000118614 001__ 118614
000118614 005__ 20230519145430.0
000118614 0247_ $$2doi$$a10.1016/j.chaos.2021.111413
000118614 0248_ $$2sideral$$a125018
000118614 037__ $$aART-2021-125018
000118614 041__ $$aeng
000118614 100__ $$0(orcid)0000-0003-4847-0493$$aNavascués, M.A.$$uUniversidad de Zaragoza
000118614 245__ $$aNew equilibria of non-autonomous discrete dynamical systems
000118614 260__ $$c2021
000118614 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118614 5203_ $$aIn the framework of non-autonomous discrete dynamical systems in metric spaces, we propose new equilibrium points, called quasi-fixed points, and prove that they play a role similar to that of fixed points in autonomous discrete dynamical systems. In this way some sufficient conditions for the convergence of iterative schemes of type [fórmula] in metric spaces are presented, where the maps [fórmula] are contractivities with different fixed points. The results include any reordering of the maps, even with repetitions, and forward and backward directions. We also prove generalizations of the Banach fixed point theorems when the self-map is substituted by a sequence of contractivities with different fixed points. The theory presented links the field of dynamical systems with the theory of iterated function systems. We prove that in some cases the set of quasi-fixed points is an invariant fractal set. The hypotheses relax the usual conditions on the underlying space for the existence of invariant sets in countable iterated function systems.
000118614 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000118614 590__ $$a9.922$$b2021
000118614 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b1 / 108 = 0.009$$c2021$$dQ1$$eT1
000118614 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b7 / 86 = 0.081$$c2021$$dQ1$$eT1
000118614 591__ $$aPHYSICS, MATHEMATICAL$$b1 / 56 = 0.018$$c2021$$dQ1$$eT1
000118614 592__ $$a1.647$$b2021
000118614 593__ $$aApplied Mathematics$$c2021$$dQ1
000118614 593__ $$aStatistical and Nonlinear Physics$$c2021$$dQ1
000118614 593__ $$aMathematics (miscellaneous)$$c2021$$dQ1
000118614 594__ $$a9.9$$b2021
000118614 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000118614 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000118614 773__ $$g152 (2021), 111413 [8 pp.]$$pChaos, solitons fractals$$tChaos, Solitons and Fractals$$x0960-0779
000118614 8564_ $$s278466$$uhttps://zaguan.unizar.es/record/118614/files/texto_completo.pdf$$yPostprint
000118614 8564_ $$s1305802$$uhttps://zaguan.unizar.es/record/118614/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000118614 909CO $$ooai:zaguan.unizar.es:118614$$particulos$$pdriver
000118614 951__ $$a2023-05-18-14:17:58
000118614 980__ $$aARTICLE