288, 290]. Moreover, RhoA and formins
such as Diaphanous-related formin-2 (mDia2) regulate microtubule stabilization.
Bouchet and colleagues [291] showed that the elongated shape of mesenchymal cells
and their migration in 3D environments (in vitro and in vivo) requires persistent
microtubule growth at the cell cortex. Interestingly, substrate stiffness regulates
the polarization of the microtubule network during cell migration [292]. Further,
ECM stiffening stabilizes microtubules and reorganizes the microtubule network
[287]. Therefore, the ability of microtubules to generate pushing and pulling forces
supports protrusive structures and cell organization, and its dynamics—regulated

by Rho signaling and the ECM—influence cell morphology and migration.
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Regarding molecular trafficking to and from the plasma membrane, microtubule
motors serve as cargo tracks for cytoskeletal regulators and components, from
integrins, Cdc42, and Rac GTPases to intermediate filaments (Figure 2.5d) [285,
286, 288]. They also carry messenger ribonucleic acid (mRNA) encoding proteins
involved in actin polymerization, such as the Arp2/3 complex. Microtubules
participate in matrix metalloproteinase (MMP) exocytosis [285, 288, 289]. Different
studies suggest that microtubules may further act as an endocytosis controller
[285]. Microtubules anchored to the plasma membrane serve as tracks for the
transport of exocytic vesicles to focal adhesion sites. Consequently, they allow for
focal adhesion disassembly and promote their turnover. Hence, microtubule-based
intracellular trafficking contributes to cell polarization, protrusion formation, and

focal adhesion turnover during migration.

By interacting with other cytoskeletal networks and cross-linking proteins,
microtubules are guided toward focal adhesion and establish stable anchorages in
their vicinity (Figure 2.5d) [288, 293]. Formins mDial and mDia2 take part in
the orientation and alignment of the microtubule and actin networks in different
cell types. Intermediate filaments may also play a role in this process, but further
studies are required to shed some light on this matter. The microtubule-anchoring
machinery is crucial in regulating focal adhesion dynamics and cell migration in
response to specific ECM components. Besides, this mechanism might be cell type-
dependent and cue-specific. Microtubules can also affect Rho GTPase signaling
and stress fiber assembly [172, 285, 288]. Recent studies on astrocytes depicted
a novel crosstalk between actin and microtubules [294]. In particular, rigidity-
dependent microtubule acetylation would alter the dynamics and distribution of
focal adhesions, as well as actomyosin contractility. These interactions, downstream
of integrin-mediated signaling, would promote mechanosensitive migration. Thus,
actin microfilaments are crucial for cell migration because of their role in protrusions
formation and stabilization, focal adhesion turnover and regulation, cell polarity,
and membrane vesicle trafficking [50, 172, 288].

For more details about the MTs dynamics see [286, 289).

Intermediate filaments

Intermediate filaments play a leading role in reinforcing cell structure and
organizing cells into tissues. They maintain the mechanical integrity of the cytoplasm
and regulate the organization of cellular organelles. Although the intermediate
filament structure is highly flexible, intermediate filaments are more stable than

actin microfilaments and microtubules, which allows for their role as scaffolds.
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Intermediate filaments can spread through the entire cell cytoplasm, encapsu-
lating the nucleus (Figure 2.5¢) [172, 295, 296]. The spatiotemporal localization
of intermediate filaments is phosphorylation-dependent. Moreover, these phospho-
rylation events have a functional role in different cellular processes, including cell
migration [296]. For instance, intermediate filaments promote the formation and
maturation of focal adhesions, which stabilize FAK, and influence integrin clustering,
recycling, and motility [296-298]. They also influence signaling pathways regulating
actin dynamics, cell polarity, and cell migration.

Regarding intermediate filaments’ structural role, they provide mechanical
support for the plasma membrane in contact sites with other cells and the ECM
(Figure 2.5) [295, 296]. They can also behave as an elastic and conductive network
to transmit force and propagate mechanical stimuli within and between cells via
adhesion complexes. Indeed, tensile forces reinforce stress fibers by a coordinated
effort between Rho signaling and the intermediate filament network. Still, at
larger forces and extensions, intermediate filaments deform in a plastic manner,
stiffening and decreasing their diameter [295]. Besides, once organized into networks,
intermediate filaments acquire viscoelastic properties based on the number of

crosslinks and which intermediate filament proteins are involved.

Intermediate filaments may participate in protein traffic by interacting with
microtubules and with intracellular compartments and regulators of membrane
trafficking. They also assemble into the nuclear lamina—which binds to the
inner nuclear membrane and the chromatin—and act as a nuclear scaffold and
mechanosensor [299-301]. Moreover, the composition of the intermediate filament
network is cell-type specific. It depends on the mode of migration and thus
on the properties of the surrounding ECM. The intermediate filament network
may be optimized to protect the cell and regulate the distribution of actomyosin
pulling forces throughout the cell [297]. Additionally, recent studies suggest that
intermediate filaments optimize collective cell migration by regulating actomyosin-
generated forces [234, 302]. Hence, intermediate filaments play different roles in

distinct cellular regions and influence several processes involved in cell motility.

We refer the inquisitive reader to some excellent reviews focused on specific
details of IFs dynamics [295-298].

Interactions between different cytoskeletal networks and with other

cellular components

Although often viewed as three separate entities, actin microfilaments, inter-

mediate filaments, and microtubules cooperatively interact with each other [50,



38 2.1. Mechano-chemo biology of cell biology

293, 296]. For example, through multiple direct, indirect, and steric interactions,
actin microfilaments and microtubules influence intermediate filaments organization
(Figure 2.5d). Moreover, perturbing actin microfilaments, microtubules, or their
associated molecular motors can trigger intermediate filaments collapse. Cross-
linking proteins hold together actin microfilaments and myosin motors in stress
fibers. In turn, stress fibers bind to the microtubule network enabling cytoskeleton
contractility [172, 303]. Vimentin (one of the most abundant members of the
intermediate filament family) stabilize microtubules by direct interactions, decreasing
microtubule catastrophe and increasing the rescue of depolymerizing microtubules.
Furthermore, actin seems to modulate microtubule dynamics and their lifetime
based on the actin network architecture. Shanghvi-Shah and colleagues [296] also
noted that cells use the available cytoskeletal network to facilitate adhesion and
cohesion and balance intracellular tension and externally-derived stresses. More
recently, Doss and colleagues [304] showed that, at least in 2D substrates, active
and passive cytoskeletal stresses regulate cells’ ability to respond to ECM stiffness.
They also found that crosslinks and the relative cell-to-ECM elasticity modulate
the organization of the actin cytoskeleton. Tension transmitted through the ligand-
receptor axis is crucial for the organization of the actin cytoskeleton, at least in
T cells [305]. Integrin-based adhesions mediate interactions between microtubules
and the actomyosin network [268]. These interactions strongly influence focal
adhesions too. The coupling between microtubules and integrins locally regulates
Rho/ROCK signaling. It also modulates the formation of myosin filaments. In turn,
these myosin filaments act as controllers of integrin-based adhesions. Microtubules
disappear from trailing protrusions before or during their retraction [306]. Notably,
microtubule depolymerization locally coordinates actomyosin contractility and
competing protrusions when cells migrate within complex environments [307]. Other
studies on flat surfaces showed that the architecture of the actin network defines the
position of the centrosome, the main organizer of microtubules [308]. In particular,
the centrosome is located at the geometric center of an inner space devoid of
actin bundles. Nonetheless, the spatial distribution of cell adhesions regulates
the anisotropy of the actin network. Therefore, this location may not be the
geometric center of the cell. Besides, based on the level of actomyosin contraction,
the nucleus may displace the centrosome from this position. Noteworthily, the
cortical actomyosin network modulates the organization of components of the plasma
membrane, and the plasma membrane composition can also regulate cytoskeletal
dynamics [309]. Such dynamic interplay between plasma membrane organization
and the actin cytoskeleton provides the cell with a stable yet flexible cell surface

that can continuously adapt to the surrounding environment.
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Cytoskeletal dynamics, initiated by cell migration, activate transcriptional coacti-
vators Yes-associated protein (YAP) and Tafazzin (TAZ), triggering a transcriptional
regulation program. Indeed, FAK controls YAP/TAZ nuclear translocation via the
RhoA pathway, which is promoted by increasing ECM stiffness and faster stress
relaxation [40, 206, 310, 311]. Interestingly, the nuclear transport of YAP and
other transcriptional activators may not depend on contractility per se [61]. Rather,
it would rely on contractile strain energy transmission to the nucleus and stress
generation in the nuclear envelope. This transcriptional regulation program feeds
back to modulate cell mechanics, maintain a responsive cytoskeletal equilibrium,
and prevent migration arrest [312]. Cell spreading on flat substrates promotes stress
fiber formation and YAP/TAZ nuclear shuttling through Rho GTPases. Once in
the nucleus, YAP regulates cell mechanics by controlling focal adhesion assembly
[313, 314]. Moreover, the activity of YAP/TAZ—which limits cytoskeletal tension
and focal adhesion maturation—although not required for initiating cell migration,
is essential for persistence cell motility [315]. Transcriptional co-factors YAP/TAZ
are also required in and induce several steps of the invasion-metastasis cascade [316,
317]. Notably, YAP not only promotes focal adhesion assembly but also tumor
invasiveness by regulating FAK phosphorylation in breast cancer [318]. Besides,
YAP/TAZ activity also enhances TGFf signaling, which drives substrate stiffening
[40], and crosstalks with VEGF during angiogenesis [313]. Nevertheless, the role of
YAP in mechanotransduction is context-dependent. Indeed, YAP does not mediate
mechanotransduction in breast cancer [282] but does so in other in vivo contexts

such as pancreatic cancer [75, 319].

In summary, all three cytoskeletal networks must act in coordination for an
efficient cell migration [50]. They not only share common regulators, but each of
them can also influence the other two through cytoskeletal crosslinks or signaling
pathways. As a result, cells can adapt to an always-changing environment. Such
crosstalks between actin microfilaments, intermediate filaments, and microtubules
are involved in cell polarity, protrusions formation, cell adhesion, and contractility.
Moreover, all three cytoskeletal components are associated with cancer by interacting
with signaling pathways or through proteins that participate in their dynamics
[256]. Overall, different signaling effectors tightly regulate the dynamics of the
cytoskeleton. They can be dependent on cell type and the profile of the surrounding

microenvironment. They are also fundamental for cell motility.

Nuclear dynamics

The nucleus is the largest, most complex, and organized organelle within the cell. It

is also the most rigid. It comprises different structures such as the nuclear envelope,
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the lamina network, and chromatin, a complex of DNA and proteins forming
the chromosomes of eukaryotic cells (Figure 2.6). In 1D and 2D environments,
establishing cell polarity and migration does not depend on the cell’s nucleus [320].
Still, in 3D domains, it may be essential for proper cell contractility and migration
[321]. For example, in confining viscoelastic environments, mesenchymal stem cells
(MSCs) create migration paths through a nuclear piston [322]. Amoeboid cells often
migrate with their nucleus in front of the microtubule-organizing center (MTOC)
as well as the Golgi apparatus (Figure 1.2) [306, 307]. In this configuration, the
nucleus would act as a mechanical gauge, enabling cells to distinguish between pores
of different sizes. As a result, cells would preferentially migrate along the path of
least resistance. Conversely, the posterior passage of the MTOC beyond an obstacle
or through a gap would determine the future trajectory of the cell. Then, all but the
leading protrusion should retract by cutting off their microtubule supply. Note that,
in confined environments, the nucleus is the main source of steric hindrance for 3D
migration [164]. Recent studies reported that HT1080 (fibrosarcoma) cells within
confined 3D substrates show speed accelerations by nucleus deformation and recoil

[321]. Nuclear dynamics can thus, also play a fundamental role in 3D cell migration.

Interactions between the nucleus and other cellular components

Cells cultured on rigid flat surfaces spread and flatten their nucleus [323].
Conversely, on soft 2D substrates and in 3D hydrogels, cells promote a rounded
or elliptical nuclear shape. Confined spaces have low porosity and constraining
micropores. Besides, sometimes cells need to cross physical barriers. In such
scenarios, cells may deform and change the morphology of their nuclei (Figure 2.6)
[301]. Cells would also attach to the ECM via integrins and focal adhesions, while
stress fibers exert high contractile forces transmitted to the nucleus through nuclear
anchorage proteins [300, 324]. The linker of nucleoskeleton and cytoskeleton (LINC)
complex and the nuclear pore complex are some of the main players enabling
nucleus-cytoskeleton interactions [320, 325, 326]. The LINC complex couples these
two cellular components together, whereas the nuclear pore complex allows the
transport of molecules across the nuclear envelope. Furthermore, the LINC complex
is also essential for nuclear mechanotransduction and translocation [66, 300, 320,
327]. Note that the LINC complex includes two protein domains, which span
the inner nuclear membrane and the outer nuclear membrane. Different proteins
such as nesprins bind the cytoskeleton to the nucleus through proteins from the
inner nuclear membrane Sadl and UNC-84 domain containing 1 and 2 (SUN1/2)
(Figure 2.6) [172, 228]. Indeed, by accumulating at the front of the nucleus during
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Figure 2.6: The nucleus during 3D cell migration. Mesenchymal cell migration
within the extracellular matrix (ECM) requires multiple steps, including nuclear rotation
and repositioning. Translocating the bulky nucleus of migrating cells through ECM barriers
can become challenging unless the ECM is loose or highly pliable. Alternatively, the
nucleus can be used to drive lobopodial cell migration, acting as a pressure-generating
piston. Also, during amoeboid migration, cells can use the nucleus as a mechanical gauge
or ruler by presenting it anteriorly to ‘measure’ the diameter of pores or passages in
the ECM microenvironment. The cell then translocates through a passageway that is
sufficiently wide to accommodate the bulky nucleus as the route of least resistance. The
LINC complex is at the center of the nuclear-cytoskeletal coupling. On the cytoplasmic
side, different nesprin isoforms connect the nucleus to the cytoskeleton. In the perinuclear
space, nesprins bind SUN proteins, which span the inner nuclear membrane (INM) and
interact with the nuclear lamina through lamin A. Emerin, a protein from the inner nuclear
membrane, anchors SUN protein to lamin A and interacts directly with chromatin. NPC,
nuclear pore complex. ONM, outer nuclear membrane. Adapted from [172].

confined cell migration, nesprins contribute to pulling it forward through narrow
micropores and constrictions [324]. This nucleus-cytoskeleton coupling allows, for
instance, microtubules to interact with proteins from the outer nuclear membrane,
exerting mechanical forces onto them. In turn, proteins from the outer nuclear
membrane relay these forces to the proteins from the inner nuclear membrane, the
nuclear lamina, and chromatin [325]. These mechanical forces may alter the nuclear
shape and induce nuclear envelope invaginations. Also, actin microfilaments located
above the nucleus (perinuclear actin cap) align cells nuclei with the orientation of
migration in some cell types (e.g., fibroblasts) [328]. As a result, cells can adapt

and respond to external cues from the ECM.

Exerting high pushing and pulling forces may not be sufficient for cells to

overcome these obstacles, though. Cells may also need to deform and change the
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morphology of their nuclei to migrate (Figure 2.6) [301, 328]. Cells can modulate
the ratios of lamins located in this organelle [300, 329-331]. As a result, cells
contribute to the nucleus viscoelasticity by regulating the nuclear morphology and
deformability. Mukherjee and colleagues [332] inhibited lamin A/C phosphorylation
in HT-1080 fibrosarcoma cells, which increased their nuclei stiffness. Those cells
migrate through 3 pm pores less efficiently than within 5 pm pores. They exhibited a
dramatic change in nuclear circularity, suggesting that their nuclei underwent plastic
deformation. Also, the proportion of nuclei with blebs after migrating through
such pores increased threefold compared to the control group. Shiu and colleagues
[333] showed that lamin A/C null fibroblasts exhibited a strongly reduced integrin
clustering into the perinuclear region. The authors also reported an impaired

YAP nuclear translocation.

Interestingly, Harada and colleagues [334] showed that 3D cell migration is
biphasic in lamin-A levels. Moreover, partial loss of lamin-A is associated with
several types of cancers (e.g., lung, breast, colon, ovarian, and prostate) [323].
While lamina dominates the mechanical resistance at large deformations, chromatin
primarily governs such behavior for small ones [330]. Indeed, cells can change the
balance of open and condensed chromatin within their nuclei [299, 331]. For instance,
confined conditions in 3D induce chromatin decompaction and seem to decrease
nuclear stiffness. Variations in substrate rigidity can also drive changes to the nucleus
and chromatin state [301, 335]. Indeed, stiffer ECMs increase lamina-associated
chromatin and the number of accessible chromatin sites. Such an event induces a
tumorigenic phenotype in mammary epithelium. Interestingly, microtubules may
also alter lamin phosphorylation and regulate chromatin dynamics [325]. The
former, through the tension exerted onto the nucleus, while the latter by mediating
the transport of specific molecular cargo within or to the nucleus. Microtubules
not only interact with the nucleus through the LINC complex. They also force
the transport of effector molecules and DNA repair proteins through nuclear pore

complexes to influence chromatin and promote genome stability, respectively.

Constriction-induced deformation of the nucleus can have deleterious effects
such as nuclear envelope rupture and excessive DNA damage (Figure 2.6) [300, 320,
336, 337]. Cells have some protective mechanisms against these events. The nuclear
lamina is an organized meshwork of different lamins (i.e., intermediate filaments)
underlying the nuclear envelope and separating the nucleus from the cytoplasm.
Together with the cytoskeleton, it protects the nucleus against high nuclear stress
[323]. Interestingly, Nava and colleagues [299] recently showed that persistent,
high-amplitude stretch triggers a protective mechanism against DNA damage. As a

result, the supracellular alignment of tissue redistributes stress before it reaches the
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nucleus. Such tissue-scale mechanoadaptation involves a separate signaling cascade
mediated by cell-cell contacts. This process allows cells to switch off the nuclear
mechanotransduction and restore their initial chromatin state. Defects on nuclear

dynamics are associated with the onset of devastating diseases [300].

Novel studies on MSCs showed that the nuclear envelope is wrinkled on soft
2D hydrogels [61]. However, on stiff 2D substrates (plastic or rigid glass), most
cultured MSCs exhibited smooth nuclei, that is, little to no nuclear envelope
wrinkling. A similar trend emerged in 3D systems, where MMP-degradability would
determine the nuclear envelope morphology. Cell spreading would only happen
after cytoskeletal tension removed nuclear envelope wrinkling in cells cultured on
flat surfaces. Robust focal adhesion maturation would also require a taut nuclear
envelope. In MMP-degradable hydrogels, MSCs exhibited prominent stress fibers
and nuclear envelope wrinkling caused by actin impingement. Interestingly, a
wrinkled nuclear envelope may also be associated with the chromatin-dominated
regime of mechanical resistance. Conversely, a nuclear envelope with no wrinkles
would indicate that the nucleus is under higher deformations and that lamins are

the leading mechanical regulator of nucleus rigidity.

Recent works have proven the nucleus’s ability to measure cellular shape
variations [338, 339]. In particular, cell confinement below a threshold height deforms
the nucleus. It also triggers actomyosin contractility, promoting fast amoeboid cell
migration. As a result, cells might avoid getting stuck in their surroundings, of
relevance during cancer cell invasion, and immune cells patrolling across peripheral
tissues. It may also be paramount for progenitor cell motility within a highly
crowded cell mass of a developing embryo. Hence, the dynamics of cells’ nuclei

allow them to migrate even across some of the most challenging 3D environments.

Different authors have reviewed specific aspects associated with nuclear dynamics
(see [300, 301, 320, 323, 328, 331, 337, 340]).

ECM remodeling through cell-matrix interactions

Cells are continuously interacting with the ECM not only probing for cues, but
also remodeling its structure [39, 47]. Such interactions between cells and their
extracellular environment involve distinct mechanisms. The cell phenotype and
the profile of the substrate determine which of these mechanisms are activated.
For example, hydrogels with higher stress relaxation amplitudes seem to promote
cell penetration and ECM remodeling [81]. This would enhance cell elongation,

migration, and proliferation [81].

For further details on particular aspects of ECM remodeling see [40, 43, 143,
228, 341-346].
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Figure 2.7: Matrix remodeling through cell-matrix interactions. (a) Mechanical
forces exerted by cells can structurally remodel the surrounding matrix by stretching and
aligning fibers of the extracellular matrix (ECM). (b) Cells may biochemically degrade a
surrounding ECM by secreting various types of matrix metalloproteinases (MMPs). (c)
Specific types of cells, such as fibroblasts, deposit additional ECM components on the
surrounding matrix. This can lead to elevated matrix stiffness and smaller matrix pore size.
(d) Cells can cross-link matrix fibers, resulting in the enhanced stiffness and elasticity of
the ECM.

Aligning ECM fibers by exerting contractile forces

During migration, cells exert contractile forces to the ECM through focal
adhesions, resulting in fiber alignment (Figure 2.7a) [152, 228, 270, 347]. For example,
after migrating toward the injured area through chemotaxis, fibroblasts bring wound
edges together by exerting pulling forces to their surroundings. Alignment in
ECM fibers and microenvironment topography modulate, among others, the PI3K
signaling pathway and promote cytoskeletal remodeling and cell polarization [347].
Interestingly, Matrigel-containing hydrogels increase alignment anisotropy around
cells in wvitro. The alignment of ECM fibrils allows for long-range communication
between cells during angiogenesis and tissue repair. Fiber alignment also enhances
the invasion of tumor cells [348]. The pushing and pulling behaviors of cells such
as fibroblasts or human mesenchymal stem cells also induce ECM stiffening by
fiber compaction [152, 228, 348, 349]. Substrate deformation gradually increases
along a single axis during fibroblasts migrating in 3D domains, with higher and
lower deformations at the leading and trailing edges, respectively [350]. Note that
HT-1080 cells also exhibited this high frontal substrate prestrain found in fibroblasts.
MDA-MB-231 cells, on the other hand, showed very similar displacements at the
leading and rear edges. Moreover, during initial cell spreading within 3D matrices,
fibroblasts seem to transmit anisotropic strain to the ECM to polarize. Chaudhuri
and colleagues [80] highlighted the importance of matrix stress relaxation—which
has recently been established as a key requirement for robust cell migration on
soft substrates [265]—in cell-matrix interactions. Other works have shown a more
versatile ECM because of the heterogeneity in crosslink unbinding kinetics [347, 351].

Predominantly permanent crosslinks increase tension sustainability. Conversely, high
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levels of transient crosslinks increase plastic remodeling (i.e., nonelastic densification)
during cell-matrix interactions. Therefore, a shift in the balance between permanent
and transient crosslinks will bias ECM response to contractile cells. Other studies
have shed some light on alternative strategies that facilitate cancer cell protease-
independent invasion of basement membranes mediated by matrix mechanical
plasticity [169, 343]. Cells’ ability to mechanically remodel their surroundings is

thus fundamental to many biological processes, including cell migration [39].

Degrading the ECM through cellular proteolytic activity

Cells can also degrade the surrounding environment and expand ECM pores by
releasing MMPs (Figure 2.7b) [152, 352]. The properties of the microenvironment,
including substrate composition, may influence cells’ ability to align ECM fibers. For
instance, in Matrigel-containing hydrogels, H1299 cancer cells require a more intense
MMP activity to migrate than in collagen-only substrates. The former are stiffer
and with fewer but larger pores than the latter. Matrix metalloproteinases act on
several extracellular proteins (e.g., cytokines, antimicrobial peptides). Accordingly,
they regulate, among others, different aspects of inflammation and immunity.
Interestingly, Cdc42 and RhoA participate in MMPs trafficking to invadopodia tips
[206, 218]. Cytoskeletal dynamics may also modulate MMPs transport [288]. A
dysregulated MMP activity is also associated with cancer, fibrosis, and cardiovascular
disease [40]. Besides MMPs, cells can use other proteases such as adamalysins
and meprins to biochemically break down ECM components [160]. They do so by
catalyzing proteolysis, which breaks down proteins into smaller polypeptides or single
amino acids. Notice that, in the absence of proteolytic activity, and if the matrix is
viscoelastic enough, cells may deform and expand nanometer-size pores and migrate
through [78]. Further, after receptor-mediated internalization, endocytic cargo
degradation enables cells to internalize and degrade ECM molecules in lysosomes.
Indeed, collagen internalization is considered a key protection mechanism in liver
fibrosis in vivo [346, 353]. Moreover, PI3K products have a role in membrane tension,
influencing the endocytic response and membrane trafficking used by migrating cells
(e.g., fibroblasts and neutrophils) [354]. Mechanical forces may alter the structure
of some proteins, inhibiting/facilitating their interactions with the surrounding
molecules [344]. As a result, strain suppresses the degradation of some ECM proteins,
such as collagen [341]. Therefore, cells’ ability to degrade the surrounding substrate

is tension-dependent and involved different players, such as proteases and lysosomes.



46 2.1. Mechano-chemo biology of cell biology

Regulating ECM composition by synthesis, secretion, deposition and

cross-linking of ECM components

Cells also regulate ECM composition by depositing and cross-linking some of
its components (Figure 2.7¢ and Figure 2.7d). For instance, during morphogenesis,
epithelial cells synthesize components of the basement membrane, such as collagen
IV and laminin. Osteoblasts secret different ECM components (e.g., osteocalcin,
osteopontin) during bone formation [355]. In the interstitial matrix, fibroblasts
deposit several distinct ECM components within intact and wounded tissues [160].
Note that some of these secreted ECM proteins provide cell growth factors and
cytokines, which may promote a chemotactic response. Other deposited components
serve as physical scaffolds or mechanotransducers, promoting fibrils formation
from collagen and fibronectin, and their cross-linking by enzymes. An example of
ECM-modifying enzymes, lysyl oxidases (LOXs) covalently cross-link collagen fibrils,
which is fundamental for the correct assembly of collagen fibers [38, 341, 342]. Tissue
Transglutaminase (TG2) cross-links other ECM molecules, including fibronectin
and collagen IV. Lysyl oxidases and TG2 are frequently overexpressed in cancer,
increasing fibrosis, ECM stiffness, and cross-linking [140, 142]. Further, they promote
tumorigenesis, metastasis, and affect mechanical properties and cell-matrix signaling.
By depositing viscoelastic ECM components, cells can also remodel the surrounding
microenvironment and promote cell migration in elastic degradable substrates [78].
Recent studies have shown that collagen endocytosis can also support fibril assembly
at the plasma membrane [356]. Aberrant overexpression of growth factors such as
TGFB, PDGF, and VEGF may be associated with different pathologies [40, 181].
For instance, TGF( overexpression promotes myofibroblasts differentiation, cell
proliferation, and matrix production. At the same time, TGFp signaling inhibits
proteolytic activity, driving ECM stiffening. In response to substrate stiffening, cells
exert higher contractile forces against the surrounding environment, which activates
matrix production [345]. Moreover, by leveraging ECM remodeling through cell-
matrix interactions, tumors create microenvironments that promote tumorigenesis
and metastasis [342]. Interestingly, TGFf controls many aspects of primary tumor

growth and dissemination by inducing EMT and EMT-associated changes [104].

Interactions between different ECM remodeling mechanisms

Tissue homeostasis requires a balanced synthesis and degradation of structural
proteins. Abnormal composition of the ECM because of the failed regulation of

some of these processes is associated with different pathologies, such as fibrosis and
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metastasis [97, 357]. For example, during the wound healing response fibroblasts
end up undergoing apoptosis or become quiescent. However, during cancer and
fibrotic diseases, the fibroblast response is sustained [40]. Fonta and colleagues
[358] recently showed that in progressive diseases (e.g., cancer, viral infections of
lymph nodes), tensional tissue homeostasis is perturbed by cell-matrix interactions.
More recently, Perestrelo and colleagues [359] provided a comprehensive description
of the changes in collagen network organization during pathological cardiac ECM
remodeling. They also showed that underlying this reorganization, in cardiac
fibroblasts, YAP is activated to rearrange the substrate in a profibrotic feed-forward
loop. Note YAP activity also promotes the transcription of genes involved in
cell-matrix interactions, ECM composition, and cytoskeleton integrity [172, 314,
360]. In summary, cells can interact with their surrounding microenvironment
through a variety of mechanisms. Such cell-matrix interactions are fundamental

for many cellular functions, including cell migration.

2.2 Theoretical studies and computational models

Computational models can help overcome some of the challenges of experimental
research and advance the understanding of complex biological processes such
as cell migration. Unraveling the intricacies of some of these mechanisms is
getting increasingly expensive. It requires costly equipment and highly qualified
professionals. Furthermore, as computational power and data storage capabilities
increase, so does the use of in silico modeling tools. Mathematical models may
offer valuable insights more efficiently, for example, by more easily isolating some
specific mechanisms and behavioral patterns. They could even act as advisors
and consultants for experimental researchers by fostering new hypotheses to be
tested at the lab.

Over the last several decades, the research community has developed a wide
variety of in silico models, aiming to further our knowledge on cell migration.
Most of the mathematical models proposed are focused on cells migrating on flat
surfaces, which is what we know best so far [31, 361-369]. However, there is an
increasingly large number of in silico models replicating the more complex and
physiologically relevant migration within 3D matrices [370-374]. Nonetheless, some
of these computational models are 2D representations of 3D cell migration [375-377]
or model a 3D cell moving on a flat substrate [378]. As a result, such works cannot

replicate some hallmarks of cell motility within 3D matrices.

Next, we will present different in silico models classified according to different

criteria based on the mode of migration, the scale, and the modeling approach.
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2.2.1 Investigating different modes of migration

Mathematical models of cell motility can be classified according to the migratory
strategy used by simulated cells (e.g., individual or collective). Sun and Zaman [379]
reviewed models of cell migration and cytoskeletal dynamics associated with this
cell motility. The authors analyzed differences between amoeboid and mesenchymal
migration, as well as individual versus collective migration. Shatkin and colleagues
[380] reviewed different theoretical approaches used to consider how the biophysical
properties of the ECM modulate cell migration. In particular, they focused on
mathematical models that improved our understanding of metastasic behaviors
and durotaxis. The authors also reviewed in silico models of mesenchymal and
amoeboid migration. Interestingly, the authors noted that none of the models
included in their review considered all the variables involved in cell motility, which
would likely be infeasible.

Individual migration

Some in silico models have tried to shed some light on individual cellular motility—
which, for instance, allow leukocytes to patrol tissues looking for pathogens. In
these cases, and depending on distinct factors (e.g., cell type, the properties of the

environment), cells can use different migrating strategies.

Fibroblasts—which are essential for maintaining connective tissue homeostasis
and tissue repair—are usually considered the prototypical mesenchymal cell. These
are thin and elongated cells that migrate using protrusive structures that adhere
to the ECM through numerous, robust, and dynamic focal adhesions. They also
rely on MMPs proteolytic activity to degrade the surrounding ECM, expanding the
pores through which they squeeze themselves. Myosin expression, which maintains
polarized substrate prestrain during migration, is another essential component of
the mesenchymal phenotype [350]. Note, however, that distinct cell types exhibit

different degrees of mesenchymal features.

Different theoretical studies focused on modeling mesenchymal migration within
3D matrices [34, 381, 382]. For instance, Heck and colleagues [375] developed
an ¢n silico model of cells migrating through a degradable viscoelastic ECM.
This computational model enabled them to provide new insights regarding the
role of protrusions in this mode of migration. Bangasser and colleagues [154]
proposed a model that predicted an optimal ECM stiffness for mesenchymal cell
migration. Interestingly, altering the number of active molecular motors and
clutches could shift this stiffness optimum. Afterward, the authors verified this

prediction experimentally.
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During amoeboid-like migration, cells have a limited proteolytic capacity and

largely reduced adhesion that hinders their ability to pull and rearrange ECM fibers.

Several computational models focused on this protease-independent migration
strategy [383]. For instance, Moure and Gomez [384] presented a computational
model of amoeboid cells chemotaxing on 2D surfaces and within 3D matrices.
Their modeling efforts unveiled an intricate interaction between the dynamics of
chemotactic ligands and the geometry of the substrate. Such interplay would tightly
regulate cell migration. Campbell and Bagchi [385] proposed an in silico model
that predicted that cell deformability and protein diffusivity would alter swimming
behavior and speed. In particular, increasing the former would increase the speed

of migration and switch from a random to a persistent unidirectional motion.

Cells can also move within 3D environments using a lobopodial mode of migration
[41, 44, 386].

Although this mode of migration was more recently proposed, a few in silico
models already focus on it. Serrano-Alcalde and colleagues [387] presented a
computational model to shed some light on the factors and mechanisms activating
this mode of migration. Through finite element modeling, authors identified
possible two mechanotransduction mechanisms that may regulate the switch from
mesenchymal to lobopodial migration: the fluid flow velocity inside the cytoplasm

and the pore pressure.

Collective models

Cells may also interact with their neighbors through cell-cell adhesions (e.g., tight
junctions, cadherin-based adherens junctions, desmosomes). Collective migration is
associated with development, regeneration, and tissue repair. During these events,
cells can move as sheets adhered to the surrounding ECM. Tumoral cells also use

this mode of migration while invading as sheets at the interface between tissues.

This cooperative mode of migration has been extensively studied using in silico
models. Indeed, Alert and Trepat [388], as well as Camley and Rappel [389],
recently reviewed the physical models developed by the research community to
explain collective cell migration. Deutsch and colleagues [390] proposed BIO-
LGCA, a cellular automaton, to analyze this mode of migration to predict the
formation of clusters in adhesive interacting cells. Garcia-Gonzalez and Munoz-
Barrutia [391] were interested in studying how substrate stiffness influences collective
migration. They developed a model to test different hypotheses regarding which
mechanisms drive collective motion. The authors suggested that the main driver

of non-symmetric collective motility is the induced cell polarization by substrate
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stiffness gradients. Notably, Mayalu and colleagues [392] superposed single-cell
computational models to predict multicellular behaviors. Neumann and colleagues
[393] integrated experimental and computational data to create an in silico model of
tube elongation. This computational model revealed that mammary morphogenesis
can emerge by combining intercalation, interfacial tension dynamics, and high basal
stress. Escribano and colleagues [394] developed a computational model that enabled
them to compare single and collective migration. Their in silico model helped them

understand why collective motion is much more efficient than single-cell migration.

2.2.2 Investigating at different scales

Mathematical models can also be classified according to their scale (i.e., subcellular,
cellular, and tissue-level) [395, 396]. Of note, Buttenschon and Edelstein-Keshet
[397] recently reviewed multi-scale models, coupling events from the intracellular to
the cellular to the multicellular scales. Ferruzzi and colleagues [79] examined the
experimental and modeling techniques available to study the structure and multi-
scale mechanics of collagen networks. Conversely, Spill and colleagues [220] reviewed
models and supported experimental findings of different aspects of mechanobiology—
which are also related to cell migration—spanning different scales. Lastly, Cheng
and colleagues [398] reviewed models from different scales proposed to improve our

knowledge of how cells respond to biophysical stimuli.

Subcellular models

Subcellular models have tried to shed some light on specific processes involved
in cell migration that may occur in some cellular regions. For instance, Borau
and colleagues [26] focused on the mechanosensing properties of the actomyosin
network. Fatunmbi and colleagues [27] focused on the recruitment of actin nucleating
proteins at the membrane interface. In contrast, Hetmanski and colleagues [399]
proposed a combination of distinct modeling approaches to study rear retraction
dynamics of migrating cells within 3D substrates. Hobson and Stephens [400]
reviewed the mechanical modeling of cell nuclei. Regarding chemotaxis, Hopkins
and Camley [28] recently used in silico modeling to study cells’ ability to accurately
process external signals in uncertain environments. They argue that cells should
adapt their cell surface receptor expression based on the surrounding environment.
In particular, cells should only express multiple receptor types if they typically
explore environments where ligand concentrations vary over orders of magnitude.
Karagoz and colleagues [401] reviewed the computational models of integrin signaling.

Also, LeRoux and colleagues [135] included a review of different mathematical
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models proposed to improve our knowledge of the impact of mechanical stimuli on
the plasma membrane and its complex mechanochemistry. Conversely, Oria and
colleagues [193] proposed a general framework to explain how cells sense spatial and
physical information at the nanoscale. They combined in vitro observations with a
computational molecular-clutch model, in which individual integrin-matrix bounds
respond to force loading by recruiting additional integrins (up to a maximum value).
Interestingly, their results showed that, contrary to the by-then consensus, an
increase in substrate stiffness or ligand density promoted adhesion growth. Lastly,
Vignaud and colleagues [278] built a biophysical model to investigate the properties
of an elastic network of actin fibers embedded in a cortical meshwork. One of
the main novelties of this work was that stress fibers were not connected to the
ECM but the adjacent cortical meshwork.

Cellular models

Cellular models may be interested in combining some of the aforementioned biological
events to explain distinct aspects of cell motility and simulate the entire cell. For
instance, Adebowale and colleagues [265] developed an in silico model that was able
to replicate several observed experimental trends. First, how stress relaxation on
viscoelastic substrates and stiffness on elastic ones influence cell migration speeds.
Secondly, the impact of inhibition of adhesion, actin polymerization, and actomyosin
contraction. In contrast, Cao and colleagues [378] proposed a computational model
of cell migration integrating two continuum models: a biochemical activator-inhibitor
system coupled with cell mechanics (cell membrane deformation and cell motion).
Merino-Casallo and colleagues [35] developed an in silico model of 3D cell migration
that integrated intracellular signaling with cell mechanics that replicated some of
the main observations of in vitro experiments under different biochemical profiles.
Also, Li and colleagues [372] proposed a 3D model of breast cancer cell migration, in
which they included distinct modulating factors, such as fluid dynamics, autologous
chemotaxis, substrate rigidity, and fibrillar structure, as well as cell-fiber and cell-
flow interactions. Lastly, Moure and Gomez [33] recently studied the influence
of myosin activity on cell polarization and how mechanical cues induce motion.
In particular, their in silico model for keratocytes considered cell deformations,

myosin-RhoA dynamics, and forces associated with the actomyosin network.

Tissue-level models

Tissue-level models represent collective cell motility. For example, Gonzalez-Valverde

and Garcia-Aznar [30] proposed a hybrid model to simulate collective cell migration
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in epithelial monolayers. Nosbisch and colleagues [402] developed a framework
that enabled them to couple signal transduction mechanisms at the molecular
level to individual and collective migration guided by chemoattractant gradients
in tissues. Conversely, Peng and colleagues [36] proposed a multi-scale model of
tumour invasive growth. This model considered the active interplay between the
molecular mechanics of some proteolytic enzymes at the cell scale and the tissue-
scale tumor dynamics. Sunyer and colleagues [130] found that multicellular clusters
exhibited durotactic behaviors—even if their isolated constituent cells did not
durotax—because of supracellular transmission of contractile forces. To explained
the observed phenomenology, the authors proposed a continuum model integrating
clutch-like cell-matrix dynamic at focal adhesions, long-range force transmission
through cell-cell junctions, and actin polymerization at monolayer edges. Notably,
Fletcher and Osborne [37] recently reviewed the progress in multi-scale modeling
of multicellular tissues. They also highlighted some ongoing challenges associated

with their definition, implementation, and validation.

2.2.3 Investigating through different modeling approaches

Mathematical models may also be classified depending on the modeling approach
used (continuum, discrete, or hybrid) [396, 403].

Continuum models

Continuum models are based on the definition of constitutive laws to model processes
and events (e.g., transport of biochemical substances, actomyosin contraction, or
nuclear deformation). They rely on solving partial differential equations. The finite
element method and other derived methods (e.g., smoothed-particle hydrodynamics)
are some of the most applied techniques [332, 375, 404, 405]. Other authors
have opted for the phase-field model [406]. These models have been extensively
used to reproduce large-scale biological systems. However, as the number of
biological processes included in these models increases, so does the complexity of
the defined constitutive laws. For example, Ahmadzadeh and colleagues [407]
developed a continuum model to determine how cells collaborate to elongate
epithelial tubes. In this model, the authors included different aspects of cell
migration, including cell adhesions, substrate rigidity, fiber realignment, strain
stiffening, ECM ligand density, and pore size. In contrast, Arefi and colleagues
[404] developed a finite-element model to simulate the extravasation process. They
included the chemo-mechanics of the stress fibers and focal adhesions, as well as the

contractile forces pulling the nucleus of tumor cells against the elastic resistance of
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the endothelial cells. Banavar and colleagues [408] focused their attention on the role
of genetically encoded mechanical feedback as a coordinator of cell morphogenesis
and polarity. Also, Bennett and colleagues [409] developed a continuum model to
explain the DNA damage occurring during constricted migration. Hervas-Raluy
and colleagues [405] focused on the effects of actin and myosin in cell motility
within confined environments, considering the different mechanical properties of
the cytoplasm and the nucleus. Notably, Lee and colleagues [371] presented a
combined in silico and in vitro model of macrophages migrating within 3D matrices
in response to biophysical and biochemical factors. They coupled chemokine- and
intermediate filament-mediated signaling cascades commonly regulated by Rho
GTPases. Mackenzie, Rowlatt, and Insall [410] presented a finite element method
to approximate systems of bulk-surface reaction-diffusion equations on 2D domains.
They also used the proposed methodology to model individual migration guided
by chemotaxis. Conversely, Moure and Gomez [406] reviewed phase-field models
of individual and collective migration. Mukherjee and colleagues [332] used a
continuum model to analyze the evolution of nuclear shape and stresses during the
confined migration of a cell through a deformable ECM. Lastly, Serrano-Alcalde
and colleagues [411] developed a continuum model to study the role of nuclear

mechanics in cell deformation under different creeping flows.

Discrete models

In discrete models, the different agents involved are portrayed as separate units
in the system. Therefore, it is more direct and intuitive to represent the spatial
inhomogeneities and variability of biological systems. As a result, we can include
more information in those models. Historically, discrete models were computationally
expensive as they are representing every agent as an independent unit. They must
also consider how those units interact with each other. However, computational
costs have greatly decreased during the last several decades, which has dramatically
alleviated this issue. Besides, the open-source community offers an increasing
number of applications and libraries based on the discrete approach (e.g., PhysiCell,
FLAME) [412-415].

Different authors have proposed agent-based models related to cell migration. For
one, Feng and colleagues [416] integrated signaling networks, integrin dynamics, and
substrate stiffness in a mechanochemical model of neutrophil migration. Reinhardt
and Gooch [417] proposed a model focused on cell-matrix interactions. In particular,
they studied the impact of different biophysical features of the substrate in ECM
remodeling. Also, Drasdo, Van Liedekerke, and colleagues [418, 419] focused

on different discrete modeling approaches (lattice and off-lattice) to simulate
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different biological processes, including cell migration. Lastly, PhysiBoSS is a
multi-scale agent-based modeling framework that combines intracellular signaling

and multicellular behavior [420].

Hybrid models

Hybrid models combine continuum and discrete models to overcome their intrinsic
limitations. Designing the interface between those models is their main issue, as

they must share information with each other.

Different works have proposed a hybrid approach to replicate some of the
biological processes associated with cell migration. For example, Gongalves and
Garcia-Aznar [32] proposed a hybrid model to simulate how the ECM density
regulates the formation of tumor spheroids through cell motility. They modeled
cells using a discrete center-based framework while a continuum model defined the
ECM. Also, Gonzalez-Valverde and Garcia-Aznar focused on understanding how
forces at cell-cell contact sites and the rigidity of epithelial monolayers modulate
collective migration and topology [421]. In this case, an agent-based model defined
cells whereas a continuum material model described the cell passive mechanics.
Macnamara and colleagues [422] presented an in silico model to simulate cancer
growth and migration within a 3D heterogeneous tissue. They used an agent-
based model to simulate the behavior of cells and the tempo-spatial interactions
between each other. The authors coupled this model to a finite-element solver to
model the diffusion of oxygen from blood vessels to cells. Rens and Merks [362]
proposed a hybrid model to explain the full range of cell shape and durotaxis from
focal adhesion dynamics. They used an agent-based lattice model to represent
cells. However, they calculated the planar stress in the ECM using a continuum
model where they represented the substrate with a finite-element model. Lastly,
Sfakianakis, Madzvamuse, and Chaplain [423] proposed a hybrid multi-scale model

to describe cancer invasion of the ECM.

2.3 Summary

Chapter 2 has presented a detailed overview of cell migration. In particular, this
chapter has focused on the mechanisms enabling cells to perceive and internalize
biochemical and biophysical cues from the surrounding microenvironment. Chapter 2
has also paid special attention to how cells adapt and respond to these external
stimuli. Note, however, that some of the findings mentioned in this chapter

and others not included here may not translate to 3D (in wvitro and in vivo)
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systems. In summary, cell migration is essential for many physiological processes
of multicellular organisms, including embryonic development, tissue repair, and
the immune response. Unfortunately, aberrant cell motility also plays a prominent
role in different pathological processes that can result in congenital malformations,

skeletal, cardiovascular, and autoimmune disorders, as well as metastasis.

More than a century of research has allowed us to unravel, at least partially, some
of the mechanisms involved in cell migration. However, we still lack a comprehensive
understanding of how cells probe and respond to the surrounding microenvironment.
From the signaling networks regulating cell migration to the cell mechanics allowing
cells to adapt and respond to an ever-changing environment. An exhaustive
knowledge of cell motility would dramatically improve our life expectancy and
quality of life. It would enable novel advances in tissue engineering and regenerative
medicine (e.g., creation of bioartificial organs). A comprehensive understanding of
cell migration could also create new opportunities for selective, non-invasive, and
effective medical treatments and therapies that would help to prevent or correct

many pathologies, including some of the leading causes of morbidity and mortality.

Developing new methods and techniques to increase the scale and resolution of
our experimental analyses is essential to uncover some of the remaining mysteries
that lie ahead. Accordingly, we should aim for multidisciplinary studies considering
the multi-scale nature of cell motion and integrating the different players and
events involved in these migratory behaviors. In silico modeling has proven
fundamental to advance our knowledge in many fields, including cell biology and
motility. The integration of other computational tools (e.g., machine-learning [424,
425], Bayesian optimization [426-428], bioimage analysis [429-432]) in our workflows
has demonstrated to be a very promising venue in our quest for a complete and

detailed picture of cell migration.

The following chapters attempt to address some of the current deficits highlighted
in this review using an integrative perspective. To facilitate the collaboration
between theoreticians and experimentalists, Chapter 3 examines the feasibility
of using Bayesian optimization techniques to integrate theoretical studies and in
silico modeling with experimental data. Chapter 4 investigates how cells probe for
biochemical stimuli and respond to them. Lastly, Chapter 5 studies the different
mechanisms enabling cells to perceive biophysical cues and how such external

signals bias cell’s migratory behaviors.
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3.1 Need for the integration of experimental data
and theoretical models

Experimental research has historically paved the way toward a comprehensive
understanding of biological phenomena. By defining new protocols and engineering
new equipment, experimentalists have been able to push forward the frontier of
biological sciences. However, these novel developments can require vast amounts
of time and money. Therefore, experimental researchers could take advantage of

alternative approaches to overcome some of the current limitations of their discipline.

For the last couple of decades, the computational resources available to the
research community have increased drastically. This improvement in computational
power has enabled theoretical modelers to propose more complex in silico models.
These computational models can now include a variety of players and events, which
may interact with each other and act at distinct scales. As a result, theoretical studies
and computational models have become a powerful tool to improve our knowledge

of these biological systems and the perfect complement to experimental research.

Both disciplines have their own set of challenges. However, by acting in concert,
they can complement each other. For example, experimentalists may test novel
hypotheses proposed by theoreticians in the lab. Evaluating the predictions of
theoretical models by direct observation in the lab is an essential part of the
biological sciences. In contrast, theoretical studies and computational models may
easily quantify elements that are technically challenging to quantitatively measure
experimentally. In silico models could also carry out experiments that are currently
very expensive or technically impossible in the lab. Hence, frameworks that enable
the integration of experimental data with theoretical models can bring researchers

closer to the next frontier of biological sciences.

Model calibration is fundamental for this integration between experimental
data and theoretical models. This calibrating process enables theoreticians to
find a set of values for the model parameters that provide a good characterization
of the behavior of the system under study. As multi-scale models increase their
complexity, they usually include more parameters. Accordingly, the calibration
process becomes much more difficult. However, researchers still calibrate their
in silico models through a process that requires frequent user interaction. The
search space is usually too vast to be effectively navigated. Besides, there may
be interactions or dependencies between some parameters. This process can be
very tedious and error-prone, especially if in silico simulations take several hours to
finish. Therefore, an automated workflow that integrates experimental data with

theoretical models would be particularly valuable.
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3.2 Relevance of Bayesian optimization and its
methodological significance

The calibration process can be mapped to a nonlinear optimization problem
whose objective is to find the combination of parameter values that best fits the
experimental data (e.g., in vitro, in vivo). This mapping enables us to automate the
tunning process. However, most nonlinear optimization solvers require too many
iterations, gradient information of the target function (also known as the objective
function), or are sensitive to local optima. Evaluating this target function may be
very costly. In model calibration, the target function estimates the model fitness.
Assessing the target function requires running simulations of these in silico models,
which may take a long time (from several minutes to multiple days). Further,
stochastic models require the execution of many simulations to capture the range
of potential behaviors or outputs. Hence, by requiring too many iterations, these

nonlinear optimization solvers could make the problem intractable.

More formally, we are looking for the optimal set of parameter values * satisfy-
ing:

x* = argmax f(x), (3.1)
xTeX

where f(x) is the target function comparing the experimental data with the

numerical results, and x is the parameter domain.

Bayesian optimization, also called Efficient Global Optimization (EGO) [433] is
a general-purpose black-box optimization methodology. The ability to reach global
optimization after just a few iterations is one of the hallmarks of BO [434, 435].
Indeed, BO uses a probabilistic surrogate model of the target function f(x) combined
with optimal decision theory to drive the search toward the global optimum in
fewer iterations than other popular nonlinear optimization alternatives, including
Particle Swarm Optimization (PSO) [436], Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [437], and Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) [438]. In the case of BO, the surrogate model uses ML to capture previous
iterations acting as a memory of the whole optimization process. Meanwhile,
the decision component carefully selects the following query at each iteration.
Besides, BO robustly handles noisy data and naturally adapts to discrete and
irregular parameter domains, facilitating the exploration of noisy or irregular
parameter spaces. Furthermore, BO efficiently scales with the parameter domain,
promoting an efficient exploration of large parameter domains. Accordingly, BO
is especially suitable for experimental design and the calibration of expensive
processes [426, 439-441].
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In model calibration, many metrics can be used as the target function, and
some might be competing. We may be interested in optimizing several competing
metrics. Then, we can redefine the problem as a multi-objective, multi-criteria

optimization or Pareto optimization:
x = argrgg;((fl (x), fa(x), ..., fu(x)), (3.2)

where each f;(x) term is a competing target function comparing the experimental
data with the numerical results. In this case, the objective may not be to find a
single optimal set of parameters (parametrization). Instead, we could find ourselves
in a Pareto optimality situation, where no individual criterion (target function
fj(x)) can get any better without getting at least another one (target function
fr(x)) worsening. Our objective would be to find the whole set of parametrizations
(Pareto optimal points) associated with the Pareto frontier. Although this is a
completely different problem, the seminal work of Knowles [442] extended the BO
methodology to the multi-objective setup.

The BO methodology does not require specific knowledge about the target
functions, making them easily exchangeable. Therefore, the same procedure
applies to every target function (e.g., KL-divergence, Kolmogorov distance, or
Root Mean Square Error). Metrics that are not directly related to the data, such as
monetary cost and time, can also be included in this fitting process. In the presence
of competing target functions, solutions along the Pareto set or frontier might
follow a complex distribution. Finally, based on the specific circumstances, the
expert user must balance these competing metrics by choosing the most convenient

parametrization from the Pareto front a posteriori.

3.3 The Bayesian optimization procedure

The BO methodology consists of two main components: a probabilistic surrogate
model of the target function f(x) (statistical model) and an acquisition function «
[434, 435]. On the one hand, the statistical model (a Gaussian Process) includes
a prior distribution that captures our current beliefs about the behavior of the
unknown target function and an observation model describing the data generation
mechanism. On the other hand, the acquisition function assesses how optimal
a sequence of queries is. These acquisition functions can take many forms (e.g.,
expected improvement, entropy search, knowledge gradient). Ideally, the acquisition

function is maximized (or minimized) to select an optimal sequence of queries.

The BO procedure starts by initializing the statistical model, placing a Gaussian

Process on f(x). Secondly, we observe the target function f(x) at ng points (x;),
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which have been sampled from the parameter space x either uniformly random
or by low-discrepancy sequencing [443] (Figure 3.1 Step 1). Next, we update
the prior based on the ngy points (x;) and their associated output values (y; =
f(x;),0 < i < ng; observations) (Figure 3.1 Step 2). As a result, we produce a
more informative posterior distribution (our current beliefs on the likely function
f(x) we are optimizing) over the space of target functions. We use the mean
from the posterior as the function most likely to model the target function. Then,
we apply the acquisition function a to guide the exploration of the parameter
space x. Acquisition functions trade off exploration and exploitation. Therefore,
their optima are located where the uncertainty in the surrogate model is large
(exploration) or where the model prediction is high (exploitation). Note that
different acquisition functions take different approaches to define exploration and
exploitation. Bayesian optimization algorithms choose the next query point (4,,44)
by maximizing such acquisition functions (Figure 3.1 Step 3). Finally, we observe
the target function at the new query point (y,+1 = f(®n+.); Figure 3.1 Step 4).
We keep refining the statistical model with the latest sampled data (2,4, and
Yn+1) until we consume our budget of N function evaluations. As a result, we
continue updating our posterior distribution (i. e., our current beliefs on f(z)).
We also continue querying new data points through the acquisition function a.
By iterating through this procedure, BO effectively navigates the parameter space
while focusing on the global optima [434, 435, 444].

See [434, 435] for a more detailed explanation of the BO procedure, a list of

software packages for BO, and a wide range of applications for this procedure.
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Figure 3.1: Illustration of the Bayesian optimization procedure First, we initialize
the process by sampling the parameter space either randomly or low-discrepancy sequencing
and getting these observations (Step 1). Secondly, we build a statistical model to
approximate the target function based on the given parameter values and their associated
output values (observations) (Step 2). Then, we use the maximal location of the acquisition
function to figure out where to sample next in the parameter space (Step 3). Finally, we
get an observation of the target function given the newly sampled data points (Step 4).
Adapted from [445].
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3.4 Defining an integrative methodology based on
Bayesian optimization

Several software packages and platforms implement variants of the BO methodology
[434, 435]. We first evaluated BayesOpt [447] for its performance. Still, we eventually
chose the one provided by SigOpt! [448] for its support for parallelization and multi-
objective optimization. Besides, SigOpt offers other valuable features, such as
parameter constraints and an analysis of their impact. The former would allow us
to discard areas of the search space that were not physically valid. The latter would
help us better understand the influence of each parameter in the features evaluated
by the defined target functions. Because of the stochastic nature of some of the
processes involved in cell migration (e.g., intracellular signaling), we would have
to run several simulations for each suggested parametrization to account for the
intrinsic variability. Moreover, in some cases, we would be simulating N different
scenarios (ECMs with distinct biophysical profiles), so we had to evaluate the
statistical variability of each setting. In such cases, we opted to run M simulations
per scenario (i.e., N x M simulations per suggested parametrization) and compute

the defined target functions accordingly.

Figure 3.2 shows a global scheme of the implemented system doing the au-
tonomous calibration. This system would run on our high-performance computing
(HPC) environment. Nonetheless, it should run on any Linux-based HPC environ-
ment with minor modifications. First, the system would create a new experiment
in SigOpt’s platform with our specific requirements. These requirements would
include: (i) the parameters to adjust and the boundaries of their space, (ii) any
associated constraints, (iii) the defined target functions, (iv) the maximum number
of valid observations (budget) to report back to SigOpt, and (v) the number of
workers taking suggestions from SigOpt and reporting observations back to SigOpt.
Once the experiment was created, as many as three workers would run in parallel.
Each worker would start its main loop by asking SigOpt for a new suggestion
(parametrization). Then, it would prepare the simulation environment (we would
use a Conda virtual environment 2). These workers would use HTCondor [446], a
specialized workload management system for compute-intensive jobs, to distribute
the execution of the N x M simulations required to evaluate the variability and
fitness of SigOpt’s suggestion. Once all simulations had finished, the workers would
generate the in silico statistics associated with the features we were interested

in. After retrieving the associated in vitro statistics, the chosen target functions

Lhttps://sigopt.com/
2https://conda.io/
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Figure 3.2: Global scheme of the integrative methodology In the M2BE high
performance computing (HPC) environment, the master would set up the calibration
system and send the details to SigOpt to create a new experiment. Then, also in the
M2BE HPC, as many as three clients would start evaluating parametrizations suggested
by SigOpt based on the definition of the already created experiment. Every iteration of
the main algorithm would start by asking SigOpt for the next parametrization (also known
as suggestion) using its API. Then, the client would set up the simulation environment,
and run M simulations per case using HTCondor [446]. There may be several scenarios
to simulate (e.g., cell migration within ECMs with different biochemical or biophysical
profiles). Once all those simulations had finished, we would evaluate their numerical results.
We may be interested in several features, which would require evaluating different target
functions (fi(x)). After retrieving the associated in vitro statistics, the defined target
functions would be estimate and their values reported back to SigOpt. If this was the
N-th observation reported to SigOpt (from a budget of N observations), we had already
arrived at the end of the calibration process. Otherwise, we would ask SigOpt for another
suggestion to analyze.



3. Integrating experimental data with theoretical models 65

would be evaluated, and the observation reported back to SigOpt. If there would
be more suggestions to analyze, the worker will start a new iteration of its main

loop. Otherwise, their execution would finish.

See Chapter 4 and 5 for different examples of application of this integrative

methodology.

3.5 Conclusions

Although theoretical modelers usually perform strong efforts to validate models
comparing experimental data with numerical results, we still lack a full integration
of both data types. However, this chapter presented a significant step toward this
integration, showing a novel methodology that combines both modeling strategies
(experimental and theoretical) using Bayesian optimization during the calibration
process. The complexity of the calibration process of any model quickly increases
with the number of parameters. Another factor that increases the complexity of the
calibration process is the stochastic nature of some biological models, such as the
one presented in the following chapters. Stochastic models require the execution
of several simulations for each model parametrization to capture the variability
of the results associated with the stochastic randomness. Moreover, if running
each simulation takes more than a couple of minutes, an iterative approach for this

calibration process becomes highly prone to inefficiencies.

When choosing the values for each model parameter using such an iterative
approach, it is usually the case that researchers turn to the literature as their
starting point. Then, they perform some manual tuning so that the numerical
results approximately fit the experimental data. Generally, researchers start by
modifying just a couple of parameters using some biologically relevant values.
Then, they analyze how those parameters influence the model output based on the
different values tested. Researchers iterate over this process by picking a couple
of the remaining parameters in every iteration—ideally, the selected parameters
in each iteration are related to each other. This iterative approach is very tedious
because modifying some parameters may require the recalibration of others already
calibrated. If the in silico model includes many parameters, researchers could
start the calibration by performing a sensitivity analysis [449]. They would then
focus on those parameters with a higher impact on the model output. Because of
computational and time restrictions, this iterative step does not generally include
more than a couple of rounds, even though it is becoming more and more common
to have access to an HPC environment—which can reduce the required times to

run those simulations by parallelizing them.
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In this chapter, we proposed the application of BO to reduce these inefficiencies.
Bayesian optimization has been applied to solve a wide range of problems such as
machine learning applications [450], robot planning [451], simulation design [452],
biochemistry [453], material design [454], and dynamical modeling of biological
systems [455]. Interestingly, BO can also be applied to experimental design [426,
456] and offers an automated approach for model calibration. Interestingly, Bayesian
methodologies may be appropriate even when the optimal parametrization is input-
dependent [427] or changes over time [428]. Overall, BO minimizes the number
of parametrizations to test on the in silico model and find a good enough fit for

the experimental observations.
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4.1 Introduction

Directed cell migration (also known as cellular taxis), is critical for a myriad of
physiological processes, including embryonic development [457, 458], angiogenesis
[459, 460], bone formation [461], and tissue repair [462, 463]. Unfortunately,
tactic movements are also involved in many pathological processes such as cancer
metastasis [464-466]. Thus, investigating directed cell migration is still critical to
acquire a comprehensive understanding of different biological processes involved

in health and disease.

Directed cell migration is generally driven by asymmetric cues of tactic attrac-
tants or repellants in the surrounding environment, such as gradients of chemical
ligands, stiffness, or electric current. Among these inducers of taxis, a chemical
gradient of soluble ligands (chemotaxis) or surface-bound molecules (haptotaxis)
in the ECM may lead cells toward regions with higher (or lower) concentrations
of these chemoattractants (or chemorepellants). For instance, chemoattractant
gradients, which may be species-specific [467-469], guide the sperm toward the egg
during fertilization [91, 92]. During embryogenesis, neural crest cells are guided by
chemoattractants toward their appropriate destination [470-472]. Chemoattraction
also enables leukocytes recruitment into sites of inflammation and infection [58,
97, 98, 473]. Cells’ ability to sense modest spatiotemporal variations on the

concentration of these ligands is fundamental for living organisms.

Chemoattractive events may exhibit some context-specific features. For instance,
they might occur only under a particular chemical profile within the ECM (e.g.,
composition, concentration, slope of the gradient). Such tactic events may also
require specific transmembrane receptors to internalize the biochemical stimuli.
Furthermore, they could depend on specific downstream effectors controlling cell
polarization, cytoskeletal remodeling, or nuclear translocation. For example, differ-
ent chemoattractant families contribute to neutrophil trafficking in a particular way,
cooperating spatiotemporally, in a hierarchical manner, to orchestrate neutrophil
migration [474]. An intravascular chemokine gradient would guide neutrophils
from healthy tissue towards the site of inflammation. Later on, formyl peptides
derived from dying cells could lead their final migratory step into the injured
tissue. Understanding the intricacies of chemoattraction and the specific conditions

triggering such motile responses are of the utmost importance.

Researchers have been investigating the mechanisms that enable chemoattraction
for more than a century. In 1884, Pfeffer [475] reported his observations on the
chemotactic response of fern spermatozoids and how they oriented to the gradients

produced by diffusion of malate. Leber, who studied inflammatory reactions induced
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in the cornea of rabbits, reported in 1888 [58] the first recorded observation of
chemotaxis of leukocytes. At the turn of the century, Bloch included a list of all
the substances believed to be chemotactic [56]. Strikingly, chemotaxis was not fully
recognized as the leading driver of leukocyte accumulation in vivo until after the
in vitro experiments of Boyden in 1962 [98]. In the 1960s, Julius Adler published
pioneering works on bacterial chemotaxis and motility [476-479]. More recently,
in 2013, Dona and colleagues [100] reported the first in vivo proof for self-directed
tissue migration through a self-generated chemokine gradient during embryogenesis.

Still, many questions remain unanswered nowadays.

Many different extrinsic and intrinsic factors regulate cell migration—and
cellular taxis, for that matter. For instance, on 2D surfaces, cell motion has been
widely studied and is typically characterized by a balance between counteracting
traction and adhesion forces [130, 394]. However, cells generally migrate within
3D matrices, adopting different migratory strategies (individual: mesenchymal,
amoeboid, or lobopodial; and collective). The cell phenotype and the properties
of the surrounding environment (e.g., architecture, composition, presence of any
tactic cue) may determine the specifics of the migratory process. Overall, the
mechanisms governing cell migration within 3D matrices are far less well-understood
owing to technical challenges and the variety of players and events that may act

only under specific conditions.

In 3D environments, individual cells use different migratory strategies. When
cells are unable to adhere to their surroundings, they modify their shape and
squeeze through the ECM pores by using the amoeboid migration, which is very
efficient. Cells such as neutrophils and T cells (immune system) use amoeboid
migration, which allows for rapid cell locomotion (speed ~ 10 m min~!) [480-482].
Interestingly, cells seem to reach the highest speeds while migrating through pores
of around cell size [74]. Conversely, if cells are tightly adherent and able to exert
pulling forces on the surrounding ECM, they may switch to lobopodial migration.
For instance, primary human fibroblasts use lobopodial migration when located
within highly confining, linear elastic, crosslinked matrices [483]. Lastly, whenever
cells” adhesion to the ECM and their proteolytic activity are high, cells use the
mesenchymal migration, which is very inefficient. Different cell types, including
fibroblasts (wound healing) and osteoblasts (bone formation), use mesenchymal

migration, which leads to slow cell motion (speed < 1pmmin~!) [165].

In vitro experiments trying to reproduce as accurately as possible the natural
biological surroundings of organisms from n vivo studies have become increasingly
sophisticated. These complex and sophisticated experiments require expensive lab

work. As a result, in silico studies have stood out as a complementary asset to
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acquire a comprehensive knowledge of such complex phenomena. Computer-based
mathematical models allow for a myriad of controlled and reproducible experiments
with much lower associated costs. The combination of both methodologies creates
new research opportunities. In silico models enable the simulation of many different
in vitro conditions, can directly obtain additional information that may not be
available from experiments and propose new research hypotheses. On the other
hand, in vitro experiments can evaluate these hypotheses to generate novel and
valuable observations. Taken together, the integration of in vitro experiments with
in silico experiments will enable a comprehensive understanding of many biological

phenomena, including cell migration.

In this work, we present a mechano-chemical model of individual mesenchymal
3D migration. The main aim was to improve our knowledge of how cells sense
biochemical stimuli, internalize these cues, and adapt their behavior accordingly.
We assessed the computational resources required by the numerical simulations
that determine the 3D migration trajectories to minimize the execution costs

of simulations.

Recently, different authors [34, 379, 428] have dedicated their efforts to combine
in vitro experiments and in silico models to elucidate the influence of specific factors
on individual and collective cell migration. Also, by combining experiments with
numerical models, Sunyer and colleagues [130] demonstrated that the stiffness
variations sensed by cells at both edges of the cell monolayer promote directional
migration. In this work, we applied the integrative methodology presented in
Chapter 3 based on the Bayesian optimization to combine a multi-scale in silico
model and experimental data. Accordingly, we were able to calibrate the parameters

of the proposed in silico model autonomously.

4.2 Methods

In this section, we start by describing an in silico model of cell migration that
continues past modeling efforts from the author’s research group [382]. We present
the mathematical definition and implementation of this multi-scale model. Then,
we describe how we calibrated the parameters of this model applying the integrative
methodology proposed in Chapter 3. As a result, we could integrate experimental

measurements and numerical simulations consistently.
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Figure 4.1: Global model scheme. (a) The chemosensing mechanism simulates
how PDGFRs located in the cell membrane become activated by binding to PDGF-BB
molecules (blue circles). This PDGFR activation, in turn, triggers the activation of PI3K
molecules inside the cell (PI3K inactivated molecules as grey triangles and PI3K activated
ones as red triangles). (b) Protrusions (p},) grow and stabilize on those areas with high

concentration of PI3K activated molecules. (c) The longest protrusion generates a traction

Pl s B B Pl
force (F,,.2r?°**) when retracting, which exerts a reaction force (Fy'°"?°**) over the cell

body. As a result of these reaction forces, the ECM generates a drag force (Fyrqq) over
the cell body.

4.2.1 Model description

The proposed in silico model to simulate mesenchymal cell migration within 3D
matrices continues previous modeling efforts from our group [382] (Figure 4.1). Here,
we start by describing the main aspects of this multi-scale model to improve our
knowledge of the different modeling enhancements proposed. Then, we showcase
the application of the integrative methodology presented in Chapter 3. This model
assumes that mesenchymal cell migration within 3D matrices can be described as
a three-stage process. In the initial stage, the cellular chemosensing mechanism
allows cells to probe for biochemical cues located within their surroundings through
different transmembrane receptors [88, 484]. Next, the second stage simulates how
the activation of these transmembrane receptors triggers intracellular processes
regulating the onset and growth of dendritic protrusions toward the surrounding
ECM [485, 486]. These protrusions can appear and grow (pushing the matrix),
as well as contract (pulling the matrix). Lastly, the third stage models how the
dynamics of these protrusions regulate cell migration within 3D matrices [487-489]
through the transmission of actomyosin-generated contractile forces from these

protrusions to the nucleus, resulting in the nucleus translocation.

Next, these three main stages of mesenchymal cell migration within 3D matrices

are described in greater detail. But first, the model of 3D cell behavior is defined.
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Modeling 3D cell behavior

The 3D structure of the cell is geometrically modeled as a set of one-dimensional
bars representing dendritic protrusions [382]. Those bars are located in a three-
dimensional environment and diverge from a central connecting point representing
the cell nucleus or centrosome. This central connecting point exists solely for

modeling purposes as the point where all the bars are connected (Figure 4.1c).

Modeling the chemosensing mechanism

This stage models the spatiotemporal evolution of the signaling network enabling

cells to probe for biochemical cues and respond accordingly (Figure 4.1a).

Signaling pathways can be extremely complex. Despite the depth of our molecular
understanding of these pathways, a complete and precise definition of most of them
remains elusive. Orchestrated cross-talks, feedback loops, and multi-component
signaling are some of the intricate mechanisms hindering our progress in this
endeavor. Also, a many different mediators and downstream effectors may or may
not be actively involved in these signaling pathways based on context (i.e., cell
phenotype and surrounding microenvironment). For instance, PI3K is considered
one of the leading regulators of chemotactic migration guidance. Still, different
redundant pathways to PI3K have been identified in distinct contexts (e.g., in
CXCL8-mediated chemotaxis in neutrophils and in cAMP-mediated chemotaxis in
Dictyostelium discoideum) [490, 491]. All in all, we opted to define a simplified
signaling network based on our current knowledge of the signaling pathways enabling
cells to sense and internalize biochemical stimuli. In particular, we focused on key
signaling species and, to keep the model as simple as possible, discarded many
intermediate reactions and unified others into a single ‘common regulator’ signaling
node. The downstream signaling activity of the proposed signaling network would

determine protrusions’ location and their unconstrained length.

For clarity purposes, and owing to their pivotal role in regenerative processes
[492-495], we focused on a specific context where NHDF cells migrate within
collagen-based 3D matrices containing PDGF molecules. Note, however, that the
proposed signaling network could be adapted to model other migratory contexts

(i-e., other cell types and chemoattractants).

From a temporal perspective, the simplified signaling network proposed here,
enabling cells to sense and internalize biochemical stimuli, is defined by Reactions 1
to 4. In this simplified model, one molecule of a chemoattractant (PDGF) activates
the corresponding transmembrane receptor (PDGFR) by binding to it:

PDGFR + PDGF —“> PDGFRy, 1)
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where kq is the reaction rate coefficient, and PDGFR, is an activated PDGFR. The
unbinding of this chemoattractant molecule (PDGF) from the associated activated

transmembrane receptor (PDGFRy) deactivates it:

ko

PDGFR4 PDGFR + PDGF, (2}

where ks is the reaction rate coefficient. One activated transmembrane receptor
(PDGFRaA) could, in turn, activate molecules of common regulators such as PI3K,

located in the cytosol:
k
PDGFR, + PI3K —— PI3Kj, {3}

where k3 is the reaction rate coefficient, and PI3K, is an activated molecule of
PI3K. Additionally, one PI3K could be naturally deactivated:

PI3K, —“— PI3K, {4}

where k4 is the reaction rate coefficient.

Cellular consumption of chemoattractant molecules (PDGF) was considered

negligible. Hence, the chemoattractant chemical profile did not change with time.

Based on Reactions 1 to 4, the time evolution of this simplified model could

be computed as:

% = —ki PDGFR - [PDGF] + ks PDGFR,

% = ki PDGFR - [PDGF] — ks PDGFRy, (4.1)
aPaIfK = —ksPDGFR, - PISK + k4 PISK 4, |
‘9’%75;& = k3 PDGFR, - PISK — ks PISK 4,

where kq, ko, k3, and k4 are the reactions rate coefficients. PDGFR is the number
of PDGF receptors, and [PDGF] is the number of PDGF molecules. Conversely,
PDGFR, is the number of activated PDGF receptors, PI3K is the number of
molecules of phosphoinositide 3-kinase, and PISK 4 is the number of molecules
of activated phosphoinositide 3-kinases. However, modeling a valid chemosensing
mechanism not only requires knowing the time evolution of this simplified signaling

network. Cells must also recognize the spatial orientation of chemical gradients.

From a spatial perspective, we assumed that initially, PDGFRs were uniformly
distributed over the cell surface. Still, the activation density of transmembrane
receptors depends on the distribution of PDGF all over the plasma membrane. The

activation of PDGFRs preferentially occurs on areas of the cell surface surrounded
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by a higher concentration of PDGF [114, 496]. Besides, over time, and based on
external cues, the distribution of surface receptors such as PDGFR can be biased by
endocytic membrane trafficking [114, 251, 497, 498]. Consequently, cells can sense
the spatial distribution of PDGF and, therefore, gradients of these chemoattractants.

The proposed model of the chemosensing mechanism includes two sources
of stochasticity: the evolution of the simplified signaling network (defined by
Equation 4.1) and the activation of PDGFRs based on the concentration of
chemoattractant molecules surrounding the cell. Therefore, the chemical reactions 1
to 4 are assumed to be stochastic processes described by a Poisson distribution [496].
This premise allows considering receptor activation over a domain with varying
concentrations of PDGF as a multivariate non-homogeneous Poisson distribution.
Therefore, we could model this activation of PDGFRs using the Inverse Method
described by Saltzman and colleagues [499).

An approximate solution to the spatial activation of PDGFRs allowed us to
evaluate the variation of PI3K, in any specific location of the cytosol at any
given time (t). To estimate this spatiotemporal variation we defined the variable
s(a, B, tx), which stores the spatial persistence of PI3K, activation across time
(tx) in a location of the cell surface defined by coordinates (a, S) (Figure 4.2).
Based on in vitro observations of fibroblasts cultured in 3D collagen-based matrices
[484, 500], the central region of the cell was considered a sphere with a 25-um
radius. The cell plasma membrane can be modeled as a flat surface defined by
the polar coordinates a and 3. The signal s = s(«, 5, ti) was evaluated at a
fixed time ¢ through the convolution function g with an area roughly the size
of a protrusion section. As a result, we could assess the temporal evolution of

the chemical signal at any given location.

The locations where cytosolic PI3K becomes preferentially activated at time

t were estimated by:

m 27
st(¢,0) = /0 /0 dp1sk, (u,v) - g(¢ — u, 0 — v) dudw, (4.2)

where dprsk, is the distribution of PI3Ka across the cell surface, ¢ and 6 are the
spherical coordinates (i.e., polar and azimuthal angles, Figure 4.2), and ¢(¢,0) is a
circular convolution window approximately the size of a protrusion section (7/18
rad in diameter). However, it was also required to know how PI3K, accumulates
inside the cell over time. The persistence of PI3K 4 at time t; could be evaluated
by sampling:

tr

s =5(6,0,t6) = > _ s1(6,0), (4.3)

t=to
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Figure 4.2: Signal spatial distribution. (a) Spherical coordinates («, 8) of point g.
(b) s signal distribution example over the cell membrane.

at 1Hz during 5min intervals (from ¢ to ).

In the next section, we will explain in detail how the persistence of signal s
determined the likely locations for protrusion formation and growth. Protrusions
formation rate is roughly 0.002 Hz as measured in vivo [486]. Consequently, sampling
the signal at 1 Hz was deemed adequate (according to signal sampling standards)

as it is a higher frequency than the protrusion formation rate.

All in all, the methods described above enabled us to assess the spatiotemporal
persistence of signal s (associated with cytoskeletal regulators such as PI3Ka) just
below the plasma membrane. As a result, by focusing on signal peaks across the
outer region of the cytosol (i.e., the one closer to the plasma membrane), we could

pinpoint likely locations for protrusion formation and growth.

4.2.2 Modeling protrusion dynamics

The signal s and its variation (9s), associated with regulators of actin-binding
proteins such as PI3K, have a regulatory role in protrusions dynamics (Figure 4.1b)
[486, 501-503]. For one, novel protrusions appear on locations with spatiotemporal
persistence of these cytoskeletal regulators. Also, the intensity of s just below
the plasma membrane determines if protrusions grow and stabilize or become
smaller and even disappear. The former happens in locations with a strong s
and buildup of PI3K . Conversely, the latter occurs in those regions with a weak
s and small amounts of PI3K,.

Protrusions were located using a set of signal thresholds (spirth, Sreinforce, and
Sdeath) Over the spatiotemporal persistence of PI3Ka across the outer region of
the cytosol (s; Equations 4.4 to 4.6). The search of peaks in signal s, where new

protrusive structures would appear, was simplified through an internal parameter
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Spinary- 1This internal parameter transformed s into a binary signal. Thus, while
locating protrusions, any surface point where s was lower than spinery, became
zero. Otherwise, the surface point became one. Once protrusions were located,
we were interested in determining their length based on the intensity of the signal

s in those regions of the outer cytosol.

Additionally, the stress-free (unconstrained) length variation of protrusions
(8sz; (sp;,t)/0t; i.e., their length variation when there is no ECM around them)
depended on the signal variation in cytosolic regions where protrusions were located
(dsp,(t)), Equations 4.4 to 4.6) [382]. During protrusion expansion, Spir, is the
minimal amount of signal s for cells to develop new protrusive structures, as
suggested by other authors [486, 496, 504, 505]. Consequently, we considered
that novel protrusions can sprout longitudinally in locations of the cell surface

where signal s was above Sp;,th:

313{; (spi>t)

o , (4.4)

Qeapddsp, (B)/dt ,
= Bewp+osp, (t) if sp, (t) > Spirth
birth

0 otherwise

where 05y, (t) is the variation of s in the surface location occupied by the i-th
protrusion over time, and egp, Bezp are parameters regulating protrusion expansion.
Furthermore, any pre-existing protrusion p; became reinforced and grew if sy, (¢)
was above Srcinforce. However, if s was below this threshold, the protrusion p;

became unstable and retracted:

Qezpddsy, (t)/dt .
_ Beip-l,-;sm(t) if sp, (t) > Sreinforce
growth

0 otherwise

8Lgl (va t)

- , (4.5)

where dsp, (t) is the variation of s in the surface location occupied by the i-th
protrusion over time, and tezp, Bezp are parameters regulating protrusion expansion.
Note that the variation of s (ds,, (t)) is associated with the spatiotemporal persitence
of the actin-binding regulator from the simplified signaling pathway associated with
the chemosensing mechanism (Section 4.2.1). The spatiotemporal persistence of such
an actin-binding regulator would modulate the actin polymerization rate. Indeed,
the more persistent this actin-binding regulator is on a specific region just below the
plasma membrane, the higher the polymerization rate in that region. Accordingly,
the higher the polymerization rate on a specific region below the plasma membrane,
the higher the stress-free (unconstrained) length increment of the protrusion located
in that region. Therefore, we can establish a relationship between the unconstrained

length variation of protrusions (aL}; (Sp,,t)/0t) and the actin polymerization rate.

During protrusions contraction, protrusions retracted in locations where s was

above Sgeqtn- However, in those regions where s was below Sgeqtn, pre-existing
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protrusive structures not only retracted but also disappeared:

Qeonddsp, dt .
aL (Spm ) _ _Wﬁ;j% if Sp; (t) > Sdeath (4 6)
ot con — L5 (sp,,1) otherwise ,

where dsp, (t) is the variation of s in the surface location occupied by the i-th
protrusion over time, aieon, Beon are parameters regulating protrusion contraction,
and Lg?"(sp,,t) is the protrusion’s length at the beginning of its contractile

stage at time ft.

We assumed a negative feedback loop for PI3K activation triggered by myosin
motors during protrusions contraction, as suggested by [486]. Therefore, we
considered a directly proportional decrease in dsp, (t) to sp, during the contractile
stage (dsp,(t) < 0, Equation 4.6). We also considered a time-dependent wear
of s,,(t), as time wears out the persistence of PI3K,, following a 30 min half-
life decay [486].

Protrusions, as they form over the plasma membrane and grow toward the
surrounding matrix, push and exert forces on the ECM. Consequently, the me-
chanical properties of the ECM act as a regulator for the extension or retraction
of protrusions (Figure 4.3) [485]. This behavior was simulated by considering
protrusions analogous to an elastic inclusion (ellipsoid) embedded in the ECM,
applying Eshelby’s analytical solution of ellipsoidal elastic inclusions inside an elastic,
infinite body [506]. We considered that, during this second stage, protrusions grow
and retract inside a collagen-based fibrous matrix, and they adhere to matrix
fibers. Thus, we assumed the ECM behaves as a linear elastic material constraining
protrusions growth. Indeed, during this growth, protrusions push to the ECM,
deforming it, and the elastic properties of the matrix regulate this deformation. In
this case, we quantified the growth of the protrusion and the deformation of the ECM
applying Eshelby’s theory, assuming the protrusion as an inclusion that is embedded

within the matrix. Moreover, in all cases, we presumed infinitesimal deformations.

Eshelby’s theory required us to define the tensor for the stress-free (uncon-

strained) expansion/retraction of the i-th protrusion as:

-f _ :f
Epzwk = Ep, k€ ® e&i,

f 1 AL (spi,1) (4.7)
ok T TE (s to) 00|,

where e; represents the unit vector of the i-th protrusion longitudinal axis and
k is exp (expansion) or ret (retraction). égl_’k represents the stress-free expan-
sion/retraction stretch rate field, L (s, ,to) is the length of the i-th protrusion at
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Figure 4.3: Protrusion dynamics using Eshelby’s theory. Scheme of the three
different configurations in protrusion dynamics based on Eshelby’s description of ellipsoidal
elastic inclusions (cell’s protrusions) in an elastic, infinite body (the ECM). 5£ is the stress-
free (unconstrained) expansion/retraction (ECM does not restrict protrusions deformation)
Cauchy’s strain tensor. €5 is the compatibility Cauchy’s strain tensor. e}, represents the
total deformation Cauchy’s strain tensor. We assumed infinitesimal deformations.

oL? ot
the beginning of its expansive/contractile stage (o), and %‘ represents

k
the stress-free (unconstrained) length variation of the i-th protrusion during the

current expansive/contractile stage.

By using Eshelby’s description of small ellipsoid inclusions (cell protrusions)
inside an elastic, infinite body (the ECM), we could define (in Voigt notation) the

second-order constrained strain rate field of the i-th protrusion as:
AL

_ = f
€, »=5[(Cr—Cy)S+Cux ' CrE, (4.8)

where S represents the ellipsoid shape tensor, C7 is protrusions elasticity tensor, Cs
represents the elasticity tensor of the surrounding matrix, and §£ is the second-order
stretch tensor €57, which is Cauchy’s strain tensor of the i-th protrusion stress-free
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expansion/retraction (defined in Equation 4.7), in Voigt notation. Note that this
modeling approach required us to consider the ECM a purely linear elastic material,

and to focus only on the matrix rigidity when simulating protrusion dynamics.

We defined the constrained length variation rate of the i-th protrusion as:

OLg (sp,1)

ot i = L];L (spwt)écpuk (49)

where L’;i (Sp;,t) is the length of the i-th protrusion at the beginning of its expan-
sive/contractile stage, and €,k represents the constrained expansion /retraction
stretch rate field. Finally, the length of the i-th protrusion at the end of its

expansive/contractile stage (¢1) was computed as:

dt (4.10)

DL, (59,1
L spot) = L (spta) + [ St
k

where L’;i(spi,to) is the length of the i-th protrusion at the beginning of its

OLp; (sp;:t)
ot

expansive/contractile stage t, and represents the constrained length

k

variation of the i-th protrusion.

The length and number of protrusions depended on s. For instance, if s had
a couple of regions where PI3K, had prominently accumulated over time (5 min),
we could predict a few long protrusions. Conversely, if s was mainly homogeneous
with modest variations, we should expect many small protrusions. However, these
predictions could change based on the initial amount of PISK (Table 4.1) and the
parameters associated with s (Spinary, Sbirth, Sreinforces a0d Sqgeatr). Indeed, these

parameters also regulate the length and number of protrusions at any given time t.

4.2.3 Modeling nucleus translocation

Finally, based on the experimental observations of how protrusions determine the
nucleus translocation [352, 484, 507], it was assumed that the longest protrusion
guides cell motion directly. The longest protrusion presents a larger adhesion surface
and, consequently, adhesion proteins have a higher probability of connecting to
the ECM. Every cell protrusion, except the longest one, becomes non-adherent
and, therefore, they are all dragged by the cell during cell motion. The retraction
of the longest protrusion generates a reaction force (Fg"’”g“t) supported by the
nucleus. Thus, we could estimate the exerted drag force (Fuag) by the ECM

on the nucleus (Figure 4.1c) as

Plongest
FR

Fdrag - - 5 (411)
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where Fg“’""“i is the reaction force generated by the longest protrusion. As a
result, both cell speed and position could be estimated at any given time ¢ following
the definition proposed by Borau and colleagues [508]. We assumed the nucleus
is on the fluid component of the ECM and, therefore, we considered that the cell
is moving through a fluid. Then, we could compute the drag force Fg,o4 exerted

by the matrix on the cell nucleus as:
Fypog = —6mrnv, (4.12)

where r is the cell radius, i represents the ECM viscosity, and v is the cell speed.
We assumed that there is a mechanical balance between the traction force of the
adherent protrusion (F"°*"), the longest one, and its corresponding reaction force

trac

(Fp'°"=") supported by the nucleus because of Fy or?*** (Figure 4.1c). Consequently,

trac

we could establish the following relationship:

Plongest __ . . 1./,con __ _ gnPlongest
Ft?"ac = —Qqdhesion Lplo,”g%t (Splongest’ t) = FR R (413)

where FP'°¢** represents the contractile force of the longest protrusion, and

Qadhesion 18 @ constant that defines adhesion. ngco(:;est (splongm, t) is the length of
the longest protrusion at the end of the contractile stage, and Fﬁ”"””t represents
the reaction force supported by the cell nucleus because of the retraction force of the
longest protrusion. All in all, we could define the associated force equilibrium as:

—67rNV + Qadhesion - L " (Splongest’t) =0, (4.14)

Plongest

where r is the cell radius, n is the ECM viscosity, and v is the cell speed. aggnesion
is a constant that defines adhesion, and L;*" (s, ., 1) is the length of the
ongest onges

longest protrusion at the end of the contractile stage. Note that traction forces FE:

were assumed identical in magnitude to their corresponding reaction forces F5'.

4.2.4 Numerical implementation

Our computational model was designed as a 3-stage process: chemosensing mech-
anism, protrusions dynamics, and the nucleus translocation (Figure 4.4). These
three stages were implemented in Python using powerful packages and libraries
for scientific computing such as NumPy [509] and SciPy [510] to maximize the

model’s performance.

The stochastic time evolution of the given set of reactions (R1, Ra, Rs, and Ry4)
were numerically simulated using, initially, the Stochastic Simulation Algorithm
(SSA; also known as the Gillespie Algorithm) [511, 512] in previous efforts from

our group [382]. However, the SSA was considered too slow for our purposes and
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Figure 4.4: Numerical implementation. First, the chemosensing mechanism is
simulated using the tau leaping algorithm. In this first stage, the concentration and
gradient of the PDGF-BB is the main influence factor. During the second stage of the
process, it is taken into account both ECM mechanical properties and cell mechanics
in order to simulate protrusions development. Finally, the modeling of the cell body
translocation is also influenced by the ECM mechanical properties (in particular, ECM
viscosity) as well as cell mechanics. The blue boxes are associated with the chemical factor,
the red ones with cell mechanics and the yellow ones with the ECM mechanical properties.

a faster alternative was proposed, the tau-leaping algorithm [513, 514]. The SSA
computes an exact solution of the time evolution of a chemically reacting system.
In contrast, the tau-leaping algorithm estimates a good enough' approximation

[515, 516] by leaping over many reactions at once using Poisson random numbers.

The tau-leaping method attempt to accelerate stochastic simulations by approx-
imating the frequency of each reaction being fired in the next specified time interval
[t,t + 7). By comparison, the SSA focuses only on one reaction per time interval,
which may be prohibitively small [517]. As long as the value of 7 is small enough
so the leap condition? is satisfied, it is possible to compute a good approximation

of the evolution of any given chemically reacting system.

It is worth mentioning that neither the SSA nor the tau-leaping algorithm uses

a fixed time step to simulate the evolution of biologically reacting systems like the

IThe “good-enough” expression used here to describe the accuracy of the tau-leaping algorithm
comes from previous works such as [515] where he states that “One acceleration strategy is to
abandon absolute mathematical precision in favor of a good-enough approximation. Gillespie has
also been a pioneer in this effort. One of his strategies is called ‘tau-leaping’”. This statement is
considered valid as long as the leap condition is satisfied, i.e. as long as the probability of each
reaction taking place does not change significantly over the time leap.

2The leap condition is an accuracy-assuring restriction which states that during the time interval
[t, t + 7) the probability of each reaction channel R; being fired should remain approximately
constant even though all reaction channels may be fired several times.
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Reactant ‘ Initial amount ‘ Equation ‘ Reference ‘

PDGFR 4.275 x 103 (4.1) [518]
PDGFRx 0 (4.1) | Estimated
PI3K 75 x 103 (4.1) [519]
PI3K A 0 (4.1) | Estimated
kq 735nM~ts (4.1) [520]
ko 0.01s1 (4.1) [520]
ks 4x1074s7? (4.1) [519)
k4 1s7? (4.1) [519]

Table 4.1: Initial amounts of each reactant and reaction rates.

one presented in this work. Instead, they compute a new value 7 in each iteration
based on the current state of the system and a random variable.

The initial amounts of each reactant and the reaction rates (k1, k2, k3, and
k4) used are included in Table 4.1.

Protrusion growth was then set based on the spatial distribution of PISK
molecules and their amount in those locations. Protrusion final length was computed
by applying Eshelby’s solution of ellipsoidal elastic inclusions inside an elastic, infinite
body. Next, mechanical equations were analytically solved using a computational
algorithm. We assumed an elastic modulus of 104 Pa for the ECM based on previous
experimental works of gels with a concentration of 2mgmL~" collagen type I [171,
352]. Lastly, the mechanical equilibrium associated with protrusion-generated forces
was solved. Then, assuming that the longest protrusion is the one guiding cell
motion, both cell speed and position were computed in the following time increment.

We decoupled the simulation of the chemosensing mechanism from the other
two stages of the model (protrusions dynamics and nucleus translocation) because
we were considering two different time scales in our model. Indeed, these chemical
and mechanical events occur at different time scales. To accurately simulate the
proposed signaling network, we opted for the iterative tau leaping algorithm with a
variable associated time step 7 in the range [0.5,1.5] seconds. However, to model
protrusion dynamics and the nucleus translocation we used a different time step
of 5min. Indeed, signal s variations (Equation 4.3) between two consecutive time
steps t and t + 7 were very subtle. In contrast, protrusions required more noticeable
variations of the chemical signal to change their current state. As a result, it was
required to keep track of the signal s variation (9s).

4.2.5 Development and quantification of in vitro experiments

Once we had numerically implemented the proposed model, we had to calibrate
its parameters to optimize the predictive potential of this in silico model. We
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Figure 4.5: In vitro experiments. Norman Human Dermal Fibroblast (NHDF)
cultured in 3D collagen-based fibrous matrix (2mgmL~' collagen). Image was captured
with a Nikon D-Eclipse Microscope with a Plan Fluor 200x magnification (20x Objective)
and phase contrast.

calibrated the proposed multi-scale model by comparing the results of its simulations
with experimental data. In particular, we focused on two different features to fit
the model’s parameters: the length of the longest protrusion and the number of
protrusions of the migrating cell. As a result, we performed in vitro studies to
get accurate experimental measurements of the length of the longest protrusion

and the number of protrusions.

In vitro experiments were performed by culturing NHDF' cells—human skin pri-
mary cells—within 2mgmL ™" collagen gels at a concentration of 2.5 x 10° cells /mL,
with temperature and atmospheric conditions maintained at 37°C and 5 % COx,
respectively. Immediately after the seeding, cells’ evolution was monitored with
multidimensional microscopy for 4 hours (from 0 to 4h), every 5 minutes and
5um of the Z-axis, with 200x magnification (20x objective) and phase contrast
(Figure 4.5). We chose a 2mgmL™" collagen concentration because it already
implied a matrix pore size (1 um) [521]. Individual cell protrusions were quantified
by in-house Matlab algorithms [484]. For each image stack, the best Z was chosen
to maximize accuracy and minimize the complexity of the manual analysis of the
center of the cell and its protrusions. Single-cell analysis of four different samples

was performed for the given collagen concentration (2mgmL™").
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FGM™-2 (Fibroblast Growth Medium-2) was used to support the growth of
primary human fibroblasts. It contained a supplementation of GA-1000, recombinant
human insulin 0.5%, HFGF-B GF, and 2% of Fetal Bovine Serum. Thus, these
in vitro experiments only included a very low and fixed concentration of growth

factors in the culture medium; they did not include any chemoattractant gradient.

4.2.6 Model calibration using Bayesian optimization

For our experiments, we decided to fit two competing metrics: the length of the
longest protrusion (llp) as well as the number of protrusions (np) (Figure 4.1). The
fitting of the in silico values to the in vitro measurements was computed using
the Bhattacharyya coefficient (also known as BC'), which has been widely used to
compare the similarity or discrimination of two continuous or discrete distributions
[622]. In fact, for discrimination, it corresponds to the upper bound of the Bayesian
error when performing Bayesian hypothesis testing with symmetric cost functions
and uninformative priors [523]. Note that Bayesian hypothesis testing already
includes a penalization for model complexity and priors resulting in a regularization

effect, being less sensitive to overfitting than classical hypothesis testing [524].

The proposed fitting metrics were defined as:

BC = Z \/h’LSt?m vitro hZStzzn stlicos (415)
1=1

where hist' represents the value of the i-th histogram bin defined as the probability
of occurrences in the range (z;_1, z;]. Note that histograms were used as discrete

distributions.

The selection of metrics affects model calibration, so we carefully selected the
metrics with a prominent influence on cell migration to the best of our knowledge.
Moreover, these metrics were based on experimental measurements that we could
accurately quantify. However, there were other measurements based on cell motion,
such as the instant cell speeds, that were so low that we could not quantify them
with the required accuracy. For those metrics, it was only possible to perform
a qualitative analysis. Our proposed metrics were based on just two quantities
measured in the experimental data. However, we considered that the length of the
longest protrusion and cell speed are both fundamental in regulating the final 3D
cell motion. In particular, experimental observations [352, 484, 507] suggest that
the length of the longest protrusion has great influence over the cell speed whereas
the number of protrusions has a great impact on the cell trajectory (whether it

is random or directional).
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Optimizing the BC function can be considered a form of Bayesian learning
as we are trying to fit a model that best represents the distribution of the data
and therefore maximizing the posterior. Similarly, optimizing the BC can be seen
as a form of Bayesian hypothesis testing, where we are rejecting all the models

with higher Bayesian error.

4.2.7 Model validation using different chemoattractant con-
centrations and gradients

After calibrating the numerical model, we had to validate it, testing their predictive
ability to simulate different cell responses under different chemical gradients. This
validation process allowed us to prove that the proposed model did not only
accurately replicate the results used to calibrate it but also new ones so that there
was no overfitting during the calibration process. In the previous calibration process,
we used quantitative results related to the length of the longest protrusion and the
number of protrusions of migrating NHDF cells from in vitro experiments without
any chemoattractant gradient. However, the validation process of this in silico
model was based on qualitative observations of migrating cells surrounded by a
chemoattractant factor diffusing throughout the ECM [525, 526]. We simulated six
different extracellular environments. Three of these environments included different
PDGF gradients (1071, 10°, 10! pM/mm) but a fixed PDGF concentration at
the initial cell’s position of 0.8 M. The other three environments included a
fixed PDGF gradient (10°uaMmm™") but different PDGF concentrations at the
initial cell’s position (0.08, 0.8, and 8.0 pM. Twenty simulations were executed for
each extracellular environment, using the same seeds used during the calibrating
process. The comparison between in wvitro and in silico results was based on
qualitative observations of the velocity component in the direction of the chemotactic

gradient (vg).

We assumed a fixed growth factor profile without any induced modifications
of the spatial gradient owing to the growth factor diffusion throughout the ECM.
Thus, the chemoattractant chemical profile was assumed to be temporally stable as
the inlets and outlets of our system kept a fixed growth factor profile during

our 4-hour simulation.

4.3 Results

In this section, we start by showing the results from in vitro experiments and their

quantification. Then, we showcase the suitability of the integrative methodology
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Figure 4.6: Image analysis. (a) Phase contrast example of a NHDF cell cultivated
in a 2mgmL™! collagen gel, with 200x magnification (20x objective) acquired using
multidimensional microscopy. (b) Protrusion analysis performed by in-house Matlab
algorithms; red line delimits cell body, yellow lines represent the protrusions, and blue line
shows cell body displacement. In this case, the longest protrusion is the green one and the
number of protrusions is 5.

presented in Chapter 3 based on Bayesian optimization to calibrate in silico models
using experimental data. Finally, we assess the potential of our calibrated numerical

model under different chemoattractant concentrations and gradients.

The aforementioned in vitro experiments with NHDF cells allowed us to quantify
both the length of every protrusion, as well as the number of protrusions generated
at every checkpoint t (¢ = 0, 5, 10, ..., 240 minutes). Figure 4.6 shows an
example of the images generated by multidimensional microscopy and the posterior
protrusions analysis performed using in-house Matlab algorithms. However, the
proposed in silico model focuses on the length of only the longest protrusion at
each temporal checkpoint t, as explained in Section 4.2.3. Therefore, during the
calibration process, the comparison between in vitro and in silico experiments was
performed computing the BC' associated with these two features (length of the

longest protrusion and the number of protrusions generated by migrating cells).

During calibration, for every iteration in the optimization loop, we run 20
simulations replicating the in witro scenario of a 2mgmm™! collagen ECM—to
capture the stochastic nature of the proposed in silico model. Those 20 simulations
used 20 different seeds to initialize the global random number generator of the
proposed multi-scale model. After each simulations batch finished, a computer-based

algorithm generated the associated histograms. These histograms (e. g. Figure 4.7
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bottom) were compared with the in vitro histograms (Figure 4.7 top) using the

following evaluation metrics BCy;, and BC,,:

N i
. BCj
S BChy g

BC”p =
N
v . (4.16)
BC,,, = Lin BCy N =20
np — Tv - )

where BC’;ZP is the fitting metric evaluating the accuracy of the proposed in silico
model regarding the longest protrusion for the i-th simulation. N represents the
number of simulations executed (20). Lastly, BC’;Z, is the fitting metric evaluating
the accuracy of the proposed in silico model regarding the number of protrusions

for the i-th simulation.

Computing both metrics based on the BC' required to generate the associated
histograms for the longest protrusion length and the total number of protrusions.
Histograms associated with in vitro experiments using 2mgmL™" collagen gels
showed how the protrusion length ranged from over 0 pm to almost 140 pm. However,
the majority of the longest protrusions were 40-60 pm long (Figure 4.7 top left). The
experimental data related to the number of protrusions exhibited high dispersion,
ranging from 1 to 14 protrusions in each NHDF cell during the 4-hour in vitro
experiments (Figure 4.7 top right). Figure 4.7 (bottom) includes the in silico
histograms associated with the best parametrization suggested by SigOpt with
metrics BCyy, = 0.87 and BC',;, = 0.81. These histograms show how, although the
length of the longest protrusions was between 0 pm and more than 150 pm, there
was a peak in the interval 60-80 nm (Figure 4.7 bottom left). The experimental
data related to the number of protrusions showed that there were usually about 9
to 12 in each NHDF cell during the 4-hour in vitro experiment (Figure 4.7 bottom
right). When comparing measurements of the length of the longest protrusion, the
mean values were 63.71 (in vitro) versus 65.98 (in silico), whereas the standard
deviations were 31.20 (in vitro) versus 26.82 (in silico). For the measurements of
the number of protrusions, the mean values were 7.57 (in vitro) versus 7.38 (in

silico), whereas the standard deviations were 3.27 (in vitro) versus 4.00 (in silico).

Figure 4.9 shows the values of both metrics BC);, and BC),, for every suggested
parametrization by SigOpt. SigOpt was able to find parametrizations with higher
values of the BCy,, (even above the 0.9 mark) than the BC,,, (consistently below
0.8). Only 51 (17 %) of all the parametrizations suggested by SigOpt were considered
invalid. Most valid parametrizations were higher than 0.7 for at least one metric
(77.91 %). Moreover, 107 parametrizations were higher than 0.7 for both metrics
(35.67 %). Overall, valid parametrizations got slightly better results for the metric
related to the length of the longest protrusion (BCyy,, Figure 4.9).
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Figure 4.7: In vitro vs in silico. Normalized histograms associated with in vitro
experiments (top) based on the length of the longest protrusion (measured in pm) (left)
and on the number of protrusions (right). Normalized histograms associated with in silico
experiments (bottom) based on the length of the longest protrusion (measured in pm)
(left) and on the number of protrusions (right). In silico experiments were generated
using one of the best parametrizations suggested by SigOpt with metrics BCj, = 0.87
and BCy, = 0.81.
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Figure 4.8: Optimization metrics for calibration. Values associated with metrics
(BCup and BC,p) for the 300 model parametrizations suggested by SigOpt during the
calibration process. Red circles are associated with every parametrization tested whereas
the blue ones represent Pareto optimal points (parametrizations where one metric cannot
be improved without another metric suffering) and form an approximate Pareto frontier.

Table 4.2 includes the nine parameters of the model that were calibrated. By
establishing the boundaries of each parameter, we defined the parameter space. In
this particular case, the parameter space included both continuous regions in the
real space and discrete values for integer parameters. As a result, the calibration
process became a mixed-integer programming problem, much harder to optimize
than just real spaces (nonlinear optimization) or integer spaces (combinatorial
optimization). For some parameters, we established a range based on the values
used in [382]. Conversely, for others (e.g., E,,), we determined a range based

on values found in the literature. In addition, for the parameters related to s
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Parameter Value Equation ‘ Range ‘
E,, 1 x 107 Pa (4.8) 1 x 1044 € {4,5,...,10}
Sbirth 85 (4.4) Z € [0, 100]
Sreinforce 76 (4.5) Z € [0, 100]
Sdeath 0 (4.6) Z € [0, 100]
Qegp 0.14mms™! | (4.4) and (4.5) R € [0.01, 0.2]
Beap 100 | (4.4) and (4.5) R € [0.1, 100]
Qlret 0.05 mms~! (4.6) R €[0.01, 0.2]
Bret 54.86 (4.6) R € [0.1, 100]
Sbinary 62.5 x 103 (12.542 x j) x 10%,j € {0,1,...,100}

Table 4.2: Model parameters calibrated using Bayesian optimization with SigOpt. The
calibrated values are associated with the parametrization considered the best one, with
computed metrics BCy, = 0.87 and BCrp = 0.81. The given ranges have been established
at the beginning of the calibration process and leave them unchanged.

signal (Spirth, Sreinforces Sdeath, a0d Spinary), We analyzed the values of s at different
time steps. These ranges should be biologically relevant. For example, the defined
parameter space for E,, (protrusions elastic modulus) included the values given by Li
and colleagues [527] and Mofrad and Kamm [528]. We also automatically discarded
any parametrization with sgeath > Svirths Sdeath = Sreinforce, OT Sreinforce = Sbirth
because they are invalid from a biological perspective. Indeed, the minimal amount
of signal required for the onset of new protrusions, sp;,tn, cannot be lower than
the minimal amount of chemotactic signal s required to remain active and not
disappear, Sqgeqtn. Neither can the minimal amount of signal needed for reinforcing
pre-existing protrusions, Sreinforce- Lhe minimal amount of signal required for
the onset of new protrusions, sp;-th, cannot be lower than the minimal amount
for the reinforcement of pre-existing protrusions either. Table 4.2 summarizes the
parametrization selected as the optimal one after 300 iterations of the calibration
process using SigOpt. For example, the best value for the elastic modulus was
1 x 107 Pa. The best parametrization, with metrics BCyy, =0.87 and BC,,, = 0.81,
was selected because of the balance between both metrics.

Having a probabilistic surrogate model of the metrics enabled other types of data
analysis during the optimization process. For instance, SigOpt also offers an analysis
of the impact of each parameter on the metrics (see Figure 4.10). This analysis
assesses how much the metric values change with variations of each parameter.
This analysis gave us valuable insights into our model behavior. Although every
parameter influences to some extent the metrics output, aezp,, & parameter that
computes the stress-free (unconstrained) expansion/retraction stretch rate field
during the protrusion dynamics stage, was the parameter with a higher impact

(24.06 %). In second place came feyp (15.25 %), also used to compute the stress-free
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Figure 4.9: Parameter importance. Parameters sensitivity based on SigOpt analysis
of each parameter importance on the proposed evaluation metrics.

expansion /retraction stretch rate field. The third most influential parameter on
these metrics was Spinary (13.76 %), used to simplify the search of signal s peaks
(where protrusions centroids located). Lastly, spirtn and Spein force had the lowest

impact on our evaluation metrics (4.76 % and 3.86 %, respectively).

Finally, we qualitatively validated the proposed in silico model based on
observations of migrating cells surrounded by different chemoattractant gradients.
Figure 4.8 (left) shows that as the PDGF gradient grew, the cell’s speed in the
direction of the chemotactic gradient increased too. Thus, cells follow a more
directional trajectory, which agrees with experimental observations from [525].
However, Figure 4.8 (right) shows that as the PDGF concentration surrounding
the cell increased, the cell’s speed in the direction of the chemotactic gradient
decreased. In this case, cells were following a more random trajectory. This fall
in the effective speed of the cell may be associated with receptor saturation [526]

and a phenotypic switch from migratory to proliferative [529].

4.4 Conclusions

Directed cell migration is critical for living organisms to grow and develop from a
fertilized egg, protect themselves against foreign invaders, and repair damaged tissues.
Therefore, healthy organisms depend on cells’ ability to perceive tactic cues from
their surroundings and respond accordingly. Cells tend to migrate mesenchymally
within dense and highly adhesive 3D environments. In such scenarios, cells develop
protrusive structures that hold on to the surrounding matrix and pull themselves

forward, squeezing their nuclei through ECM pores.

Understanding cell migration is extremely difficult because of the wide array

of modulating factors, such as temperature, architecture, and composition of the
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Figure 4.10: Model validation. Cell migration speed statistical analysis for 20 simula-
tions using the parametrization selected during the calibration process and associated with
six different extracellular environments. Left: three of these extracellular environments
included different PDGF gradients (107*, 10°, and 10' pymm™") but a fixed PDGF
concentration at the initial cells positions (0.8 pM). Right: three extracellular environments
included a fixed PDGF gradient (100 pM mm™*) but different PDGF concentrations at
the initial cells position (0.08, 0.8, and 8.0 pm).

ECM (e.g., density, pore size, stiffness) as well as the presence of tactic cues [41].
These factors regulate cell motion by acting through different intracellular signaling
pathways (as triggers or downstream effectors), or in the dynamics of adhesions,
the cytoskeleton, or the nucleus [47, 50, 205, 323].

According to our experimental observations [352, 484, 507], cells exhibiting
a mesenchymal migratory phenotype within 3D matrices tend to present two
different behaviors. They may increase the number of stable protrusions, in which
case all protrusions are short. In contrast, they might decrease the number of
stable protrusions, with some of them being notably longer. In the first case,
protrusions compete against each other, resulting in no preferential movement.
In the second case, cells usually present a defined trajectory in the direction

of the longest protrusion.

We made several assumptions regarding the mechanical model of the ECM.
First, we considered the matrix as an isotropic material. Nevertheless, the ECM
is anisotropic because of the different fiber directions [171]. Second, we did not
consider the inhomogeneities associated with the surrounding microenvironment
[145]. Instead, we assumed a fixed rigidity for the matrix. Neither did we
consider ECM remodeling in this in silico model. However, this is an acceptable
approximation for preliminary studies of cell motion within collagen-based hydrogels,
which allowed us to use Eshelby’s theory.
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Owing to the complexity of cell migration, in silico models have been widely
used to improve our understanding of this fundamental biological process [225, 504,
530]. Intracellular signaling pathways regulating cell motion are one of the sources
of complexity in cellular migratory behaviors. Cell motility can be considered
a stochastic phenomenon because of its inherent variability. The evolution of
intracellular signaling pathways highlights the stochastic nature of cell migration.
The Stochastic Simulation Algorithm (SSA) [511, 512] has been widely used to
numerically simulate the stochastic behavior of biochemical reactions. However, the
SSA is considered too slow for many practical applications [514, 531]. This effect was
evident in our specific case: even though the SSA offers an exact solution, simulations
took too long to finish (an average of 10.77 hours of execution time for each 4-hour
simulation of cell migration). The tau-leaping algorithm was considered a good fit
for our purposes. It gave us a “good-enough” approximation (see Footnote 1 on
page 81) of the temporal evolution of our signaling network, allowing us to optimize
the numerical performance of our mechanochemical model (an average of 1.28 hours
of execution time for each 4-hour simulation of cell migration). Thus, reducing

the computational cost by almost an order of magnitude.

The complexity of the calibration process of any in silico model increases very
quickly with the number of parameters. Another factor that notably increases the
complexity of the calibration process is the stochastic nature of some biological
models, such as the one presented in this chapter. Stochastic models require the
execution of several simulations for each parametrization to capture the variation
in the results associated with the stochastic randomness. Moreover, if executing
each simulation takes more than a couple of minutes, a manual approach for this

calibration process becomes highly prone to inefficiencies and human errors.

When choosing the values for each model parameter using such a manual
approach, researchers usually turn to the literature as their starting point. Then,
they perform some manual tuning so that results in silico approximately replicate
the experimental data. Generally, researchers start by modifying just a couple of
parameters using some values that are considered biologically relevant. Next, they
analyze how those parameters influence the model output based on the different
values tested. They iterate over this process by picking a couple of the remaining
parameters in every iteration—ideally, the selected parameters in each iteration
are related to each other. This manual approach is very tedious because modifying
some parameters may require the recalibration of others already calibrated. If the
in silico model includes many different parameters, researchers could start this
tuning process by performing a sensitivity analysis [26, 394, 449, 532, 533] to focus
on those parameters with a higher impact on the model output. Access to a High-

Throughput Computing (HTC) environment—which can drastically reduce the
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required elapsed times to run those simulations by parallelizing them—is becoming
more common. Still, owing to computational and time restrictions, this manual

step does not generally include more than a couple of iterations.

In most theoretical studies [30, 34, 384, 534—536] authors perform strong efforts
to validate the proposed in silico models by comparing experimental data with
the results of numerical simulations. Nevertheless, a complete integration of
experimental and numerical results is still lacking. This work represents a relevant
step forward in this direction by showcasing an example of application of the
integrative methodology presented in Chapter 3. In particular, this autonomous
framework integrates both modeling strategies (in vitro and in silico) by applying

Bayesian optimization during the calibration process to reduce these inefficiencies.

Bayesian optimization, which has been applied to solve a wide range of problems
such as machine learning applications [450], robot planning [451], simulation design
[452], biochemistry [453], and dynamical modeling of biological systems [455], offers
an automated approach for this calibration process. Furthermore, the Bayesian
optimization technique can minimize the number of parametrizations evaluated
to find a good enough fit for in wvitro observations. In our case, from the 300
different parametrizations tested during the calibration process, only 6 (2 %) have
the two metrics considered (BCy;, and BC),,) below 0.5. On the other hand, SigOpt
suggests 107 parametrizations (35.67 %) with both metrics above 0.7.

This integrative methodology based on Bayesian optimization allowed us to
identify the key parameters regulating the migration of NHDF cells embedded
in a collagen-based matrix. In particular, this novel methodology was applied to
calibrate a stochastic in silico model of a simplified signaling network based on
the biochemical interaction between chemoattractants molecules (PDGF) and the
associated transmembrane receptor (in this case, the PDGFR). This interaction,
in turn, triggers a signaling cascade that enables cells to sense biochemical stimuli.
Moreover, the calibration did not overfit the training data, that is, the experimental
data used during the calibration process, as highlighted during the final validation
process. To validate the selected parametrization, we simulated cell migration with
a diffused chemoattractant factor throughout the ECM. Then, we qualitatively
compared observations based on the cell’s speed in the direction of the chemotactic
gradient with results from previous experimental works [525, 526]. Our results agree
with those from in vitro experiments, where cells followed a more directional motion
as the chemoattractant gradient increased. However, when the chemoattractant
concentration surrounding the cell reaches an upper bound, cells start to lose

the ability to chemotax.
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In conclusion, the tau-leaping algorithm allowed us to optimize the performance
of the proposed in silico model by dramatically reducing the execution time required
to simulate the spatiotemporal evolution of the defined signaling network. In
addition, the integrative methodology proposed in Chapter 3 proved to enable
theoreticians to calibrate their expensive-to-simulate in silico models in a very
efficient and completely automatic way. As a result, this novel methodology will
facilitate the development of in silico models, enabling researchers to acquire a

more comprehensive understanding of cell migration.
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5.1 Introduction

Cell migration regulates the development and maintenance of multicellular organisms.
Indeed, forming new tissues and organs during embryogenesis requires elaborate
migratory patterns. During angiogenesis, endothelial cells migrate from pre-existing
blood vessels to form new ones. Wound healing calls for the coordinated migration
of several cell types, such as fibroblasts and epidermal cells. Cell migration is also
associated with many diseases such as cancer, in which tumoral cells invade their
surrounding tissue and other parts of the body during metastasis. Therefore, a

comprehensive understanding of cell motility is crucial.

Cell migration is an extremely complex phenomenon involving many different
biological processes and players. The specific cellular context—in particular, the cell
phenotype and the properties of the surrounding microenvironment—determines
if and how cells migrate [46-49, 225, 537]. Besides, distinct external cues may
bias cells’ trajectory and speed. These external signals span from chemicals (e.g.,
gradients of soluble or surface-bound factors) to mechanical ones, such as the
extracellular matrix (ECM) architecture and stiffness. Nonetheless, how cells
sense these external cues, adapt, and respond by establishing a specific migratory

pattern is not fully understood yet.

Cell motion has been a subject of study for more than a century [59, 60, 475].
The focus of the research community has been primarily on how cells migrate
on two-dimensional (2D) domains until recently. Studying migratory cells on flat
surfaces has considerably increased our understanding of cell migration. Still,
cell behavior on plated cultures does not accurately replicate how cells behave in
three-dimensional (3D) in wvivo conditions [65, 66, 538].

In such relevant settings, a variety of cell types can switch from one mode of
migration to another based on their context [41, 76, 539]. Factors such as cell
confinement, low adhesion, increased cellular contractility, and inhibited proteolytic
activity promote lobopodial and amoeboid migration. Conversely, the main features
of mesenchymal migration are prominent protrusions, high ECM adhesion, and

proteolytic tissue remodeling.

The wide variety of actors, biological processes, and factors regulating cell
migration calls for an integrative approach to unravel such complex phenomena
[371, 381, 397]. Mathematical models have become a powerful tool to get valuable
insights more efficiently. Simulators can also isolate specific mechanisms and
behavior patterns more easily than their in wvitro counterparts. Furthermore,
in silico models may have a guiding role for experimental research by making

predictions to test in the lab.
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Over the last several decades, researchers have proposed many different com-
putational models to increase our understanding of cell migration. Most of these
theoretical models replicate cell motion on flat surfaces [31, 361-364]. Nonetheless,
an increasing number of mathematical models focus on cell motility within more
realistic 3D microenvironments [187, 370, 371, 383]. Different in silico models
have tried to mimic the distinct modes of cell migration: individual [405, 540,
541] or collective [388, 389, 394, 420], amoeboid [384, 385, 542], mesenchymal [34,
375, 382], or even lobopodial [387]. Researchers usually focus on just one of the
mechanisms involved in the migratory process (e.g., the biochemical [519, 543,
544], or the biophysical [372, 508, 545]). A few models even integrate a couple of
them, such as the biochemical and biophysical mechanisms [379, 420, 546]. These
models usually adopt one of the following modeling approaches: (i) discrete [536,
547, 548], (ii) continuum [411, 462, 534] or (iii) hybrid [30, 533, 549]. We would
like to highlight the theoretical work of Kim and colleagues [34], in which authors
defined a method to assess the ECM stiffness sensed by filopodia. The authors
applied this method to model filopodial mechanosensing that resulted in guided

cell migration within 3D environments.

The present work aimed to improve our knowledge of how and to what extent
cell mechanics and ECM degradation regulate mesenchymal-like cell motility within
3D matrices. We created a new model that more accurately represents how the
mechanical properties of cells and their surroundings influence their migratory
patterns. By integrating biochemical and biomechanical stimuli, we could more
accurately mimic how individual cells migrate through 3D dense microenvironments.
In particular, our focus in this work was on celllECM interactions—which are
deemed essential for mesenchymal migration. As a result, we could replicate how
cells interact with their surroundings to sense external cues and modify their local

microenvironment accordingly.

In the following sections, we will describe the different components of the
proposed in silico model: from a simplified version of the chemosensing mechanism
to the building blocks of the mechanism associated with cell-matrix interactions.
In particular, we will emphasize how we modeled (i) protrusion dynamics, (ii)
the ECM regulatory role on protrusion growth and retraction, (iii) how cells
push their nucleus forward during mesenchymal migration, (iv) the formation and
disassembly of cell-matrix adhesions, and (v) ECM degradation. Then, we will
give a specific application for the proposed model. Next, we will highlight the
main migratory behaviors predicted by this in silico model. Finally, we will give
an overview of the presented model, its strengths and limitations, as well as the

novelty and relevance of this work.
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5.2 Methods

In this section, we will start by describing an in silico model of 3D mesenchymal
cell migration that extends the proposed multi-scale model from Chapter 4 [35,
382]. We will present the mathematical definition and implementation of this
multi-scale model. Then, we will illustrate the application of this in silico model,
demonstrating the predictive capabilities by comparing the numerical results with

experimental data.

5.2.1 Model description

Here, we start by describing the main aspects of this extended multi-scale model
to better understand the novel modeling enhancements proposed. This model was
built upon the assumption that the mesenchymal cell migration can be described as
a three-stage process [112, 382]. First, the cell probes its surroundings for external
cues such as gradients of chemoattractant through a variety of transmembrane
receptors. Secondly, when these transmembrane receptors get activated by binding
to such ligands, they initiate a cascade of signaling pathways that modulate the
cellular migratory response. In particular, these signaling pathways regulate the
dynamics of dendritic protrusions [250-252, 280]. Finally, these protrusive structures
push and pull the ECM, allowing the cell to migrate throughout the ECM. Here, we
established a relationship between the contractile forces exerted by these protrusions

and the cell nucleus translocation.

The proposed model simulating mesenchymal cell migration within 3D matrices
was built upon some of our previous works [35, 382]. However, we included several
novel aspects to more accurately replicate the cell, the surrounding environment,
and the interactions between each other. We will start by introducing the different
building blocks of the proposed model of mesenchymal-like motility within dense
environments. First, we will briefly describe the chemosensing mechanism that es-
tablishes protrusions locations and their stress-free (unconstrained) length variation.
Secondly, we will present the ECM model that allowed us to consider the matrix as a
heterogeneous entity. Next, we will describe how we modeled protrusions expansion
and contraction, which enables the nucleus translocation through ECM pores. Then,
we will define a model of matrix degradation that allows cells to enlarge narrow
ECM pores. Lastly, we will give an overview of the numerical implementation of

the proposed in silico model and an example of its application.
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Figure 5.1: Cell 3D structure scheme. (a) Normal Human Dermal Fibroblast (NHDF)
cultured in a 4 mg/ml collagen gel, stained for actin (red), vinculin (green), and nucleus
(blue). Image were captured with a confocal microscope. (Adapted from [500]). (b)
In silico model of a mesenchymal cell migrating within 3D matrices. Protrusions are
considered as 1D deformable bars (yellow), and are all linked together in a central node
representing the cell nucleus (green).
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Figure 5.2: Cell signaling model scheme. (a) Two-dimensional representation of the
modeled 3D chemosensing mechanism based on a simplified signaling pathway in which
PDGF molecules activated their associated surface receptors (PDGFR) by binding to
them. These activated PDGFR (PDGFR4,), in turn, activated messenger molecules of
PI3K located in the cytosol. The spatial persistence of PI3Ka (s(¢,0,t)) has a regulatory
role in protrusion dynamics. (b) Scheme of the regulatory role of PI3Ka persistence in
protrusion dynamics. The location of s(¢,6,t) peaks determined protrusions location
(p1 at [dp,,0p,] and p2 at [pp,, O0p,]), while the signal variation (9s(¢,0,t)/0t) influences
protrusions stress-free (unconstrained) length variation.

Modeling cell behavior

We maintained the cell 3D structure proposed in Chapter 4. which simulated the
cell body as a set of 1D deformable bars joined in a centroid (Figure 5.1b). This
centroid represented the cell nucleus. These 1D bars were located in a 3D domain

and simulated protrusions defining the cell body.
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5.2.2 Chemosensing mechanism

The chemosensing mechanism enables cells to probe for biochemical cues in their
surrounding ECM. The activation and deactivation of transmembrane receptors
(e.g., RTKs, GPCRs) allow cells to perceive the biochemical profile of the ECM.
These receptors embedded in the PM become activated by binding to different
chemoattractant molecules (e.g., growth factors). When bound together, the acti-
vated receptors can activate downstream signaling molecules (e.g., phosphoinositide
3-kinases [PI3K]) located at the cytosol. As a result, the signal received in the
PM is propagated inside the cell, regulating different cellular dynamics, including

those of actin-based protrusions.

The spatiotemporal distribution of activated PI3K (PI3K,) is closely related to
protrusions dynamics and migratory patterns [486, 501-503]. Therefore, we modeled
a simplified signaling network (Figure 5.2a). We were interested in the locations
where (i) cytosolic PI3K was preferentially activated and (ii) PI3Ka accumulated
through time inside the cell. These features defined protrusions locations and

directly influenced their expansion and contraction (Figure 5.2b).

We represented the PM of the cell as a spherical surface with a fixed radius
(Figure 5.2b). The center of this sphere was the central node linking all protrusions

in the proposed mechanical model (see Figure 5.4 and Figure 5.5).

More details on this chemosensing mechanism and the proposed signaling network

are included in Subsection 4.2.1 (page 72).

5.2.3 Modeling the heterogeneous behavior of the ECM

In previous works [35, 382], we considered the ECM as a continuous and homogeneous
entity. Nevertheless, this approximation is far from reality. The ECM internal
structure builds upon a network of collagen fibers, which are interconnected by
crosslinkers (Figure 5.3) [270, 551]. Still, the composition and microarchitecture
of the ECM associated with each tissue are unique [552, 553]. Further, local
variations in the biophysical properties of the matrix can dramatically impact
different biological processes, including cell migration [145]. Indeed, cells can sense
the local properties of their surrounding ECM, such as porosity, fiber alignment,
and stiffness, and adapt their behavior accordingly [150, 355]. Thus, modeling
physiological processes such as cell migration requires a good approximation of

the ECM inhomogeneities.

A realistic model of how cells’ local environment influences cell migration requires

considering the ECM a heterogeneous entity. Accordingly, we opted to discretize the
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Figure 5.3: Confocal image in real-time of a Primary Human Osteoblast seeded in DQ-
collagen I (green fluorescence) mixed with collagen I. Image reproduced with permission
from Movilla N. [550].

extracellular domain in a set of voxels of a fixed size. This ECM representation allows
to locally evaluate the biophysical properties of the cells’ surrounding environment.
Substrate stiffness influences some of the leading players in the cell-matrix interactive
mechanism, such as actin (de)polymerization and actomyosin motors [554, 555].
Because of the ECM fibrillar interconnectivity, integrin-containing focal adhesions
(FAs) allow cells to sense the stiffness of their local microenvironment [175, 182].
We assumed that the stiffness sensed by the cell through FAs is the stiffness of the
ECM surrounding those adhesion complexes. The stiffness of the ECM is another
factor regulating the protrusive stretch characteristics. Therefore, in this work,

we paid special attention to the ECM stiffness.
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To assess the local stiffness of ECM subdomains in our biophysical model, we
used simple geometric elements. One or several of these elements made up what we

called regions of interest (ROI). We opted for sphere-like elements with radius rror.

We assumed a relationship between the porosity of the matrix and its stiffness,
which may change based on the physical profile of the ECM. For collagen-based
hydrogels, such relationship means that as the collagen concentration increases, so

does its stiffness [171]. In contrast, the porosity of the matrix decreases [270].

5.2.4 Protrusions growth

Modeling cell mechanics during protrusion growth

In 3D microenvironments, actin polymerization contributes to protrusions formation
and growth [266, 280]. Actin polymerization occurs much more rapidly at the barbed
end of actin filaments, which most of the time points toward the PM. By polymerizing

against the PM, actin filaments push this membrane and the surrounding ECM.

We defined a mechanical system based on nodes and elements (bars and springs)
to simulate such expansive event. Unlike our previous works [35, 382], protrusions
were considered as unidimensional elastic bars (p;). The contact between these
deformable bars and the surrounding matrix was simulated by means of springs.
Conversely, the cell nucleus was considered the central node that connected all
these elastic bars (Figure 5.4). The LINC complex connects the cell nucleus to
the cytoskeleton, embedding it in a meshwork that can resist high compressive
loads. Therefore, the displacements of the central node (the cell nucleus) were
impeded. We located nodes at the tip of the protrusions and the cell nucleus

(yellow circles in Figure 5.4).

We assigned a fixed rigidity to the 1D elastic bars. In contrast, the stiffness
associated with the springs were calculated evaluating the rigidity of the surrounding
ECM. Specifically, we assessed the rigidity of the ROIs associated with the areas
that protrusions would traverse based on s,, (ROI®*P; Figure 5.4a, green and

pink rectangles).

Location and stress-free (unconstrained) length variation

We assumed the persistence of activated actin-binding regulators such as PI3K
(PI3K,) in the outer region of the cytosol (just below the cell surface) determines
the protrusions location and their stress-free (unconstrained) length variation
during their expansion. In locations where activated PI3K persistence increased,

the corresponding i-th protrusion grew larger during the expansive stage. As a
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result, the stress-free (unconstrained) expansion of protrusions depended on signal
variations of PI3Ka (s) at those locations (sp,). Therefore, we computed the
stress-free (unconstrained) length variation of each protrusion during its expansion
based on these signal variations as:

ALY (sp. ,t) . .
—Bi Pl if p; is new prot.

o
aL (SPU ) _ t birth (5 1)
oL ’ '
ot exp # otherwise
growth

where s, is the spatiotemporal variation of PI3K 4 associated to the i-th protrusion,

ALY (sp. . .. .
% |birtn Tepresents the stress-free (unconstrained) length variation of the i-th

ALY (s, t
protrusion during its birth (defined in Equation 4.4 [page 76]), and %| growth
is the stress-free (unconstrained) length variation of the i-th protrusion during its

growth and stabilization (defined in Equation 4.5 [page 76]).

More details on how we established protrusions locations and their stress-free

(unconstrained) expansion are included in Subsection 4.2.2 (page 75).

Simulating protrusion growth by actin polymerization

To simulate protrusions expansion because of actin polymerization, we applied
forces to the aforementioned nodes located at both ends of protrusions (Figure 5.4b,
left). The time variation of these forces was defined as:

OF ;™ (1) E, A (’9L (8p;» 1)

ot B ngfp (Siﬂi ) tO) ot

€;, (52)

exrp

where E,, represents the stiffness of the i-th protrusion, A is the area of the

protrusion cross section, and L;fp(spi ,to) represents the length of the i-th protrusion

8L1{i (sp; 1)

T is the stress-free

at the beginning of its expansive stage (tg).

exp
(unconstrained) length variation of the i-th protrusion during its expansion (defined

in Equation 5.1). Lastly, e; is the unit vector in the direction of the longitudinal

axis of the i-th protrusion.

Next, we computed the displacements of each node (u'(t)) (Figure 5.4b, right).
We took into account the stiffness of the ECM surrounding the cell and the forces
generated by protrusion’s expansion. The length and relative position of each
protrusion were updated using these computed displacements. Note that, as the
displacements of the central node were impeded, only the nodes located at the

protrusions tip would move.
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Figure 5.4: Two-dimensional representation of the 3D structure associated with
protrusions expansion. Two protrusions, p; and p2, are represented as unidimensional
elastic bars, with a fixed rigidity. The cell nucleus is the central point connecting the bars,
which represent cell’s protrusions. We locate a node (yellow circles) at the location of the
cell nucleus and at the tip of each protrusion. The contact between these deformable bars
and the surrounding matrix was simulated by means of springs. (a) The stiffness of these
springs was computed as the averaged Young’s modulus of the corresponding region of
interest (ROIZIP and ROIZEP). (b) By binding cell nucleus to the cytoskeleton, the LINC
complex embeds it in a meshwork that can resist high compressive loads. Therefore, the
displacements of the central node were impeded. (b, left) Next, we applied forces to
the nodes to simulate protrusions expansion because of actin polymerization. (b, right)
Finally, we computed the displacements of each node. Note that only the nodes located at
the protrusions tip would move.
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5.2.5 Protrusions contraction

Modeling cell mechanics during protrusions contraction

Actin depolymerization and actomyosin motors play a key role in protrusions
contraction. Actin depolymerization occurs much more rapidly at the pointed
end of actin filaments, which most of the time face inside, away from the PM.
Actomyosin motors generate traction forces in the cytoskeleton, which are then

transmited to the cell nucleus by the LINC complex.

We defined a mechanical system based on nodes and elements (bars and springs)
to simulate the contractile events. Protrusions were considered as unidimensional
elastic bars (p;), whereas FAs coupling the PM to the surrounding ECM were
simulated by means of springs. The cell nucleus was considered the central node
that connected all these elastic bars (Figure 5.5). We located nodes at the tip of

the protrusions and the cell nucleus (yellow circles in Figure 5.5).

We assigned a fixed rigidity to the 1D elastic bars (the same rigidity than during
the expansive stage). The stiffness associated with the springs were calculated
evaluating the rigidity of the surrounding ECM. However, this time we assessed
the rigidity of the ROIs associated with the protrusions adhesive regions (ROI®?;
Figure 5.5A, green and pink rectangles). This adhesive region had a maximum

length of 8 nm (in agreement with the 8 pm—16 pm range from [556]).

Unconstrained length variation

We assumed the protrusions length at the beginning of its contractile stage deter-
mines their stress-free (unconstrained) length variation during their contraction.
Therefore, we defined the stress-free (unconstrained) length variation of each
protrusion during its contraction accordingly. During protrusions contraction, in
locations where s was above Sgeqtn, protrusions rectracted. However, in those
regions where s was below Sgeqtn, pre-existing protrusive structures not only

retracted but also disappeared:

3Lgi(5ma t)

= , (5.3)

_ —chf”(spi,to) if sp,(t) > Sdecatn
con —L5™(sp,,t0)  otherwise

where c is a parameter regulating protrusion contraction rate, and Lg‘i’”(sm ,to) is
the protrusion’s length at the beginning of its contractile stage at time ty. Notably,
c could be associated with the contractility profile of the cell. This parameter c
would depend on the cell-type and the specific properties of the surrounding ECM.

Accordingly, we could establish a relationship between ¢ and the number of motors
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and clutches [154]. Interestingly, [273] recently suggested that increased contractility
leads to mechanotype differences in weakly and strongly adherent cells.

A negative feedback loop for PI3K activation is generated by myosin motors
during protrusions contraction, as suggested by [486]. Therefore, as in the proposed
in silico model from Chapter 4, we assumed a directly proportional decrease in
dsp, (t) to sp, during the contractile stage (dsp,(t) < 0). We also considered a
time-dependent wear of s, (t), as time wears out the persistence of PI3K 4, following
a 30min half-life decay [486].

Note that the length and number of protrusions depends on signal s. For
instance, if s has a couple of regions where PI3K s has prominently accumulated
over time (5min), we could predict a few long protrusions. Conversely, if signal
s is mainly homogeneous with small variations, we should expect many small
protrusions. However, these predictions could change based on the initial amount
of PI3K (Table 4.1), and the parameters associated with signal s (Spinary, Spirth,
Sgrowth, a0d Sqeqtn). Indeed, these parameters also regulate the length and number

of protrusions at any given time.

Simulating protrusion retraction by actin depolymerization and acto-
myosin motors

To simulate protrusions contraction because of actin depolymerization and acto-

myosin motors, we applied forces to the aforementioned nodes (Figure 5.5b, left).
The time variation of these contractile forces were defined as:

OF5" (1) 1— ) E,, A OL] (sp,.1) o

ot Lgon(sp, , to) ot v

con

(5.4)

where p is a friction term (defined below, in Equation 5.5), E,, represents the
stiffness of the i-th protrusion, and A is the area of the protrusion cross section.

Lg2™(sp,, to) is the length of the i-th protrusion at the beginning of its contractile

OLS (sp, .t . ..
stage (to). % represents the stress-free (unconstrained) length variation

con
of the i-th protrusion during its contraction (defined in Equation 5.3). Lastly, e; is

the unit vector in the direction of the longitudinal axis of the i-th protrusion

Including a friction term (u) enabled our model to replicate the increasing
difficulty that cells find to migrate within dense 3D environment because of steric
hindrance. We computed this friction term (u) by means of a phenomenological law
that takes into account the drag that suffers the cell nucleus through ECM pores as:

s s Vir
Epcwm (m;}.zyt)*EchM 3 h s
; E if £ ) > B3
o= <EECM(Z§?¢)+EE(ZCM ECM( pi’ ) ECM , (55)

0 otherwise
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where E}.,, represents a rigidity threshold, Epcar (x5, t) is the ECM rigidity
around the i-th protrusion shaft (m;?, the ECM region through which the nucleus

would be squeezed), and vy, is a friction coefficient.

We assumed a relationship between the porosity of the matrix and its stiffness,
which may change based on the physical profile of the ECM. In particular, for
collagen-based hydrogels, we assumed an inverse relationship because, as the collagen
concentration increases, so does its stiffness [171]. Conversely, the porosity of
the matrix decreases [270]. Hence, we established a rigidity threshold E}%.,,,
which is cell type-specific and may also change based on the physical profile of
the ECM. Not only because cell types may exhibit a nucleus of a different size
but also because nuclear deformability may change based on factors such as the
matrix composition, which would modulate cell’s nuclear lamin A/C ratio or induce
chromatin decompaction. For example, inhibiting lamin A/C phosphorylation
in HT-1080 fibrosarcoma cells increased their nuclei stiffness [332]. Conversely,
confined conditions in 3D induce chromatin decompaction and seem to decrease
nuclear stiffness [302, 557].

Protrusions adhered to stiffer, denser, more confined regions of the ECM would
have to exert higher contractile forces to squeeze cells nuclei through. This friction
term (u) would act as a penalty term, biasing the migratory toward those regions
that facilitate the translocation of cells nuclei through larger pores. Still, in some
scenarios, this friction term may be negligible (even zero), that is, there might be
no penalty for any region of the defined ECM. Indeed, in these scenarios, cells
may exhibit highly deformable or small-enough nuclei to traverse ECM pores
effortlessly. The biophysical properties of the matrix may not hinder cell migration

through steric hindrance either.

In this work, we were focused on NHDF cells migrating in collagen-based
hydrogels, so we calibrated this rigidity threshold (E}%.,,) accordingly. When the
stiffness of the ECM around the i-th protrusion shaft (Egcas(23,1)) is greater
than this rigidity threshold, the porosity of the matrix would enable cells to migrate
through pores effortlessly [558]. Otherwise, the ECM porosity would require cells
to squeeze their nuclei to overcome the physical barrier that represents such small
pores [301, 340]. By including ~y, as a friction coefficient, we allow for a nonlinear
response, which may be required to replicate the effect of the ECM steric hindrance
[255]. Note that 7y, may be equal to 1, which would translate into a linear response
for the ECM steric hindrance.

Next, we computed the displacements of each node (u’(t)) (yellow circles in
Figure 5.5b, right). Again, we took into account the stiffness of the ECM surrounding

the cell and the forces generated by actomyosin motors. The cell nucleus was assumed
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Figure 5.5: Two-dimensional representation of the 3D structure associated with
protrusions contraction. Two protrusions, p1 and pa, are represented as unidimensional
elastic bars, with a fixed rigidity. The cell nucleus is the central point connecting the bars,
which represent cell’s protrusions. We located a node (yellow circles) at the location of
the cell nucleus and at the tip of each protrusion. Their adhesive region—which allows
cells to probe the surroundings through focal adhesions—was modeled as a spring. (a,
left) The stiffness of these springs was computed as the averaged Young’s modulus of the
corresponding region of interest (ROI5;" and ROIS}"). During contraction, the ROIs did not
overlap the space occupied by the cell’s protrusions. Instead, they were located in front of
them. This is where the ECM would received the maximum mechanical stimulus because
of protrusions’ contractions. (a, right) To compute the friction term (u) associated
with the contractile force of each protrusion (Fy7"(t)), we assessed the averaged Young’s
modulus around the shaft of the corresponding protrusion (wf,’;) Conversely, to compute
the reaction forces (R, (t)) associated with each protrusion, we evaluated the average
Young’s modulus arount the tip of the corresponding protrusion (z57). (continued)
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Figure 5.5: (Continued from previous page) (b) Also, we included adhesive clutches
on FAs, which would determine protrusions adhesiveness to the surrounding ECM. We
considered each protrusion connected to the cell nucleus through the cytoskeleton (and
the LINC complex) as an isolated mechanical entity. Therefore, we solved the system
associated with each mechanical entity independently. Each of these systems included a
different spring connected to the central node, as the cell nucleus would move through
a different region of the polarized cell’s cytoplasm. We assumed that the stiffness of
this region of the cytoplasm depended on the rigidity of the matrix around the adhesive
region of each protrusion. We also assumed that the cell nucleus displacements happen
in the same direction as one of the cell’s protrusions. (b, left) Next, we applied forces
to the nodes to simulate protrusions contraction because of actin depolymerization and
actomyosin motors. (b, right) Finally, we computed the displacements of each node. The
leading protrusion determining the cell trajectory was the one generating higher reaction
forces.

to move through the cytoplasm of the cell. During the translocation of the cell
nucleus, this organelle finds opposition from the cytoskeleton. Several authors have
suggested that cells cortical stiffness depends on the rigidity of the surrounding
ECM [559-563]. Therefore, we considered that the stiffness of this region of the
cytoplasm depended on the rigidity of the matrix around the protrusions adhesive
area. The length and relative position of each protrusion were updated using
these computed displacements. However, based on experimental observations, we
assumed that the cell nucleus displacements happen in the same direction as one of
the cell’s protrusions. We hypothesized cells would find lower opposition to push
their nucleus forward through its cytoplasm than through the surrounding ECM.
Thus, the position of the cell nucleus was determined by projecting the associated
computed displacement over the direction vector of the nearest protrusion.

)

During mesenchymal-like migration, a leading protrusion determines cells
trajectories [350]. This leading protrusion is the one generating a higher deformation
over the surrounding environment during the contractile stage. Consequently, we
considered each protrusive structure connected to the cell nucleus through the
cytoskeleton as an isolated mechanical entity. We solved the mechanical system
associated to each protrusion and the cell nucleus individually. Then, we were able
to determine the leading protrusion, that is, the one generating higher reaction
forces—which we computed as:

_ Epcum(z,P t)A

Rp'i (t) - Lcén’adh(t ) U’Pi (t)’ (56)

where Frc M(ac;ép ,t) is the matrix rigidity around the i-th protrusion tip, A is the
area of the protrusion cross section, Lgfh (t) is the length of the adhesive region
of the i-th protrusion at the end of the contractile stage (¢1), and w,,(¢) is the

displacement vector of the i-th protrusion front.
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Actomyosin force generation coordinates FA formation, reinforcement, and
disassembly [312]. Hence, on the contractile stage of our model, we also included a
simplified clutch model to simulate cell-matrix adhesions [154, 272] (Figure 5.5b).
Regarding cell-ECM interactions, forces are transmitted only if molecular bonds
establish a connection between: (i) ECM and integrins, and (ii) integrins and actin
cytoskeleton. These bonds must be engaged to transmit contractile reaction forces
generated by myosin motors located at the base of the protrusion to the surrounding
ECM (Equation 5.7). Protrusions exerting contractile reaction forces too low or too
high detach from the ECM. The bonds connecting the integrins to the ECM fibers,
and integrins to the actin cytoskeleton, play an essential role here. Contractile
reaction forces must be high enough for these bonds to be engaged. However,
if those forces are too high, bonds linking integrins to the surrounding matrix
will break. The contractile reaction forces that determined if the i-th protrusive
node (located at the tip of the i-th protrusion, see Figure 5.5) was attached to
the surrounding ECM was defined as:

pz;ttached (t)

; (5.7)

True if Riyin < [|[Rp, (D)l < Rinaa
False otherwise

where R, and Ry, are the lower and upper boundaries. If contractile reaction
forces applied to the nodes located at the extremes of the 1D deformable bar
associated to the i-th protrusion were smaller than R,,;, or bigger than R, then
the corresponding bonds would not be engaged. We considered that only protrusions
attached to the surrounding matrix could lead cell’s migration. We also assumed

that protrusions detached from the ECM retracted and subsequently disappeared.

5.2.6 ECM degradation

In dense 3D environments, cells switch to a mesenchymal-like migration based on
protrusive and remodeling dynamics to overcome extracellular barriers that could,
otherwise, impede cell migration [41, 321]. Cells generate tube-like geometries
as they migrate through the ECM [160]. First, cell protrusions modify the ECM
structure while expanding and contracting. Secondly, the cell body creates tracks
while migrating through a dense 3D domain. Cells also cleave ECM collagen fibers
by MMPs proteolytic activity. Even though MMPs are located all over the PM,
the protrusive surface seems to have two differentiated subdomains—adhesive and
proteolytic [556]. The former is located at the protrusive tip allowing cells to attach
to the ECM, the latter along the shaft where ECM degradation occurs (Figure 5.6).
Because of this proteolytic activity, ECM porosity increases—and ECM stiffness

decreases accordingly—in the regions occupied by the cell and those nearby.
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Figure 5.6: Two-dimensional representation of the ECM degradation model. A cell
with two protrusions (p1 and p2) in which the center of the cell body is represented by
a black circle. The protrusions’ adhesive regions were depicted as blue dashes lines, and
their boundaries as blue circles. The ECM was discretized and each squared region had
an associated stiffness (Ercam(,t)), represented as a colored square in the background.
After a time interval, the ECM subdomain occupied by the cell (d(x, Zes) < Teeny in (a)
and d(x, @es) < rprot. in (b), in orange) would have a very low associated stiffness. For
locations @ closer to the central region of the cell, r = reeu (a). For these locations,
the proteolytic subdomain around the plasma membrane (PM) where MMPs are located
and cleaving the ECM fibrilar network is delimited by ' = rey + ddeg. Conversely,
locations @ closer to one of cell’s protrusions, r = rpro. (b). In this case, the proteolytic
subdomain surrounding the PM where MMP degradation activity occurs is delimited by
r = Tprot. + ddeg. These proteolytic subdomains were colored as red gradients. Note that
the protrusion adhesive region does not degrade its surrounding microenvironment.

The stiffness variation on location & of the ECM domain because of degradation

at time ¢t was computed as:
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where dist(x,xcs) is the distance from location @ to the cell skeleton (xcs).
Whenever x is closer to one of the cell’s protrusions, r represents the radius of the
protrusions section (7prot. = 3.5 um). Conversely, when x is closer to the central
region of the cell (represented as a sphere), r is the radius of this central region

(reer = 25 pm, based on experimental observations). /(= r+dg4e,) delimits the ECM
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subdomain around the PM—where degradation occurs by MMPs proteolytic activity.
We assumed a fixed dqeq. K represents the mechanical damage rate generated by
cells over the surrounding ECM as they migrate within the matrix generating
tube-like geometries. We considered that locations occupied by the cell are matrix
voids. Therefore, their stiffness was very low. Egcas(x,t) is the stiffness in location
x at time t. clpyy, (x) assesses how close location  is from the PM (clp, (z) = 0,
if & is at the PM whereas clp,,(x) = 1, if « is at the frontier of the proteolytic
subdomain). vgeq(,t) determines the cell’s degradation speed. Eﬁydmgel represents
the averaged stiffness of the microenvironment assessed by Valero and colleagues
[171] based on the collagen concentration of the hydrogel where cells are embedded,
and ageg and Bgeq are parameters regulating the MMPs cleave ratio. Matrix porosity
increased—and ECM stiffness decreased accordingly—in those regions around the
PM because of cells’ proteolytic activity. Note that the stiffness of ECM locations in
the proteolytic region (r < d(x, @cs) < 1’) did not decrease uniformly. Instead, the
stiffness decreased more rapidly the closer these locations were to the PM (where
MMPs locate) because of a diffusive phenomenon. The morphology of the cell body
changed because of protrusions expansion and contraction. Hence, we updated the
stiffness of the matrix surrounding the cell after computing the displacements of

the nodes during the expansive and contractile stages.

5.2.7 Numerical implementation

This model was implemented in Python using powerful libraries such as NumPy
[509], SciPy [510], and Scikit-learn [564] to maximize the performance of the model.

As in Chapter 4, we simulated the stochastic time evolution of this signaling
network with the tau-leaping algorithm [513, 514]. This algorithm offers a good
enough approximation (see Footnote 1 on page 81) [515, 516] of the exact solution
given by the Stochastic Simulation Algorithm (SSA, also known as the Gillespie
algorithm [511, 512]).

We computed the displacements of the cell nucleus and protrusive structures

using the Direct Stiffness Method. Mechanical equations were numerically solved.

We modeled the ECM as a 3D matrix of voxels with 2pm edges. As the
cell migrate within the surrounding ECM, it modifies the stiffness of voxels that
it occupies. Cells also reduce the stiffness of those regions close enough to be
affected by cellular proteolytic activity, which degrades ECM fibers. Therefore,
this proteolytic mechanism required to update the stiffness of up to hundreds
of thousands of voxels per iteration. Consequently, the algorithm implementing

this mechanism took advantage of the efficient management of arrays of NumPy
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Figure 5.7: Global scheme of the proposed mathematical model of 3D cell migration.
Every iteration of the main algorithm started by simulating the spatiotemporal evolution of
the simplified signaling network associated to the chemosensing mechanism. The expansive
stage began by determining protrusions locations and their stress-free (unconstrained)
length variation based on the PI3Ka persistence. Then, we computed the displacements
of each protrusive structure of the defined mechanical system. This second stage finished
updating the stiffness of the ECM subdomain surrounding the cell. The last stage of the
main algorithm (i.e., the contractile one), started by computing the signal loss because
of protrusions contraction and time wear at those locations. Next, we computed the
displacements of the cell nucleus and each protrusive structure because of protrusions
contraction. Afterward, we updated the stiffness of the ECM subdomain surrounding the
cell. If we had already arrived at the end of the simulation (fcnq), the algorithm finished.
Otherwise, we began a new iteration of the main algorithm.

based on masks. To efficiently compute the distances from all those voxels to the
cell skeleton, we used the k-dimensional trees (k-d trees) of Scikit-learn, which
allows for k-nearest neighbors queries. Valero and colleagues [171] computed the
averaged stiffness associated with ECMs with different collagen concentrations
(1.5mgmL™", 2.0mgmL™, 25mgmL™", 4.0mgmL ™", and 6.0mgmL™'). We
used these experimental measurements to initialize this 3D matrix representing
the stiffness of the different ECM subdomains. Afterward, we could compute the
averaged stiffness of any region of interest (ROI) at time t—we selected 10-pm

radius spherical elements to manage ROIs.

The simulation of the chemosensing mechanism was decoupled from the cell-
matrix interactive mechanism as we were considering two different time scales
[35, 381, 382]. Indeed, the chemical and physical phenomena occur at different
time scales. To accurately simulate the proposed signaling network, we used the

iterative tau-leaping algorithm with a variable time step of 05-1.5s. Nevertheless,
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to model the cell-matrix interactive mechanism, we used a different time step of
5min. Besides, signal differences between two consecutive time steps were modest.
In contrast, protrusions required more noticeable variations of the chemical signal
to change their current state. As a result, we had to keep track of these cumulative

variations in the chemical signal.

See Figure 5.7 for a global scheme of the proposed mathematical model of

3D cell migration.

5.2.8 Example of application

In this work, we developed a computational model able to simulate mesenchymal-like
migration within 3D matrices under different mechanical conditions. To evaluate
the predictive potential of this in silico model we replicated some previous in vitro
experiments [507]. In particular, we simulated the experiments evaluating cellular
behavior in response to hydrogels with different collagen concentrations, which
consequently present distinct architectural properties (e.g., stiffness, porosity, pore
size). In those experiments, Del Amo and colleagues [507] seeded NHDF cells in a

3D collagen matrix under step concentration gradients (Figure 5.8).

The authors used microfluidic chips with three symmetric and adjacent channels.
As a result, they could tweak the mechanical properties of each channel separately.
In particular, we were interested in those in vitro assays where each channel had a
different stiffness (Figure 5.8): (i) assay with single-step gradient hydrogels, and
collagen concentrations of 1.5mgmL ™" (39.78 Pa), 2.0mgmL ™" (119.56 Pa), and
2.5mgmL ™" (185.18 Pa), respectively (single assay); and (ii) assay with double-
step gradient hydrogels, and collagen concentrations of 2.0 mgmL ™! (119.56 Pa),
1.5mgmL ™" (39.78 Pa), and 4.0mgmL ™" (360.67 Pa), respectively (double assay).
Thus, there was a stiffness interface between channels. Their results showed that, in
the absence of chemical gradients, collagen concentration and mechanical interfaces
did not bias the distribution of NHDF cells toward stiffer regions during the

individual invasion experiment.

We assumed that voxels associated with each channel of the microfluidic device,
which may contain a specific collagen concentration, initially present a fixed stiffness.
For instance, all voxels associated with a channel containing a 1.5 mgmL ™" collagen

concentration would initially present a 39.78 Pa stiffness.
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Figure 5.8: Initial distribution of Norman Human Dermal Fibroblast (NHDF) cultured in
a microfluidic device with three different channels. Each channel may include collagen-based
gels at different concentrations of collagen (e.g., 2.0 mgmL ™" in bottle green, 1.5 mgmL~"
in eggplant, and 4.0mgmL~! in mustard, respectively). Therefore, their associated
stiffness may differ (e.g., 119.56 Pain bottle green, 39.78 Pa in eggplant, and 360.67 Pa
in mustard, respectively). Yellow lines represent the channel boundaries (corresponding
to collagen interfaces). Green dots represent centroids of cells located in the central
channel. Conversely, the blue and red dots represent centroids of cells located in the lateral
channels. Purple straight lines represent cell orientation. Images were captured with a
Nikon D-Eclipse Microscope with a Plan Fluor 10x Objective. (Adapted from [507]).

5.3 Results

5.3.1 Fibroblasts do not durotax

First, we analyzed how cells sense and respond to different biophysical cues, such
as ECM stiffness and pore size. In the considered in wvitro assays, this would
mainly happen at the mechanical interfaces between two channels. When cells
get close enough to these mechanical interfaces, they may extend protrusions at
both sides, which would allow them to attach to the different matrices and sense
their biphysical differences. By initially locating cells in the different mechanical
interfaces (i.e., in the interface between two channels, yellow lines in Figure 5.8) in

our simulations, we focused on this phenomenon, right from the beginning. Thus,
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Figure 5.9: Cells trajectories over the three different channels of the microfluidic device
used by Del Amo and colleagues [507], for the in silico model proposed in this work
(n = 12). Cells’ starting position is represented by squares whereas their final location
is marked with circles. The ECM in each channel has different physical properties
corresponding with different concentrations of collagen. Left: In the single assay, collagen
concentrations were 1.5mgmL™!, 2.0 mgmL~! and 2.5 mgmL ™!, respectively, with single
step gradient hydrogels. Therefore, the associated stiffnesses would be 39.78 Pa, 119.56 Pa,
and 185.18 Pa, respectively. Right: In the double assay, collagen concentrations were
2.0mgmL™!, 1.5mgmL™!, and 4.0mgmL ™!, respectively, with double step gradient
hydrogels. Hence, the associated stiffnesses would be 119.56 Pa, 39.78 Pa, and 360.67 Pa,
respectively. We run simulations for 4 hours, with cells initially located at the interface
between channels, using the base parametrization (see Table 5.1), with ¢, = 2.00 and
E;L.., = 25Pa.

ECM
we considered that simulating the first 4 hours of those in vitro assays, instead of

the full 8 days, were enough for our specific interests.

We started by simulating the different scenarios (single assay and double assay,
n = 12) described in Subsection 5.2.8 using the base parametrization (see Figure 5.9
and Table 5.1). For the single assay (with a single step gradient among the three
channels, Figure 5.10 top), 66.7 % of the cells starting from the lower stiffness
mechanical interface (between left and central channels) ended up in the channel
with the lowest concentration of collagen (left channel, in purple, 1.5mgmL ™"
of collagen, 39.78 Pa, Figure 5.10 top). Conversely, 50 % of the cells starting
from the stiffer mechanical interface (between the central and right channels)
migrated toward the channel with an intermediate concentration of collagen (central
channel, in blue, 2.0 mg mL ™! of collagen, 119.58 Pa, Figure 5.10 top). As a result,
33.3 % of all cells ended up in the channel with lowest collagen concentration (left

channel, in purple, 1.5mgmL~" of collagen, 39.78 Pa, Figure 5.10 top), 41.7 %
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Figure 5.10: Cell distribution over the three different channels of the microfluidic
device used in [507], for the in vitro model (n € [50,100]), and the in silico model
(n = 12). The medium in each channel has different physical properties corresponding
with different concentrations of collagen. Top: In the single assay, collagen concentrations
were 1.5mgmL ™!, 2.0mgmL~! and 2.5 mgmL ™!, respectively, with single step gradient
hydrogels. Therefore, the associated stiffnesses would be 39.78 Pa, 119.56 Pa, and 185.18 Pa,
respectively. Bottom: In the double assay, collagen concentrations were 2.0 mgmL ™ *,
1.5mgmL~!, and 4.0mgmL ™!, respectively, with double step gradient hydrogels. Hence,
the associated stiffnesses would be 119.56 Pa, 39.78 Pa, and 360.67 Pa, respectively. We
run simulations for 4 hours, with cells initially located at the interface between channels,
using the base parametrization (see Table 5.1), with ;. = 2.00 and E}L,,, = 25 Pa.

in the channel with an intermedium collagen concentration (central channel, in
blue, 2.0mg mL™! of collagen, 119.58 Pa), and 25.0 % in the channel with the
highest collagen concentration (right channel, in green, 2.5 mg mL™! of collagen,
185.18 Pa). For the double assay (with a double step gradient among the three
channels, Figure 5.10 bottom), 50 % of the cells starting from the lower stiffness
mechanical interface (between left and central channels) ended up in the channel
with the lowest concentration of collagen (central channel, in purple, 1.5 mg mL ™!
of collagen, 39.78 Pa, Figure 5.10 bottom). In contrast, 66.7 % of the cells starting
from the stiffer mechanical interface (between central and right channels) migrated
toward the channel with the lowest concentration of collagen (central channel,
in purple, 1.5mgmL™" of collagen, 39.78 Pa, Figure 5.10 bottom). As a result,
58.3 % of all cells ended up in the channel with lowest collagen concentration
(central channel, in purple, 1.5 mg mL ™" of collagen, 39.78 Pa, Figure 5.10 bottom),
25.0 % in the channel with an intermedium collagen concentration (left channel,
in blue, 2.0mgmL ™" of collagen, 119.58 Pa), and 16.7 % in the channel with the
highest collagen concentration (right channel, in yellow, 4.0 mg mL™! of collagen,
360.67 Pa). Together, these results showed that, in any of the simulated scenarios,
cells exhibited a heterogeneous migratory pattern, with no clear bias based on

collagen concentration or the architectural characteristics of the ECM.
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Figure 5.11: Final cell distribution over the three different channels of the microfluidic
device used in [507], using the in silico model proposed in this work. The medium
in each channel has different physical properties because the medium was polymerized
with different concentrations of collagen. In the single assay, collagen concentrations
were 1.5mgmL~!, 20mgmL ™" and 2.5 mgmL ™!, respectively, with single step gradient
hydrogels. Therefore, the associated stiffnesses would be 39.78 Pa, 119.56 Pa, and 185.18 Pa,
respectively. In the double assay, collagen concentrations were 2.0 mgmL ™', 1.5mgmL~*,
and 4.0mgmL ™!, respectively, with double step gradient hydrogels. Hence, the associated
stiffnesses would be 119.56 Pa, 39.78 Pa, and 360.67 Pa, respectively. We run simulations
for 4 hours, with cells initially located at the interface between channels, using different
values of ~s. (1.00, 1.50, 2.00, 3.00) and E}L,, (25Pa, 100Pa, and 300Pa). Note
that E3l.,, = 25Pa is below the stiffness associated with collagen-based hydrogels at
1.5mgmL~" of collagen (39.78 Pa), E3l ;s = 100 Pa is below the stiffness associated with
collagen-based hydrogels at 2.0mgmL~" of collagen (119.56 Pa), and E}%,, = 300Pa is
below the stiffness associated with collagen-based hydrogels at 4.0mgmL~! of collagen
(360.67 Pa).

Table 5.1 includes the model’s base parametrization used in 4-hour simulations,
with cells initially located at the mechanical interfaces, to replicate some of the

experimental observations from [507].

Overall, simulations managed to capture the general trends regarding cell
distribution under these conditions (Figure 5.10). Both in wvitro and in silico
models exhibited a similar behavior regarding cell distribution throughout the
three channels of the microfluidic device. In particular, most cells remain in the
central channel, with a similar percentage of cells located in the lateral channels
(50 % in wvitro vs 58.3 % in silico for the single assay with single step gradient
hydrogels, and 45 % in vitro vs 41.7 % in silico for the double assay with double
step gradient hydrogels, Figure 5.10).

5.3.2 Steric hindrance hinders durotaxis

Next, we performed a sensitivity analysis focused on the parameters regulating

the steric hindrance effect: (i) Ej,, and (i) vy,. Indeed, these parameters are
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‘ Parameter Value ‘ Equation ‘ Range ‘
Qegp 8.81 x 107" mms~! | (4.4) and (4.5) R € [0.01, 0. 2]
deg 3.20 x 10~*Pas~! (5.8) R € [107°,1077]
Beap 62.46 | (4.4) and (4.5) R € [0. 1 100}

1x1073s71 (5.3) R € [1074,1072]
Odeg 8.9 x 1073 mm (5.8) R € [0. 001 0.01]
E,, 1 x 10®Pa | (5.2) and (5.4) R e [10‘3 107]
Ev 25Pa (5.5) R € [25, 100, 300]
Yir 2.00 (5.5) R € [1.25,5.00]
K 0.11 (5.8) R € [0.1,0.4]
Sbinary 57.16 x 103 R € [12.5,212.5] x 103
Sbirth 20.98 (4.4) R € [0.5,100.0]
Sdeath 9.77 (5.3) R € [0.5,100.0]
Sgrowth 15.45 (4.5) R € [0.5,100. O}
Roin 1x 104N (5.7) R € [10~ 4 ,1079]
Riax 0.085 nN (5.7) R € [0. 01 0.1]

Table 5.1: Base parametrization for the proposed in silico model. The ranges associated
to each parameter delimit the search space.

related to the ability of cells to squeeze themselves through ECM pores and migrate
in such dense environments. As mentioned in Subsection 5.2.5, E}l.,, represents
the minimum stiffness of the matrix for cells to struggle to squeeze their nuclei
through narrow ECM pores. Higher values of E},, would mean that cells migrate
effortlessly through stiffer matrices. Therefore, the percentage of cells migrating
toward stiffer regions should increase with higher values of E}.,,. Note that for
a fixed composition of collagen-based hydrogels, stiffer matrices are less porous
and have narrower pores. For the single assay (with a single step gradient among
the three channels), an E}l.,, > 185.18 Pa meant that cells were always within
ECMs with pores big enough for them to migrate effortlessly. In such scenarios
(Efns = 300 Pa in Figure 5.11), most cells (75 %) migrated toward channels with
higher concentrations of collagen, for all the values of ¢, considered (1.00, 1.50, and
2.00). In contrast, an E7l.,, < 39.78 Pa meant that cells were always within matrices
with pores too narrow for an effortlessly migration. In this scenario (Eyl.,, = 25 Pa
in Figure 5.11), all cells struggled to squeeze their nuclei while migrating through
all channels, but at different degrees. Cells struggled less while migrating within
the channel with lower collagen concentration (left channel, in purple, 1.5 mg mL ™,
39.78 Pa) than through the channel with higher collagen concentration (right channel,
in green, 2.5mgmL ™", 185.18 Pa, Figure 5.11). For the double assay (with a
double step gradient among the three channels), an E}l.,, > 360.67 Pa would

mean that cells were always within matrices with pores big enough for them to
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migrate effortlessly. Thus, in all simulated scenarios (Ej,, = {25,100,300} Pa in
Figure 5.11), cells struggled to squeeze their nuclei through ECM pores, hindering
their migration because of steric hindrance, at least in the channel with higher
collagen concentration (right channel, in yellow, 4.0 mg mL ™, 360.67 Pa). In these
cases, cells exhibited the same trend as in the single assay (with a single step
gradient among the three channels), although a lower number of cells (< 66.7 %)

migrated toward channels with higher concentrations of collagen (Figure 5.11).

vfr is another parameter that greatly influences the spatial distribution of
cells in scenarios where matrices have different architectural properties. As 7y,
increases, so does the steric hindrance of the ECM encountered by cells, which
more greatly hinders their migration. Hence, the number of cells migrating toward
regions with higher concentrations of collagen should decrease. For example, we
may focus on the single assay, with El.,, = 25 Pa. If v4, = 1.00, 33.3 % of the
cells migrated toward regions with lower collagen concentrations (Figure 5.11). In
contrast, if ¢, = 2.00, 58.3 % of the cells migrated toward regions with lower

collagen concentrations (Figure 5.11).

5.4 Conclusions

The proposed model builds upon an intracellular signaling network and a cell-matrix
interactive mechanism based on cell mechanics and ECM degradation. These two
building blocks have a leading role in 3D cell migration [41, 160, 321]. Furthermore,
in this model, the local stiffness of the surrounding microenvironment influences
cell mechanics. Indeed, the local stiffness of the surrounding ECM alters both
the growth and retraction of cell protrusions and the cell nucleus translocation.
In turn, ECM degradation dynamically changes the mechanical properties of the
surrounding environment, reducing its stiffness and level of confinement. Matrix
stiffness and confinement can influence migration speeds in 3D microenvironments
[43, 146, 565]. We also included an approximation to the clutch model so that

protrusions’ adhesion to the ECM depends on their exerted contractile forces [272].

In our previous works [35, 382] (see Chapter 4), we considered protrusions
analogous to an elastic inclusion (ellipsoid) embedded in the ECM and applied
Eshelby’s theory. We also assumed that the ECM was a continuous and homogeneous
domain. Nonetheless, in this work, we introduced a new approximation to physically
model how protrusions expand, contract, and retract based on deformable bars and
springs. Additionally, we modeled the ECM as a heterogeneous entity. Furthermore,
we included matrix degradation, which is considered an essential factor in 3D

cell migration.
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It is worth mentioning that Kim and colleagues [34] proposed an in silico model
with shared features. For example, their computational model also considered
the ECM as a heterogeneous entity. Furthermore, the authors modeled how cells
integrate mechanical stimuli and how these external cues influence cell migration
within 3D matrices. They also modeled matrix degradation by cellular proteolytic
activity. Nonetheless, there are remarkable differences between their work and ours.
Mainly, Kim and colleagues replicated experimental observations on flat surfaces
where cells durotaxed [566]. They did not consider the effects associated with
the steric hindrance of the ECM during cell motion, which may hinder durotaxis
within 3D environments. Also, the complexity of their model, and therefore its

computational requirements, greatly exceeds ours.

Cells change their mode of migration based on the physical and chemical
properties of the surrounding ECM [41]. Carey and colleagues [567] reported that
3D type I collagen substrates promoted mesenchymal gene expression and an MT1-
MMP-dependent invasive epithelial phenotype. Interestingly, this phenotype was
sensitive to the architecture and mechanics of collagen-based matrices. In contrast,
culture in 3D basement membrane (Matrigel) did not induce such a cellular response.
More recently, Janmey and colleagues [146] also remarked that cells may change

their stiffness based on the stiffness of the surrounding ECM.

The proposed model did not consider fiber alignment, which has been reported
as a critical enabler of cancer dissemination [163, 568]. We assumed an isotropic
distribution in each voxel of the 3D matrix representing the ECM. However, cells’
ability to remodel the surrounding ECM affects fiber alignment [160]. Janmey
and colleagues [146] recently noted that aligned fiber networks might be stiffer
than unaligned matrix fibers. Therefore, further work is required to study how
dynamic changes in the alignment of fibers by cells during their migration affect

their migratory patterns.

The in silico model presented in this chapter considered that cells’ cortical
stiffness is associated with the rigidity of the surrounding environment, as suggested
by independent works [559-563]. Likewise, Rianna and colleagues [569] showed
that tumor cells soften during confined migration. However, other authors suggest
that this long-established belief may be wrong [570]. Thus, future experimental
works should try to confirm this new hypothesis, while prospective theoretical

studies should consider this novel insight.

The presented model assumed a fixed ECM subdomain around the cell PM
where the MMPs proteolytic activity occurs (defined by dg4e4). We opted for this

assumption because we focused on migratory cells that do not stay at the same



124 5.4. Conclusions

location for long periods. Future works may consider establishing a dynamic

proteolytic subdomain and analyze how this change impacts cells behavior.

In this work, we focused on the architectural properties of the surrounding
matrix, initially established based on the ECM collagen concentration. Features
such as ECM porosity and the pore size of the matrix are related to collagen
concentration because matrices with high collagen concentrations usually exhibit
narrow pores [270]. This was phenomenologically included in the proposed in
silico model through the E}.,, and ~f7 parameters. These features are linked to
the inability of some cell types to migrate efficiently in dense microenvironments
[160]. Matrix porosity is also modified during tumorigenesis by ECM synthesis
and secretion as well as matrix-remodeling enzymes [43]. Consequently, future
studies should further investigate how ECM porosity and the pore size of the

matrix influence the migratory process.

Changes in membrane tension trigger different cellular responses to modulate
cell surface area [135, 354]. For example, cells form and flatten PM folds to regulate
membrane tension. As a result, cells are continuously remodeling their PM. However,
the in silico model proposed in this work considered the cell membrane of the cell’s
central region containing its nucleus as the surface of a sphere with a fixed radius.
Therefore, the volume of this central region remained fixed at 4.91 mm3. Protrusions,
in contrast, were considered tube-like geometries with a steady cross-section but
variable length. Therefore, the volume of the cell is not constant throughout our
simulations. Indeed, as protrusions onset, grow, contract, and end up disappearing,
their volume dynamically changes (around 3.85 x 107 mm?®—3.85 x 107% mm?).
Still, we assumed this as a valid approximation for our purposes. Note that other
authors did consider cell shape deformations [374, 406] at the cost of increasing

the complexity of the proposed in silico models.

In 2D domains, cells can migrate toward the stiffer part of the substrate (a
phenomenon known as durotaxis) [130]. Indeed, this durotactic behavior seems
optimal within a given range of ECM stiffnesses [154, 571]. Still, as other authors
pointed out [146, 394], factors such as pore size, porosity, fiber alignment, and
matrix degradation regulate migration in 3D microenvironments [539, 572, 573]—
even though they are not present or have less impact in 2D migration. Indeed,
several authors have reported that 3D migration is impaired by steric hindrance
[157, 352]. Nonetheless, cell response seems to depend on cell type and physiological
or pathological conditions [146]. The proposed model replicated some of the
observations associated with in vitro experiments of NHDF embedded in collagen-
based matrices, in which durotaxis does not occur, probably because of steric

hindrance. This was possible by including a friction term that opposes durotaxis
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under specific conditions. In particular, this happens when ECM stiffness is high
enough (and pore sizes low enough) that cells cannot squeeze their nuclei effortlessly
through such narrow pores. As a result, these conditions hinder migration toward
such confined environments. Without the E,l.,, and v/ parameters, associated
with the ECM steric hindrance, our model always predicted a durotactic behavior
(results not shown). Our model could replicate these experimental observations
from Del Amo and colleagues [507] only by including these parameters. Notice
that this behavior occurs even though cellular proteolytic activity is included in
our model, which progressively reduces the stiffness of the surrounding environment

(and increases the size of its pores accordingly).

Overall, the proposed model replicates some of the main hallmarks of mesenchymal-

like migration within 3D matrices.
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128 6.1. Introduction
6.1 Introduction

This chapter gathers together the main findings of the research carried out by the
Ph.D. candidate during his doctoral studies. Section 6.2 outlines the results of the
different research chapters (Chapter 3, Chapter 4, and Chapter 5). In particular,
this section highlights how an integrative approach can result in a novel platform for
rich, detailed, and multi-scale models that enable us to study and predict complex
biological phenomena. Section 6.3 summarizes the implications for the field of
cell biology in general and cell motility in particular. Next, Section 6.4 provides
recommendations for further work, emphasizing potential enhancements for the
integrative methodology and the in silico models presented in the previous chapters.
Finally, Section 6.5 outlines the general conclusions of the studies included in
this thesis.

6.2 Main achievements of the doctoral thesis

The research presented throughout this doctoral thesis investigated how different
biochemical and biophysical stimuli influence cell migration within 3D matrices.
Distinct building blocks were included in the in silico models to reveal the principles
behind some of the main processes in cell migration, including intracellular signaling,
cytoskeletal remodeling, nuclear displacement, and matrix degradation. The
proposed in silico model predicted how chemical gradients of soluble ligands around
cells bias their migratory patterns. More specifically, both the slope and the
boundary concentrations (minimum and maximum) determined if cells followed
a more directed or random trajectory. These building blocks also enabled the
presented in silico model to predict different cellular responses to rigidity gradients
within the surrounding ECM. In particular, cells durotaxed or exhibit an adurotactic
behavior based on their nuclear phenotypes. Further, the proposed framework based
on Bayesian optimization techniques greatly enhanced our ability to integrate
experimental data with theoretical studies and computational models. The main
contributions of the research carried out during the author’s doctoral studies to test

the hypotheses listed in Section 1.4 (Figure 6.1) are summarized below.

Research achievement 1

A fully automated workflow based on Bayesian optimization techniques
promotes the integration of experimental data with in silico models.

The integrative framework based on Bayesian optimization techniques presented

in Chapter 3 advances a synergistic research approach that couples experimental
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Figure 6.1: Illustration of the main results of this thesis An integrative methodology
to investigate the migratory response of cells exhibiting a mesenchymal phenotype and
cultured in 3D fibrous matrices to biochemical and biophysical stimuli.

data with theoretical studies and computational models. As a result, researchers
can leverage the advantages of both disciplines. On the one hand, theoretical
studies and computational models allow researchers to connect experimental results
to first principles. They carry out very time-consuming, financially prohibited,
and technically impossible experiments. On the other hand, experimental research
enables us to form and test new or pre-existing hypotheses, validate theoretical
predictions, and gather data for model calibration. Therefore, the proposed
integrative framework is a valuable asset to acquire a comprehensive knowledge

of complex phenomena such as cell migration.

Research achievement 2

A multi-scale in silico model coupling the spatiotemporal dynamics of
intracellular signaling pathways with cytoskeletal and nuclear dynamics
predicted cells’” migratory response to different biochemical stimuli.

The multi-scale in silico model proposed in Chapter 4 predicted different
migratory responses within 3D matrices to distinct biochemical stimuli. It demon-
strated that both the slope of the chemical gradient and the chemoattractants
concentrations influence cell motion. Cells tend to chemotax when surrounded by
steep chemical gradients, whereas individual cells usually follow random trajectories

when surrounded by shallow chemical gradients. However, cells may lose their
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ability to chemotax when located in regions with very high concentrations of
chemoattractants. Moreover, cells may exhibit different phenotypes based on
the biochemical profile of the surrounding microenvironment. For instance, high
PDGF concentrations enhance the proliferation of fibroblasts, whereas low PDGF

concentrations promote their migratory response.

Research achievement 3

A multi-scale in silico model coupling cell-matrix adhesions with cytoskeletal
and nuclear dynamics through mechanotransduction predicted cells’ migra-
tory response based on the biophysical profile of the surrounding matrix.

The expanded multi-scale in silico model emphasized how different biological
processes, such as cell-matrix interactions and nuclear mechanics, lead to diverse
migratory responses. In particular, it focused on how cells adapt and respond
to matrix rigidity and porosity. Indeed, this multi-scale model predicted the
regulatory role of cell nuclear deformability and the steric hindrance imposed by

the surrounding ECM in the cells’ ability to durotax.

Global achievement of the doctoral thesis

Clinical therapies to control cell motility in vivo and treat pathologies
associated with aberrant cell migration requires a comprehensive knowledge
of cell motion, which can only be acquired by integrating experimental data
with theoretical studies and computational models. Understanding how
local inhomogeneities in the surrounding microenvironment and intracellular
dynamics regulate cells’ migratory behaviors is fundamental for this endeavor.

Taken together, the results of this doctoral thesis highlight the importance of
integrating experimental data with theoretical studies and computational models
to acquire a comprehensive knowledge of complex phenomena. A novel framework
was presented to lead this integrative endeavor. Also, these results highlight the
fundamental role of multi-scale in silico models in unraveling the intricacies of cell
migration. When investigating complex phenomena that involve different processes,
events, and players, it is required not to consider isolated entities but interacting
ones. When studying mesenchymal cell migration within 3D matrices, researchers
must consider how intracellular signaling networks initiated by transmembrane
receptors and adhesive complexes interact with the cytoskeletal components and the
nuclear machinery. They also have to consider how cell-matrix interactions remodel
the surrounding microenvironment. The proposed in silico model includes all these
players and some of the main interactions driving the mesenchymal migratory

behavior of individual cells.
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Figure 6.2: Implications for the field of cell migration Global scheme of the
research carried out during the author’s doctoral studies. The results and global aim of
the research presented in throughout this doctoral thesis are highlighted in relation to the
state-of-the-art of the field of cell migration.
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6.3 Implications for the field of cell migration

Cell migration in vivo involves many different events, players, and processes. Some
of them (e.g., cell-matrix adhesions, lamin A/C) only play an essential role in
the migratory machinery of specific cell phenotypes (e.g., mesenchymal) or under
particular conditions (e.g., dense matrices) [41, 45, 202]. Investigating cell migration
within 3D microenvironments requires an integrative and multi-scale approach.
Such an approach must include the different components involved in cell motility at
different scales. It should also consider their interactions [215, 255, 574].

The research carried out by the author during his doctoral studies offers an
integrative methodology and multi-scale in silico models that advanced the current
understanding of cells’ migratory response to biochemical and biophysical stimuli

within 3D matrices (Figure 6.2).

Integration of experimental data with theoretical studies and compu-
tational models

Integrating experimental data with theoretical studies and computational models
is fundamental for advancing scientific knowledge in many disciplines, including
cell biology. Only such integration will enable us to acquire a comprehensive

understanding of cell migration in the future.

The integrative methodology proposed in Chapter 3 promotes the collaborative
efforts between experimentalists and theoreticians by integrating experimental data
with theoretical studies and computational models. Furthermore, the predictive
capabilities of the multi-scale in silico models presented in Chapter 4 and Chapter 5

resulted from applying the proposed methodology, which probes its suitability.

Biochemical stimuli influence cell behavior

Both the slope of the gradient and the absolute concentration of the chemoattractant
determines cellular sensitivity to biochemical stimuli. For instance, De Donatis and
colleagues [529] found that, in NIH3T3 fibroblasts, concentrations of PDGF as low
as 1ngmL ™" enabled a chemotactic behavior. Conversely, higher concentrations

of PDGF (> 5ngmL™") promoted a proliferative phenotype.

The in silico model proposed in Chapter 4 predicted a similar migratory response
to gradients with different slopes and absolute concentrations of the chemoattractant.
As a result, it emphasized the relevance of theoretical studies and computational
models when investigating complex biological phenomena such as cell migration.

Next, the reader will find a summary of the current (and still incomplete) knowledge
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of how cells sense and respond to biochemical stimuli and the relevance of the

research presented throughout this doctoral thesis.

Transmembrane receptors (e.g., RTKs and GPCRs) trigger signaling cascades
that internalize external cues and enable cell migration guided by biochemical
stimuli. Indeed, polarized downstream effectors such as PISK are fundamental
for chemical guidance [575]. Warner and colleagues recently reviewed our current
understanding of the role of RhoGTPases in several processes associated with cell
migration (e.g., lamellipodia and filopodia formation, cellular directionality, or
stress fiber contractility). The authors also emphasized that some effectors (e.g.,
the Arp2/3 complex, PI3K) may be context-dependent. Indeed, they may not be a
universal requirement for cell movement but only needed under specific conditions
(i.e., specific cell phenotypes or within matrices with a particular composition).
Likewise, Caswell and Zech [280] outlined the different roles of actin-based cell
protrusions in migration and invasion within 3D matrices, acting as platforms
for perceiving stimuli, adhering to the ECM, transmitting cell-matrix forces, and

even remodeling the surrounding ECM.

The in silico model presented in Chapter 4 included a simplified version
of the complex signaling networks involved in cell migration. Specifically, this
computational model simulated how transmembrane receptors (e.g., RTKs and
GPCRs) triggered intracellular signaling cascades after binding to chemoattractant
molecules that promote actin-based protrusion formation and growth. These
protrusive structures would exert RhoA-mediated contractile forces by actomyosin-
based stress fibers. The LINC complex would, in turn, transmit these forces
to the nucleus, resulting in its forward translocation. The results of Chapter 4
highlighted the importance of considering different actors, such as intracellular
signaling, cytoskeleton remodeling, nuclear translocation, and their interactions

when investigating cell migration.

Biophysical cues from the surrounding microenvironment influence
cell migration

Historically, much attention has been paid to the impact of ECM stiffness on cell
motility, especially on 2D substrates [69, 130, 566]. Interestingly, Shellard and
Mayor [25] recently showed, for the first time, that durotaxis does occur in vivo.
Wolf and colleagues [558] highlighted the importance of porosity and the size of
ECM pores, as well as cells” ability to deform their nuclei when migrating within
3D matrices. In agreement with previous works [576], the authors also showed
that in dense environments—where the steric hindrance of the ECM may impede

migration—cells might depend on MMP-mediated matrix degradation to enlarge
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narrow pores so they can squeeze their nuclei through them. Movilla and colleagues
[381] further investigated the impact of ECM degradation on protrusion dynamics
and cell migration. In particular, the authors showed a reduced migration speed
and shorter cell protrusions in the presence of an MMP-inhibitor (Marimastat).
Probably owing to cells’ increased difficulty to deform the surrounding matrix and
squeeze their nuclei through narrower pores. Still, matrix rigidity and pore size
are not the only parameters characterizing the biophysical profile of the ECM.
Hayn and colleagues [145] recently highlighted the relevance of the ECM structural
inhomogeneities when investigating cell motility.

The in silico model proposed in Chapter 5 takes into account the stiffness,
associated pore sizes, and inhomogeneities of collagen-based matrices to predict
the migratory response of cells exhibiting a mesenchymal phenotype. Besides, the
results presented in Chapter 5 highlight the influence of proteolytic activity, nuclear
size, and deformability in cell migration. Altogether, the results from Chapter 5
emphasized the impact of proteolytic activity, both nucleus size and deformability,

as well as matrix rigidity, pore size, and inhomogeneities on cell motion.

Independent works have investigated the biophysical mechanisms enabling force
generation and transmission through the cell body from and to the surrounding
ECM. Davidson and colleagues [324] showed that the actin cytoskeleton and myosin
motors contribute to pulling the nucleus through narrow constrictions. Later on,
Doyle and colleagues [350] demonstrated the existence of a dominant protrusion
during mesenchymal motion through 3D matrices. This protrusion, which exerts
the highest contractile reaction force over the surrounding ECM, drives the nucleus
translocation and determines the migratory trajectory.

The in silico model proposed in Chapter 5 integrates these and other recent
discoveries associated with mechanotransduction and force generation to investigate
cell motion within 3D environments. As a result, it predicts different migratory
responses of mesenchymal cells in 3D matrices depending on the biophysical profile
of the ECM.

The seminal work of Zaman and colleagues [577] showed that 3D cell motion
depends on multiple balances between integrin activity, adhesion ligand density,
matrix rigidity, proteolytic activity, and steric hindrance. More recently, Yeoman
and colleagues [273] demonstrated that adhesion strength and contractility regulate
cells” migratory response to matrix rigidity. The authors saw that strongly adherent
cells durotaxed while weakly adherent cells exhibited an adurotactic behavior.
They also suggested that differences in intracellular actomyosin activity led to
such distinct migratory behaviors.

Chapter 5 highlights the regulatory role of cells’ ability to generate, distribute,
and transmit mechanical forces over the different components of their body (e.g.,
cytoskeleton, nucleus) and to the surrounding environment.
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The research carried out by the Ph.D. candidate that resulted in this doctoral thesis
provided a novel methodology to integrate experimental data with theoretical
studies. It also presented an original in silico perspective to investigate the
biological phenomenon of cell migration. As the scientific community proposes
novel developments and presents new findings, the integrative framework and
the in silico model introduced in this doctoral thesis could be extended. The
integrative methodology could include other features and increase our knowledge
of the principles regulating complex phenomena. The predictive potential of the
proposed in silico model could be enhanced by considering additional possible
scenarios (e.g., cells migrating through tracks or collectively via leader-follower
dynamics) or by including new players or mechanisms (e.g., signaling molecules
and proteins or nuclear deformability through lamins and chromatin). This section
describes future lines of work to improve the integrative methodology presented in
Chapter 3 and the in silico models proposed in Chapter 4 and Chapter 5. Also,

this section suggests new approaches to overcome some of their current limitations.

6.4.1 Integrative methodology extension

Although the integrative methodology proposed in Chapter 3 already allows for
a more tightly integration of experimental data with theoretical studies and
computational models, several compelling ideas point toward different enhancements.
For instance, multi-fidelity optimization could offer various sources of information
with distinct levels of fidelity or accuracy [434]. Higher fidelity would give more
accurate estimates of the fitting function but at a higher cost. Conversely, reduced
fidelity would allow us to explore more regions of the parameter space but with

lower accuracy.

Integrative methodology extension

A more feature-rich integrative methodology allowing for multi-fidelity
enhances the integration of experimental data with in silico models.

6.4.2 Signaling model extension for case-specific applications

The in silico model presented in Chapter 4 and extended in Chapter 5 predicted
different cellular migratory responses to biochemical and biophysical stimuli. The
simplified signaling pathway included in this in silico model highlighted cells’

sensitivity to the steepness of chemical gradients and the absolute concentration of
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chemoattractants, which is particularly relevant when investigating physiological and
pathological conditions (e.g., embryonic development, immune response, angiogenesis
in cancer). Different intracellular signaling pathways play a crucial regulatory role
in cell migration. For example, they modulate the internalization of external stimuli.
These signaling pathways also influence cellular dynamics, from cell-matrix and
cell-cell interactions to cytoskeletal and nuclear dynamics [178, 205, 206, 218].
Therefore, future studies should further investigate the impact of different signaling
networks, such as Hippo [578, 579], Src/FAK [580-583], and TGF3/PISK/AKT
[584-586], in cell migration.

Simulating the spatiotemporal evolution of the signaling model is the main
bottleneck of the presented in silico models and one of the challenges signaling
modelers are currently facing [587]. On the one hand, the tau-leaping algorithm [513,
514] enabled us to estimate the temporal evolution of the simplified signaling pathway
included in the proposed in silico models. On the other hand, the Inverse Method
described by Saltzman and colleagues [499] equipped these models with spatial
resolution. Still, these methods were computationally intensive. The stochastic
nature of the associated biological phenomenon amplifies this issue by requiring
running batches of several simulations to get an accurate view of how cells behave in
each specific scenario. Therefore, I consider of great interest to replace the current
spatial model of the signaling network in 3D. In this regard, I find particularly
relevant the work from Coulier, Hellander, and Hellander [588] proposing a multi-
scale model where a compartment-based model approximates a detailed spatial
stochastic model. Likewise, Hellander and Hellander [589] coupled mesoscopic

simulations on meshes with different levels of granularity.

A more efficient spatial framework would enable the inclusion of an extended
signaling network in these in silico models. For example, the signaling pathway
could include biophysical factors as initiators or modulators of different processes
involved in cell migration. I am especially interested in some of the published results
[264] from the Reinhart-King lab at Vanderbilt University, where authors show that
local ECM alignment directs cellular protrusion dynamics and migration through
Racl and FAK. Still, many other factors involved in different signaling pathways
may influence cell migration. For instance, mechanical cues exerted by the ECM,
cell-matrix, and cell-cell adhesion complexes regulate metabolic pathways [574] and
cytoskeletal activity [106, 287]. Notably, the cytoskeleton also modulates signaling
pathways [590]. Extracellular signal-regulated kinases (ERK) play a relevant role
in signaling events that regulate cell migration. For one, ERK modulates the
rate and polarity of actin polymerization, regulating lamellipodia formation [591].

Also, ERK activation coordinates long-distance transmission of directional cues,
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enabling collective cell polarization [592]. The Scar/WAVE complex is another
player involved in pseudopod and lamellipodia formation, evolution, lifetime, and
stability [263, 593-595]. Notably, forces generated by individual actin filaments
mechanically control the dynamics of the WAVE complex [593].

s "

Signaling model extension for case-specific applications

An efficient simulation of the spatiotemporal evolution of complex signaling
networks in 3D remains one of the current challenges for signaling modelers.
Given the impact of signaling cascades on a myriad of processes involved in
cell migration, rich, detailed, and multi-scale models of cell motility should
include extended signaling pathways. Based on the scenario(s) of interest,
different biochemical and biophysical factors, as well as distinct downstream
effectors, should be included. Simulating these extended signaling networks
would only be feasible through efficient spatial models.

6.4.3 A more accurate in silico replica of the extracellular
matrix

An accurate in silico replica of the ECM is essential to predict cell response
in any specific scenario [39, 75, 142, 146, 160]. For one, the composition and
microarchitecture of the ECM are widely variable among tissues [143, 552]. Mak
[347] recently studied the impact of crosslink heterogeneity on ECM mechanics
and remodeling. Also, Hayn and colleagues [145] highlighted the influence of
local matrix inhomogeneity in cell migration. The physical cues in the tumor
microenvironment have also been recognized as new hallmarks of cancer [342,
596]. Therefore, continuing our efforts to more accurately replicate in silico the

surrounding microenvironment is another promising line of work.

Previous works from our lab and other groups have already made significant
progress. For example, Olivares and colleagues [270] proposed an automated
tool to reconstruct 3D collagen networks. Complementary tools to artificially
generate matrices and tweak their biophysical properties (e.g., fiber alignment,
pore size, or crosslinking) would also enable further studies on their impact on
cell migration either in isolation or in combination with each other. These tools
would also be valuable when modeling the aforementioned mechanisms studied
by the Reinhart-King Lab, where the alignment of ECM fibers modulates cellular
protrusion dynamics and migration [264]. They could also enable us to more
accurately study the role of the cell nucleus in cell motility and the impact of
ECM pore sizes and viscoelasticity in this biological phenomenon [322, 323]. In
particular, when cells migrate within dense matrices, which may require them to

squeeze their nucleus through narrow pores.
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Modeling the entire in vitro domain (i.e., the geometry of the whole microchip)
with high resolution represents another challenge for these in silico models. Using
sparse 3D matrices to model these ECMs may be a suitable option, although
initial efforts on this matter did not succeed. Still, a more concentrated effort

may result in a different outcome.

Cells must quickly sense and adapt to the specific profile of the surrounding
ECM to move and migrate through complex 3D environments. Therefore, an
accurate replica of the in vitro and in vivo ECM is essential for a comprehensive

understanding of cell migration.

A more accurate in silico replica of the extracellular matrix

An extended and enhanced in silico model of the ECM would drastically
improve the predictive potential of the proposed computational models of
3D cell migration. Relevant models of cell motion must recapitulate the
heterogeneity and complexity of the local microenvironment. The inclusion
of distinct biochemical (soluble or surface-bound) and biophysical cues (e.g.,
stiffness, viscoelasticity, pore size, and fiber alignment) would enhance the
predictive capabilities of the presented in silico models.

6.4.4 From individual migrants to migrating collectives

Collective cell migration is essential for organ formation, tissue regeneration, and
wound healing. For instance, neural crest cells collectively migrate in embryos.
During wound healing, sheets of epithelial cells move together as a unit. Unfortu-
nately, it may also participate in many pathological processes. For example, cancer
cells may collectively escape from the primary tumor and into a blood vessel and
lymphatics [597-599]. Interestingly, cells migrate faster and more directionally in
groups than as isolated individuals [130, 600, 601]. In cell collectives, the behavior
of any individual cell depends on those connected, directly or indirectly, to it.
As a result, cells migrate cooperatively and coordinately. Thus, extending the
proposed in silico model by including cell-cell adhesions and other mechanisms
involved in collective cell migration (e.g., contractile actin cables that appear across

neighboring cells) would be of great interest.

During collective migration, each cell has its own identity but communicates
with the rest of the group. The evolution of each cell could be simulated by
individual processes, as in our current in silico model. Still, every cell must have
an open communication channel. This modeling approach would take advantage
of the computational resources available in HPC environments and their ability to
distribute the execution of individual jobs over many different computing nodes

at the same time.
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From individual migrants to migrating collectives

Extending the proposed in silico models by including cell-cell interactions
and other mechanisms involved in collective cell migration would enable the
simulation of cells migrating in groups. As a result, these computational
models would allow for a comprehensive knowledge of varied physiological
and pathological phenomena, such as organ formation, tissue regeneration,
and metastasis.

6.5 General conclusions

After more than a century investigating cell migration [602-606], we still lack a
comprehensive knowledge of this critical phenomenon for life and development.
Many questions about the activity and heterogeneous nature of the different actors
involved in cell motion are still unanswered [607-610]. We are just beginning
to uncover how cells perceive and internalize spatiotemporal information from
their surroundings through distinct sensitivities of the cellular mechanosensors and
their underlying transduction mechanisms [213, 611, 612]. Furthermore, technical
limitations have hindered an in-depth investigation of other regulators of cell
motility, such as cell metabolism [106, 215, 613, 614], cellular and ECM mechanical
properties (e.g., viscoelasticity) [75, 78, 146, 615]. The collaborative effort of an
army of specialists, including theoreticians and experimentalists, will be essential

to uncover these mysteries.

The research community must several challenges to acquire novel and relevant
knowledge of cell motion. Stark differences between 2D and 3D systems require
the translation of studies to 3D in wvivo scenarios [218], which may uncover distinct
cellular behaviors [147, 616]. An interest in complex phenomena, including nonlinear
responses [79, 552], feedback loops [617-619], competition between distinct compo-
nents [249], and context-dependent responses [173, 620, 621], has recently emerged.
This interest may uncover behaviors that would only arise from such complexity [255].
It is also imperative to study components at different scales and the interactions
between multiple actors [309, 552, 622, 623], which will require novel quantitative
tools [624-629] and more sophisticated experimental models [316, 630, 631].

The author’s doctoral studies aimed to improve our knowledge of how biochemical
and biophysical stimuli from the surrounding environment influence the migratory
response of mesenchymal cells. The author undertook this endeavor from a
theoretical perspective, developing in silico models of mesenchymal cells migrating
within 3D matrices. Cells exhibiting a mesenchymal phenotype adopt an elongated

morphology dependent on integrin-mediated cell-matrix adhesions and the presence
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of high traction forces on both cell poles. In this context, cells develop protrusions,
pushing the surrounding matrix and pulling themselves forward, squeezing their
nuclei through the pores. Mesenchymal cells rely on surface proteases to digest
and remodel the ECM. External cues from the surrounding microenvironment may

bias the migratory behavior of these cells.

Experimental and theoretical studies complement each other, and their inte-
gration allows researchers to overcome many of their corresponding limitations.
As a result, the convergence of both disciplines through integrative methodologies

leads to a comprehensive knowledge of cell migration.

To facilitate the integration of experimental data with theoretical studies, an
autonomous methodology based on Bayesian optimization techniques was proposed
in Chapter 3, where I outlined the basis of this framework. Chapter 4 proved
the suitability of this integrative methodology for calibrating in silico models by
automating the whole process. Note that the calibration process has historically
required frequent user interaction, making it error-prone. By using principles of
statistical inference and decision theory, Bayesian optimization efficiently finds the
global optimum of expensive-to-evaluate objective functions. In our case, this refers
to computationally intensive models that take more than just a few minutes to
run. Accordingly, Chapter 4 showcased how the proposed methodology facilitates
the evaluation and enhancement of the accuracy and predictive capabilities of

in silico models.

To increase our understanding of how biochemical stimuli influence cell migration
within 3D matrices, an in silico model was proposed in Chapter 4. The signaling
network that allows cells to internalize such external cues was recreated through
a simplified signaling pathway. Downstream effectors of such signaling cascade
regulate protrusion dynamics (i.e., formation, growth, and retraction). Consequently,
the biochemical profile of the surrounding ECM modulates cells’ migratory speed
and trajectory. The modeling efforts were focused on restraining the computational
requirements without any relevant loss in accuracy. Also, this was the first example
of application for the proposed integrative methodology. By modeling intracellular
signaling networks, cytoskeletal dynamics, and the interaction between them, this
in silico model predicted different migratory responses based on the biochemical
profile (gradient steepness and absolute concentration of the chemoattractant)

of the surrounding matrix.

To better understand the impact of the biophysical stimuli on cell motility,
the aforementioned in silico model was extended in Chapter 5. In this case, the
focus was on the mechanosensing mechanism enabling cells to probe the biophysical

profile of the surrounding ECM. As a result, a more detailed replica of the local
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microenvironment was proposed, which allowed for a more accurate representation
of cell mechanics. In particular, the modeling efforts aimed to investigate the role of
matrix stiffness in protrusions growth and contraction and thus, in cells’ migratory
speed and trajectory. Contrary to what has been observed in 2D substrates, this
computational model predicts a migratory behavior where the steric hindrance of
3D matrices hinders durotaxis. Hence, this extended in silico model would serve
as a valuable framework to further investigate how different biophysical properties
such as the microarchitecture of the ECM modulate cell motion within the more

physiologically relevant 3D environments.

Overall, this doctoral thesis offers an integrative perspective to investigate the
impact of different stimuli in cell migration within 3D environments. Specifically,
the Ph.D. candidate integrates experimental data with advanced theoretical and
computational techniques to evaluate distinct but relevant players and events
involved in cell motion through 3D matrices. A novel methodology based on
Bayesian optimization probed its suitability for integrating experimental data with
theoretical studies, automating the calibration of in silico models. A hybrid modeling
approach predicted different migratory behaviors based on the biochemical profile
of the local environment. An extended version of this system exhibited a durotactic
behavior if it did not consider the steric hindrance of 3D matrices nor the molecular
clutch dynamics controlling cell mechanotransduction. Otherwise, the proposed in
stlico model could predict the lack of durotaxis in specific 3D environments. The
integrative research methodology proposed in this doctoral thesis represents an
innovative approach to improve our knowledge of many fields, including cell biology
and migration. Moreover, the in silico modeling techniques serve as valuable assets
to understand how distinct external cues from the local environment regulate cell
motion. Future strategies could rely on these tools to advance our knowledge toward

a comprehensive understanding of cell migration.

6.6 Conclusiones generales (General conclusions
in Spanish)

Tras més de un siglo investigando la migracién celular [602-606], todavia carecemos
de un conocimiento exhaustivo de este fenémeno critico para la vida y el desarrollo.
Muchas preguntas sobre la actividad y la naturaleza heterogénea de los diferentes
actores involucrados en el movimiento celular siguen sin respuesta [607, 608, 610].
Apenas estamos comenzando a descubrir cémo las células perciben e internalizan la
informacién espaciotemporal de su entorno a través de distintas sensibilidades de

los mecanosensores celulares y sus mecanismos de transduccién subyacentes [213,
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611, 612]. Ademds, las limitaciones técnicas han impedido una investigacién en
profundidad de otros reguladores de la motilidad celular, como el metabolismo
celular [106, 215, 613, 614], o las propiedades mecanicas de la célula y de la matriz
extracelular (p. ej., viscoelasticidad) [75, 78, 146, 615]. El esfuerzo colaborativo de
un ejército de especialistas, incluidos tedricos y experimentadores, serd fundamental

para descubrir estos misterios.

La comunidad cientifica debe enfrentarse a varios desafios para adquirir conocimien-
tos novedosos y relevantes sobre el movimiento celular. Las marcadas diferencias
entre los sistemas 2D y 3D requieren la traduccién de los estudios a escenarios
in vivo 3D [218], lo que puede desvelar comportamientos celulares distintos [147,
616]. Recientemente ha surgido un interés por los fenémenos complejos, incluidas
las respuestas no lineales [79, 552], los bucles de retroalimentacién [617-619], la
competencia entre distintos componentes [249] y las respuestas dependientes del
contexto [620, 621]. Este interés puede descubrir comportamientos que solo surgirian
de dicha complejidad [255]. También es imperativo estudiar los componentes a
diferentes escalas y las interacciones entre multiples actores [309, 552, 622], lo que
requerird nuevas herramientas cuantitativas [624-629] y modelos experimentales
més sofisticados [316, 630].

Los estudios de doctorado del autor tuvieron como objetivo mejorar el conocimiento
de cémo los estimulos bioquimicos y biofisicos del entorno circundante influyen
en la respuesta migratoria de las células mesenquimales. El autor emprendié
este esfuerzo desde una perspectiva tedrica, desarrollando modelos in silico de
células mesenquimales que migran dentro de matrices 3D. Las células que exhiben
un fenotipo mesenquimal adoptan una morfologia alargada que depende de las
adhesiones a la matriz extracelular a través de las integrinas y de la presencia
de altas fuerzas de traccién en ambos polos celulares. En este contexto, las
células desarrollan protrusiones, empujando la matriz circundante y tirando de si
mismas hacia adelante, apretujando sus niicleos a través de los poros. Las células
mesenquimales dependen de las metaloproteinasas de matriz para digerir y remodelar
la matriz extracelular. Las sefales externas del microambiente circundante pueden
sesgar el comportamiento migratorio de estas células. Los estudios experimentales
y tedricos se complementan y su integracién permite a los investigadores superar
muchas de sus limitaciones correspondientes. Como resultado, la convergencia de
ambas disciplinas a través de metodologias integradoras conduce a un conocimiento

integral de la migracién celular.

Para facilitar la integracién de datos experimentales con estudios tedricos, en el
Capitulo 3 se propuso una metodologia auténoma basada en técnicas de optimizacién

Bayesianas, donde se describen las bases de este marco. El Capitulo 4 demostré la
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idoneidad de esta metodologia integradora para calibrar modelos in silico mediante
la automatizacion de todo el proceso. Tenga en cuenta que histéricamente el proceso
de calibracién ha requerido una interaccién frecuente del usuario, lo que lo hace
propenso a errores. Mediante el uso de principios de inferencia estadistica y teoria de
decisiones, la optimizacién Bayesiana encuentra de manera eficiente el 6ptimo global
de funciones objetivas costosas de evaluar. En nuestro caso, se trata de modelos
computacionalmente intensivos que tardan més de unos minutos en ejecutarse.
En consecuencia, el Capitulo 4 mostré cémo la metodologia propuesta facilita la

evaluacién y mejora la precision y las capacidades predictivas de los modelos in silico.

Para aumentar nuestra comprension de como los estimulos bioquimicos influyen
en la migracién celular dentro de matrices 3D, se propuso un modelo in silico
en el Capitulo 4. La red de senalizacién que permite a las células internalizar
dichas senales externas se recred a través de una via de senalizacién simplificada.
Los sucesivos efectores en dicha cascada de senalizacién regulan la dindmica de
protrusién (es decir, su formacién, crecimiento y retraccién). En consecuencia, el
perfil bioquimico de la matriz extracelular circundante modula la velocidad y la
trayectoria migratoria de las células. Los esfuerzos de modelado se centraron en
restringir los requisitos computacionales sin ninguna pérdida relevante en la precision.
Ademas, este fue el primer ejemplo de aplicacién de la metodologia integradora
propuesta. Al modelar las redes de senalizacién intracelular, la dindmica del
citoesqueleto y la interaccion entre ellas, este modelo in silico predijo diferentes
respuestas migratorias basadas en el perfil bioquimico (inclinacién del gradiente y

concentracién absoluta del factor quimico) de la matriz circundante.

Para comprender mejor el impacto de los estimulos biofisicos en la movilidad
celular, el modelo in silico antes mencionado se amplié en el Capitulo 5. En este
caso, la atencion se centré en el mecanismo de deteccién mecanica que permite a
las células percibir el perfil biofisico de la matriz extracelular circundante. Como
resultado, se propuso una réplica mas detallada del microambiente local, lo que
permitié una representacion mas precisa de la mecanica celular. En particular, los
esfuerzos de modelado tenian como objetivo investigar el papel de la rigidez de la
matriz en el crecimiento y la contraccién de las protrusiones y, por lo tanto, en
la velocidad y trayectoria migratoria de las células. Al contrario de lo que se ha
observado en sustratos 2D, este modelo computacional predice un comportamiento
migratorio donde el impedimento estérico de las matrices 3D dificulta la durotaxis.
Por lo tanto, este modelo in silico extendido serviria como un sistema valioso
para investigar mas a fondo cémo las diferentes propiedades biofisicas, como por
ejemplo la microarquitectura de la matriz extracelular, modulan el movimiento

celular dentro de los entornos 3D fisiolégicamente mas relevantes.
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En general, esta tesis doctoral ofrece una perspectiva integradora para investigar
el impacto de diferentes estimulos en la migracién celular dentro de entornos 3D.
Especificamente, el candidato a doctor ha integrado datos experimentales con
técnicas tedricas y computacionales avanzadas para evaluar diferentes jugadores y
eventos de relevancia involucrados en el movimiento celular a través de matrices
3D. Una metodologia novedosa basada en la optimizacién Bayesiana probd su
idoneidad para integrar datos experimentales con estudios tedricos, automatizando
la calibracién de modelos in silico. Un enfoque de modelado hibrido predijo diferentes
comportamientos migratorios en funciéon del perfil bioquimico del entorno local.
Una versién extendida de este sistema exhibié un comportamiento durotactico
si no consideraba el impedimento estérico de las matrices 3D ni la dindmica del
embrague molecular que controla la mecanotransduccion celular. De lo contrario,
el modelo in silico propuesto podria predecir la falta de durotaxis en entornos 3D
especificos. La metodologia de investigacion integradora propuesta en esta tesis
doctoral representa un enfoque innovador para mejorar nuestro conocimiento en
muchos campos, incluida la biologia y la migracion celular. Ademas, las técnicas de
modelado in silico sirven como activos valiosos para comprender cémo las distintas
senales externas del entorno local regulan el movimiento celular. Las estrategias
futuras podrian basarse en estas herramientas para avanzar en nuestro conocimiento

hacia una comprension integral de la migracién celular.
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Variables for modeling cell migration biased

by biophysical cues

Table A.1 includes the variables used in the in silico model presented in Chapter 5

and their descriptions.

Table A.1: The model’s variables.

Qexp and Bemp
Osp, (1)
ot
Sbirths Sgrowth and
Sdeath
OLJ™ (sp 1)
ot

exp
LY (39, 1)

ot
birth

OLI T (sp, 1)
ot

growth

Symbol Description

i i-th protrusion

dp13K . Distribution of PI3K across the cell surface

9(9,0) Convolution window approximately the size of a protrusion
section

Sp; PI3K A spatio-temporal persistence at the location of the i-th

protrusion
Parameters regulating protrusion expansion

Time variation of s at the location of the i-th protrusion
Parameters regulating protrusion onset, growth, and complete
retraction

Unconstrained length variation of the i-th protrusion during its
expansion at time ¢

Unconstrained length variation of the i-th protrusion during its
expansion for new protrusions at time ¢

Unconstrained length variation of the i-th protrusion during its
expansion for pre-existing protrusions at time ¢
Parameter regulating protrusion contraction

Continued on next page
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Table A.1—continued from previous page

Symbol

Description

L;?n (spi ) t)

OLLT* (sp, )
con
OFS™ (1)
ot

Epi
A
L;fp(spi’t)

€;

OFS" (1)
ot

I

sh
mpi

Epom(xy),t)

Ei«?qCM
Vfr
R,.(1)
P

Di X
Epom(zi?,t)

con,adh
Lpi (t)
uPi (t)

p?ttached (t)

Rmin and Rmaz

OEgcm(x,t)
ot
K

mCS
d(x, Tes)

r

cl(x, Tes)
5deg

Qdeg and ﬁdeg

Protrusions length at the beginning of its contractile stage at
time ¢

Unconstrained length variation of the i-th protrusion during its
contraction at time ¢

Time variation of the expansive forces applied to the structural
nodes at time ¢

Protrusions stiffness

Area of the section of the protrusions

Protrusions length at the beginning of its expansive stage at
time ¢

Unit vector in the direction of the longitudinal axis of the i-th
protrusion

Time variation of the contractile forces applied to the structural
nodes at time ¢

Friction term

Position of the shaft of the i-th protrusion

ECM stiffness at the location of the shaft of the i-th protrusion
at time ¢

Rigidity threshold

Friction coefficient

Reaction forces generated by the i-th protrusion at time ¢
Position of the tip of the i-th protrusion

ECM stiffness at the location of the tip of the i-th protrusion
and time ¢

Length of the adhesion region of the i-th protrusion at the
beginning of the contractile stage at time ¢

Displacement vector of the structural node located at the tip
of the i-th protrusion

Adhesiveness of the i-th protrusion at time ¢

Lower and upper boundaries of the active region associated
with the clutch model

Time variation of the ECM stiffness at location « and time ¢
Mechanical damage associated with the matrix degradation as
MMPs digest ECM proteins

Location of the cell skeleton

Distance from location  to the cell skeleton (z.s)

Radius of the protrusions section or the central region of the
cell (represented as a sphere)

Closeness from location x to location &

Delimits the ECM region where MMPs proteolytic activity
occurs

Degradation coefficients

Continued on next page
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Table A.1—continued from previous page

Symbol Description

Eﬁyd“’gd Averaged ECM stiffness assessed by Valero and colleagues [171]
based on the collagen concentration of the hydrogel where cells
are embedded
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