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Abstract

In the framework of non-autonomous discrete dynamical systems in metric spaces, we propose

new equilibrium points, called quasi-fixed points, and prove that they play a role similar to that of

fixed points in autonomous discrete dynamical systems. In this way some sufficient conditions

for the convergence of iterative schemes of type xk+1 = Tkxk in metric spaces are presented,

where the maps Tk are contractivities with different fixed points. The results include any re-

ordering of the maps, even with repetitions, and forward and backward directions. We also

prove generalizations of the Banach fixed point theorems when the self-map is substituted by a

sequence of contractivities with different fixed points. The theory presented links the field of

dynamical systems with the theory of iterated function systems. We prove that in some cases the

set of quasi-fixed points is an invariant fractal set. The hypotheses relax the usual conditions on

the underlying space for the existence of invariant sets in countable iterated function systems.

Keywords: Non-autonomous dynamical systems, Discrete-time systems, Fractals, Iterated

function systems, Convergence of numerical algorithms.

2000 MSC: 26A18, 28A80, 37B25, 37B55, 37C25

∗Corresponding author E-mail address: manavas@unizar.es
Email address: manavas@unizar.es (M. A. Navascués)

Preprint submitted to Chaos, Solitons and Fractals August 3, 2021



1. Introduction

This article presents sufficient conditions for the convergence of general iterative schemes of

type

xk+1 = Tkxk, (1.1)

where xk ∈ X , X is a metric space and Tk : X → X for all k ≥ 1. This problem can be

approached in the framework of non-autonomous discrete dynamical systems. There is an exten-

sive literature concerning the theory of autonomous dynamical systems, that is to say, iterations

of type

xk+1 = Txk,

where T is a self-map, T : X → X. This model is very general, and it fits a great number of

numerical algorithms to solve major problems of the applied mathematics (e.g. Newton-Raphson

and fixed point methods for solving nonlinear equations). However, in a rapidly (almost volatile)

world, it is unlikely that the parameters of any model remain constant over time. For instance,

concerning the ubiquitous growth models (linear and nonlinear) it is very improbable that the

growth rates be fixed for long periods of time. For a better understanding of the real-world, it is

essential to introduce the temporal variable in the scheme.

In previous papers, the author and team have proposed new fractal functions that arise as fixed

points of operators of type

Tα : C∗(I)→ C∗(I),

where C∗(I) represents a space of functions on a real interval I , and Tα is a contraction (see for

instance [1], [14], [15]). The function defined is a limit point of the scheme

gk+1 = Tα(gk),

and gk ∈ C∗(I). The natural extension of this model is to consider a step (or time) dependent

map Tαk , and this has been the main motivation for this paper.

Regarding the system (1.1), there are in the literature classical results of convergence when the

cardinal of the collection (Tk) is finite either the underlying spaceX is compact. In general these
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outcomes involve only backward orbits (see for instance [6], [10], [19] among others) that is to

say, sequences of type:

{T1 ◦ T2 ◦ . . . ◦ Tk(x)},

but these trajectories are not natural in the context of numerical (and non-numerical) algorithms.

In the present paper, some hypotheses for the convergence of forward orbits

{Tk ◦ Tk−1 ◦ . . . ◦ T1(x)}

are provided. We consider an infinite sequence of contractions and less restrictive assumptions

on the metric space X .

Another major innovation of this paper is the definition of a new equilibrium point that general-

izes the classical fixed points, called in this article quasi-fixed points.

In Section 1 we give the first definitions and characterizations of the quasi-fixed points, along

with sufficient conditions for their existence. Section 2 reminds the forward invariant sets of a

discrete dynamical system. Since the orbits of a non-autonomous model may not be invariant,

some generalizations of the orbits are given, referred to as extended orbits and invariant super-

sets, in order to insure the permanence of the flow. Section 4 proposes some results concerning

the stability of quasi-fixed points when (Tk) is a sequence of contractions with different fixed

points.

Section 5 presents a code space composed of words of infinite length, whose characters are nat-

ural numbers. This is inspired by the ideas of the book of G. Edgar [4] on string spaces, and the

reference [8]. Section 6 is focused on the convergence of the forward orbits of (1.1), and Section

7 provides similar results for backward orbits on non-compact metric spaces, proving finally that

the set of quasi-fixed points is a fractal.

2. First definitions and results

Let us consider a metric space X with respect to a metric d and a sequence of self-maps

Tn : X → X, n ∈ N. A non-autonomous dynamical system is an iterative scheme of type

xk+1 = Tkxk, (2.2)
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for all k ∈ N and x1 ∈ X.
Let us denote

τk := Tk ◦ Tk−1 ◦ . . . T1. (2.3)

The following concepts are classical in autonomous and non-autonomous dynamical systems.

Definition 2.1. The orbit of x ∈ X is the sequence γ(x) := {τk(x)}k≥0, where τ0 := Id.

Definition 2.2. An element x ∈ X is a fixed point of the sequence (Tk)k≥1 if γ(x) = {x}. That

is to say Tk(x) = x for all k ≥ 1.

We propose a new equilibrium point for non-autonomous dynamical systems:

Definition 2.3. An element x̃ ∈ X is a quasi-fixed point of the sequence (Tk)k≥1 (or a quasi-fixed

point of the system (1.1)) if limk→∞ τk(x̃) = x̃.

Remark 2.1. The fixed points are quasi-fixed, but the converse is not true in general.

Example 1: Let us consider X = S1, where S1 is the unit circle, and the discrete system

xk+1 = Tkxk, where Tk is a rotation of angle θk such that
∑∞

k=1 θk = 2π. There are no fixed

points but all the elements of the circle are quasi-fixed.

Definition 2.4. If y = limk→∞ τk(x) the element y is the end-point of x.

Some elementary results regarding quasi-fixed points are the following.

Proposition 2.1. A quasi-fixed point is the end-point of itself.

Proposition 2.2. If x is a quasi-fixed point its orbit γ(x) is a compact. The set {(d(x, τk(x))}k≥1

is bounded and tends to zero as k tends to infinity.

Definition 2.5. An element x is asymptotically quasi-fixed if there exists a quasi-fixed point

x̃ ∈ X such that d(τn(x̃), τn(x)) tends to zero as n tends to infinity.

Definition 2.6. An element x ∈ X is a quasi-periodic point if there exists m > 0 such that

τi(x) = limk→∞ τkm+i(x), for i = 1, 2, . . . ,m.
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Definition 2.7. x ∈ X is eventually quasi-periodic/quasi-fixed point if there exists p > 0 such

that τp(x) is quasi-periodic/quasi-fixed.

In the following we give a characterization theorem for quasi-fixed points. We need the

following well known result about Lipschitz maps.

Proposition 2.3. The composition of Lipschitz maps is Lipschitz whose constant is the product

of the Lipschitz constants of the components.

Theorem 2.1. If X is complete and Tn are contractivities, then x̃ is a quasi-fixed point if and

only if x̃ is the limit of the fixed points of the maps τn = Tn ◦ Tn−1 . . . ◦ T1. As a consequence, if

a quasi-fixed point exists it is unique.

Proof. Let us consider the factors kn of Tn. The Lipschitz constants of τn are Kn :=
∏n

i=1 ki ≤
K1 = k1 < 1 for any n ∈ N. Let (xn) be the sequence of fixed points of τn. Then if x̃ is a

quasi-fixed point of the sequence (Tn), as xn = τn(xn),

d(xn, x̃) ≤ d(xn, τn(x̃)) + d(τn(x̃), x̃),

d(xn, x̃) ≤ Knd(xn, x̃) + d(τn(x̃), x̃). (2.4)

Since τn(x̃) tends to x̃, the limit of xn is x̃.

For the converse implication, if limn→∞ xn = x̃,

d(τn(x̃), x̃) ≤ d(τn(x̃), τn(xn)) + d(xn, x̃),

and

d(τn(x̃), x̃) ≤ (Kn + 1)d(xn, x̃), (2.5)

Henceforth x̃ is a quasi-fixed point.

In general, from (2.4) and (2.5) one has

(1−Kn)d(xn, x̃) ≤ d(τn(x̃), x̃) ≤ (Kn + 1)d(xn, x̃),

and the rate of convergence of the sequences (xn) and (τn(x̃)) is similar.
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Example 2: Let us consider X = R, and Tn(x) =
(
1− 1

n+1

)
(1− x), then τn(x) = 1

4(n+1)
(2n+

1 + (4x− 1)(−1)n). The fixed point of τn is xn = 1
4
(2n+1−(−1)n

n+1−(−1)n
). Consequently, the only quasi-

fixed point is 1/2.

Let us prove the expression given for τn(x). Define

yn(x) :=
1

4(n+ 1)
(2n+ 1 + (4x− 1)(−1)n).

By induction: for n = 1,

τ1(x) = T1(x) =
1

2
(1− x) = y1(x).

If it is true that τk(x) = yk(x) then

τk+1(x) = Tk+1(yk(x)) =
(k + 1

k + 2

)(
1− 1

4(k + 1)
(2k + 1 + (4x− 1)(−1)k)

)
τk+1(x) =

( 1

k + 2

)(2k + 3 + (4x− 1)(−1)k+1

4

)
,

and the last expression agrees with yk+1(x).

Remark 2.2. Notice that the result of Theorem 2.1 is true if Tn are contractivities for n ≥ p for
some p ∈ N, taking the sequence of fixed points for n ≥ p.

Corollary 2.1. If the sequence (Tn) owns a fixed point, this is the only quasi-fixed point.

Remark 2.3. IfX is a complete normed linear space and Tn are linear and contractive, we have
the conditions of the previous corollary, the maps of the sequence share the fixed point zero
and consequently the quasi-fixed point is the null element.

The next theorem is due to Bonsall [2] and provides a sufficient condition for the existence

of quasi-fixed points. Other related results can be read in [7] and [13], for instance.

Theorem 2.2. Let X be a complete metric space and let (fn) be a sequence of contraction map-

pings with the same Lipschitz constant k < 1 such that the sequence (fn) converges pointwisely

to f . Then for all n ∈ N, fn has a unique fixed point xn and the sequence (xn) converges to the
fixed point x̃ of f .
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Theorem 2.3. LetX be a complete metric space and (Tn) be self-contractivities. If the sequence

(τn) converges pointwisely then there is a unique quasi-fixed point.

Proof. Let us denote the Lipschitz constants of τp as Kp :=
∏p

n=1 kn. This is a decreasing

sequence bounded by K1 = k1. According to Bonsall’s Theorem and Theorem 2.1 there exists a

unique quasi-fixed point, being the fixed point of the limit of (τn).

Example 3: Let us consider X = R2, and the discrete system xk+1 = Tkxk, where Tk = λkAk,∏n
i=1 λi → λ < 1 as n tends to infinity, andAk is a rotation of angle θk such that θ :=

∑∞
k=1 θk <

2π. The sequence τn converges uniformly to τ(x) = λA(x), where A is a rotation of angle θ.

The maps τn share the fixed point zero, and this is the only quasi-fixed point of the system.

In Section 6 some sufficient conditions for the convergence of (τn) and the existence of quasi-

fixed points are given.

3. Invariant sets

Let us consider as before a metric space X and a sequence of self-maps (Tn)n≥1 The next

definition is due to Birkhoff.

Definition 3.1. An element y ∈ X is a limit point of x ∈ X if there is a sequence of natural

numbers (nj)n≥1 such that nj →∞ as j →∞ and τnj
(x) → y. The limit set Ω(x) (or ω-limit)

is the set of limit points of x.

Definition 3.2. The ω-limit set of H ⊆ X is the union of the limit points of the elements of H .

The next proposition is a consequence of the previous definitions.

Proposition 3.1. x̃ is a quasi-fixed point if and only if Ω(x̃) = {x̃}.

Definition 3.3. A set E ⊆ X is forward or positively invariant if Tn(E) ⊆ E, for any n ∈ N.
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Remark 3.1. For the sake of simplicity, the words forward or positively will be omitted along
the text.

Remark 3.2. Notice that in a non-autonomous discrete dynamical system, the orbits may not be

invariant because, for instance, Ti(τn(x)) may not belong to γ(x).

Since the invariant sets of non-autonomous systems are difficult to identify, this section is

devoted to their characterization. For it we need some more definitions.

Let us consider the set of words of finite length with alphabet N:

Σ := {α = (n1n2 . . . np) : ni ∈ N, p ∈ N}, (3.6)

and let us denote, for a given sequence of self-maps (Tn):

Tα := Tnp ◦ Tnp−1 ◦ . . . ◦ Tn1 . (3.7)

Definition 3.4. A finite itinerary of y ∈ X is an element of type Tα(y) = Tnp ◦Tnp−1 ◦ . . .◦Tn1(y)

or T0(y) := y. In the first case α is the address of Tα(y).

Definition 3.5. The extended orbit J(y) of y ∈ X is the set of finite itineraries of y.

Let us consider now the set of words of infinite length with alphabet N:

Σ∞ := {σ = (n1n2 . . .) : ni ∈ N}. (3.8)

Definition 3.6. An infinite itinerary of y with address σ = (n1n2...np . . .) is defined as Tσ(y) :=

limp→∞ Tnp ◦ Tnp−1 ◦ . . . ◦ Tn1(y), if the limit exists.

Let us denote the set of infinite itineraries of y as

J∞(y) = {x ∈ X : ∃σ ∈ Σ∞ such that x = Tσ(y)}.

It is clear that J∞(y) ⊆ J(y).

Proposition 3.2. If x̃ is a quasi-fixed point then x̃ ∈ J∞(x̃).
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Proposition 3.3. The extended orbit J(y) of any y ∈ X owns the following properties:

• γ(y) ⊆ J(y).

• J(y) is an invariant set.

• J(y) is the least invariant set containing y.

• Ω(y) ⊆ J(y).

The third item means that if E is an invariant set and y ∈ E then J(y) ⊆ E. That is to say,

J(y) =
⋂
Ey∈εy

Ey,

where Ey is invariant and y ∈ Ey (εy is the family of invariant sets containing y.)

Proof. They are straightforward consequences of the definition of extended orbits.

Proposition 3.4. If E is an invariant set then E also is.

Proof. If x ∈ E then exists a sequence xn whose limit is x, and xn ∈ E. Since Ti is continuous

then limTi(xn) = Ti(x). Since Ti(xn) ∈ E then Ti(x) ∈ E for all i ∈ N and consequently E is

invariant.

Definition 3.7. J(y) is the invariant closure of y.

These definitions and results can be extended to a set M ⊆ X.

Definition 3.8. The invariant superset of M ⊆ X is

MΣ := ∪y∈MJ(y).

The invariant closure of M is MΣ.

Proposition 3.5. The invariant superset of M ⊆ X owns the following properties:

• M ⊆MΣ.
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• MΣ is invariant.

• MΣ is the least invariant set containing M .

• ∪y∈Mγ(y) ⊆MΣ.

• Ω(M) ⊆MΣ.

Remark 3.3. For any y ∈ X , γ(y)Σ = J(y) and J(y)Σ = J(y).

We give in the following two characterizations of the invariant sets.

Proposition 3.6. A set E ⊆ X is invariant if and only if there exists M ⊆ X such that E = MΣ,

that is to say, E is the invariant superset of some M ⊆ X.

Proof. IfE is invariant thenEΣ ⊆ E, butEΣ is the least invariant set containingE, consequently

they agree. The converse implication is obvious.

Remark 3.4. If Tn = T for all n then for any y ∈ X

• γ(y)Σ = γ(y).

• J(y) = γ(y).

• MΣ = ∪y∈Mγ(y).

In particular, the orbits are invariant sets.

Proposition 3.7. A set E ⊆ X is invariant if and only if E = ∪y∈EJ(y). That is to say, E is

invariant if and only if is the union of extended orbits.

Proof. It is a straightforward consequence of the definitions given.

Example 4: Let us consider in X = R2 the system xk+1 = Akxk where Ak denotes a rotation

of angle θk around the origin. All the circles Cr centered at the origin are invariant sets. In this

case:

Cr = ∪x∈Crγ(x)

and the invariant closure of Cr, CΣ
r , agrees with Cr. For r = 0, CΣ

r reduces to zero.
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4. Stability of quasi-fixed points

In the first place let us remind the definition of stable sets.

Notation: N (H) will represent the set of neighborhoods of a set or an element H .

Definition 4.1. A point x ∈ X is Lyapunov stable if ∀ε > 0 there exists δ > 0 such that if

y ∈ B(x, δ) then τn(y) ∈ B(τn(x), ε) for any n ∈ N.

Definition 4.2. A point x is an attractor if there exists U ∈ N (x) such that if y ∈ U then

τn(y) → x as n → ∞. x is said to be asymptotically stable if it is both, stable and attractor. If

τn(y)→ x as n→∞ for all y ∈ X then x is said to be globally attracting or a global attractor.

If x is a global attractor and stable then it is globally asymptotically stable.

Unstable means not stable. If x is neither stable nor an attractor it will be strongly unstable.

Definition 4.3. If x is an attractor, then the basin of attraction of x is the set B(x) of points

y ∈ X such that limn→∞ τn(y) = x.

The next definition is due to Lasalle [9].

Definition 4.4. An orbit γ(x) is said to be stable in the sense of Lagrange if it is bounded.

Example 5: Let us consider X = R2 and the system xk+1 = Akxk for k ≥ 1, where Ak is a

rotation around the origin of angle θk such that
∑∞

k=1 θk = 2π. Then for any x ∈ R2, x is a

Lyapunov stable quasi-fixed point. The orbits are stable in the sense of Lagrange.

Example 6: Let us resume Example 2, considering the system

xk+1 = (1− 1

k + 1
)(1− xk).

1/2 is a quasi-fixed point globally asymptotically stable.
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Example 7: For X = R2 and the system xk+1 = λkAkxk for k ≥ 1, where |λk| < 1 such that∏n
k=1 |λk| → 0 as k tends to infinity, and Ak is a rotation around the origin of angle θk then (0, 0)

is a quasi-fixed point and a global attractor. The orbits are stable in the sense of Lagrange.

Example 8: For X = R+ × R+, where R+ is the set of real numbers greater or equal than zero,

and the system

xk+1 = yαk
k

yk+1 = xβkk ,

where 0 < αk, βk < c < 1, the origin is a strongly unstable quasi-fixed point.

Theorem 4.1. If x̃ ∈ X is a quasi-fixed point of a sequence (Tn) of Lipschitz maps with constants

ki such that
∏n

i=1 ki → 0 as n→∞ then x̃ is globally asymptotically stable.

Proof. For x ∈ X , and x̃ quasi-fixed point, defining xn := τn(x),

d(τn(x), τn(x̃)) ≤ knd(xn−1, x̃n−1) ≤ (
n∏
i=1

ki)d(x, x̃). (4.9)

Since τn(x̃) tends to x̃ then τn(x) tends also to x̃, and x̃ is attracting. The inequality (4.9) implies

that x̃ is also stable.

Corollary 4.1. With the hypothesis given on the Lipschitz constants kn, the quasi-fixed point x̃

is unique.

Corollary 4.2. As a particular case, with the hypotheses of Theorem 4.1, if x̃ is a fixed point then

is globally asymptotically stable.

Corollary 4.3. If X is a normed space, and (Tn) are self-maps linear and bounded such that∏n
i=1 ||Ti|| → 0 as n → ∞ then the origin is globally asymptotically stable and it is the only

quasi-fixed point.
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Remark 4.1. Let us notice that, due to Theorem 2.1, x̃ is the limit of the fixed points of the maps

τn, but at the moment its existence is only guaranteed in the case of convergence of either τn or

their fixed points. This question will be addressed again in the last sections of the paper.

Remark 4.2. The arguments of Theorem 4.1 are also valid for trajectories of type T1 ◦ T2 ◦ . . . ◦
Tn(x), defining a quasi-fixed point through the equality

x̃ = lim
n→∞

T1 ◦ T2 ◦ . . . ◦ Tn(x̃).

The previous theorem can be generalized to the following result.

Proposition 4.1. If kn ≤ k < 1 for any n ∈ N, then if a sequence (Tnk
) has a quasi-fixed point,

it is a global attractor for the system xk+1 = Tnk
xk.

Remark 4.3. The previous result is very general because the sequence (Tnk
) need not be a

subsequence of (Tn). It must be composed of elements of it, but it may have infinite repeated

elements, for instance.

All over the article (Tnj
) means any sequence taken from (Tn), and it may have repeated

elements.

A local result of stability for fixed points of specific discrete systems can be found in [3],

with an application in [16].

5. An ultrametric space associated with a sequence of contractivities

Let (Tn) be a sequence of contractions with contractivity factors (kn), and let k := supn kn <

1, and kn > 0 for any n ∈ N.

Let Σ∞ be the set of words of infinite length and alphabet N. That is to say, σ ∈ Σ∞ if it has the

form

σ = (n1n2n3 . . .) ∈ N× N× N...

Σ∞ can be endowed with the product topology, but we will consider here a structure of metric

space associated with the sequence (Tn).
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Definition 5.1. A word of finite length α ∈ Σ, α = (n1n2n3 . . . np) is a prefix of σ ∈ Σ∞ if

σ = (n1n2n3 . . . np . . .). The number p ∈ N is the length of α, denoted as p = card(α) = |α|.

Definition 5.2. The words σ, σ′ ∈ Σ∞ have a maximal common prefix α = (n1n2n3 . . . np) if

σ = (n1n2n3 . . . npnp+1 . . .), σ
′ = (n1n2n3 . . . npn

′
p+1 . . .) and np+1 6= n′p+1.

We define a metric dT in Σ∞ associated with the sequence (Tn) in the following way:

• If σ, σ′ ∈ Σ∞, σ = (n1n2 . . .) and σ′ = (n′1n
′
2 . . .) are such that n1 6= n′1 then dT (σ, σ′) =

1.

• If σ = σ′ then dT (σ, σ′) = 0.

• If σ, σ′ have a maximal common prefix α = (n1n2n3 . . . np) then dT (σ, σ′) = kn1kn2 . . . knp ,

where knj
is the contractivity factor of Tnj

.

We will prove that (X, dT ) is an ultrametric space, that is to say, the following inequality holds

for any σ, σ′, σ′′ :

dT (σ, σ′) ≤ max{dT (σ, σ′′), dT (σ′′, σ′)} ≤ dT (σ, σ′′) + dT (σ′′, σ′).

An ultrametric space is a particular case of metric space and the distance must satisfy the classi-

cal conditions of positivity and simmetry. For the third property of the ultrametric conditions, let

us consider σ = (n1n2 . . . npnp+1 . . .) and σ′ = (n1n2 . . . npn
′
p+1 . . .) such that np+1 6= n′p+1.

According to the distance definition dT (σ, σ′) = kn1kn2 . . . knp . Let σ′′ be any other word, and

let us assume that dT (σ, σ′′) ≥ dT (σ′, σ′′) for instance. If σ′′ = (n1n2 . . . nqn
′′
q+1n

′′
q+2 . . .), and

n′′q+1 6= nq+1 then dT (σ, σ′′) = kn1kn2 . . . knq .

Case I: p ≥ q. In this case

dT (σ, σ′′) = kn1kn2 . . . knq ≥ kn1kn2 . . . knp = dT (σ, σ′),

and thus

max{dT (σ, σ′′), dT (σ′, σ′′)} ≥ dT (σ, σ′).
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Case II: p < q. These hypotheses contradict the definition of dT (σ, σ′) since as

σ = (n1n2 . . . npnp+1 . . .)

σ′ = (n1n2 . . . npn
′
p+1 . . .)

σ′′ = (n1n2 . . . np . . . nq . . .)

then

dT (σ′, σ′′) ≤ dT (σ, σ′′) < kn1 . . . knp .

The words σ, σ′′ must have in common the letter in the (p+1)-th position, np+1, and σ′, σ′′ would

agree at the (p + 1)-th character, (n′p+1 = np+1). Consequently σ, σ′ should have the (p + 1)-th

letter in common.

Notation: If σ = (n1n2 . . .) and p ∈ N we will use the following expression:

σ|p := (n1n2 . . . np) ∈ Σ. (5.10)

Proposition 5.1. Let us consider σ, σ′ ∈ Σ∞, σ = (n1n2 . . . np . . .). Then σ|p = σ′|p if and only

if dT (σ, σ′) ≤ kn1kn2 . . . knp .

Proof. The direct implication is evident given that the contractivity factors are lower than 1. For

the converse one, let us assume that dT (σ, σ′) ≤ kn1kn2 . . . knp and ni 6= n′i for some i ≤ p. Then

dT (σ, σ′) = kn1kn2 . . . knr for r < i ≤ p and thus we would have kn1kn2 . . . knr ≤ kn1kn2 . . . knp

for r < p, and this is impossible. Consequently ni = n′i for all i ≤ p.

Definition 5.3. A cylinder of prefix α ∈ Σ is the set of words of infinite length with prefix α. It

can be expressed as

C(α) = {σ = ασ′ : σ′ ∈ Σ∞} = α× Σ∞

or

C(α) = {σ ∈ Σ∞ : σ|p = α},

where p = |α|.

Proposition 5.2. C(α) is a clopen set, that is to say, is open and closed.
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Proof. Let p = |α| and σ ∈ C(α). Let αi be the letters of α and σ = (α1α2 . . . αpnp+1np+2 . . .).

Let us choose R <
∏p

i=1 kαi
and let σ′ be such that dT (σ, σ′) < R. The previous result implies

that σ|p = σ′|p and consequently σ′ ∈ C(α). Then B(σ,R) ⊆ C(α).

Bearing in mind that (C(α))c = ∪α′ 6=αC(α′), we have that the cylinder is closed.

In fact the cylinders compose a base for the open sets in the metric topology defined.

Let us define the shift map s : Σ∞ → Σ∞ defined for σ = (n1n2n3 . . .) as s(σ) = (n2n3 . . .).

Proposition 5.3. If k := supn kn < 1, s is continuous with respect to the metric dT .

Proof. Let ε > 0 and σ = (n1n2n3 . . .) ∈ Σ∞. Let us see that s is continuous at σ. Let p ∈ N be

such that kp < ε, and let us choose δ = kn1kn2 . . . knpknp+1 .

If dT (σ, σ′) < δ then, by Proposition 5.1, σ|(p+1) = σ′|(p+1) and thus s(σ)|p = s(σ′)|p. Then

dT (s(σ), s(σ′)) ≤ kn2kn3 . . . knpknp+1 ≤ kp < ε.

Definition 5.4. Let (Tn) be a sequence of contractivities on a metric space X , with contractivity

factors kn. If there exists a solution s ∈ R for the equation

∞∑
n=1

ksn = 1,

then s is the similarity dimension of the sequence (Tn).

The previous definition is a generalization of the homonymous dimension in the finite
case (see for instance [4]). There are numerous results concerning the relation between sim-
ilarity, box and Hausdorff dimensions in the finite case (see for instance [5] and references
therein). One classical result is due to Moran (1946) [12]:

16



Theorem 5.1. Let F be an Euclidean Iterated Function System F = (f1, f2, . . . , fn) composed

of similarities whose attractor is K. Let ki be the similarity ratio associated with fi, and assume

that F satisfies the open set condition. If s is the solution of the equation

n∑
i=1

ksi = 1,

then s = dimB(K) = dimH(K), where dimB(K) and dimH(K) are the box and Hausdorff

dimensions of K respectively.

If there exists a similarity dimension for (Tn) then Σ∞ can be endowed with a measure µ

defined for the basic sets as

µ(C(α)) = (kn1kn2 . . . knp)s

if α = (n1n2 . . . np). Since Σ∞ = ∪∞n=1C(αn) where αn = (n) for all n, then µ(Σ∞) =∑∞
n=1 k

s
n = 1.

In the following we give sufficient conditions on the contractivity factors to ensure the exis-

tence of similarity dimension for the sequence (Tn).

Proposition 5.4. If the contractiviy factors kn satisfy the inequality

1

n2
≤ kn ≤

c

n1+ε
,

for some c < 1 and ε > 0, then there is s ∈ [1,+∞) such that

∞∑
n=1

ksn = 1.

Proof. Let us consider the function Φ : [1,+∞)→ (0,+∞) defined as

Φ(x) =
∞∑
n=1

kxn.

Let us find a bound for Φ(x):

Φ(x) ≤
∞∑
n=1

cx

nx
≤

∞∑
n=1

c
1

nx
= cξ(x),
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where ξ is the Riemann zeta function and x > 1. Let us prove now that Φ is continuous. With

the hypotheses given

Φ(x) ≤
∞∑
n=1

kn ≤
∞∑
n=1

c
1

n1+ε

for 1 ≤ x < +∞. Using the Weierstrass criterion, the series Φ(x) converges uniformly, and

consequently is continuous. Now Φ(1) ≥
∑∞

n=1
1
n2 = π2

6
> 1, and

lim
x→∞

Φ(x) ≤ c lim
x→∞

ξ(x) = c < 1.

Applying Darboux’s theorem there exists s ≥ 1 such that Φ(s) = 1.

Proposition 5.5. If the contractiviy factors kn satisfy the inequality(
1

2

)n
≤ kn ≤ rn,

for some r < 1 then there is a real s ∈ [1,+∞) such that

∞∑
n=1

ksn = 1.

Proof. Let us define Φ as before. This function is continuous applying the Weierstrass criterion

of uniform convergence. With the hypotheses given, for x ≥ 1,

Φ(x) ≤
∞∑
n=1

rnx =
rx

1− rx
,

and Φ(1) ≥ 1. If x→∞ then rx

1−rx → 0. Then there exists s ≥ 1 such that Φ(s) = 1.

Remark 5.1. If kn = rn where 0 < r < 1 the similarity dimension can be explicitly computed

as s = log(1/2)
log(r)

, since the equation for s reduces to

rs

1− rs
= 1

and the expression for s is easily calculated from it.
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6. Convergence of non-autonomous iterative schemes

In this section we consider as before a metric space X, and a sequence of self-contractivities

(Tn), and we give sufficient conditions for the convergence of iterative schemes of type

xk+1 = Tnk
xk,

for xk ∈ X,nk ∈ N.
Given a word σ ∈ Σ∞, σ = (n1n2 . . .) and p ∈ N we will use the following notations:

σ|p := (n1n2 . . . np) (6.11)

Tσ|p := Tnp ◦ Tnp−1 ◦ . . . ◦ Tn1 : X → X, (6.12)

and for a set M ⊆ X ,

Mp := Tσ|p(M). (6.13)

In the first place, we define a new type of (forward) invariance.

Definition 6.1. Let σ ∈ Σ∞, σ = (n1n2 . . .) and M ⊆ X. The set M is σ-invariant if Tnj
(M) ⊆

M for all j ∈ N.

If M is σ-invariant Tσ|p(M) ⊆M and the flow remains in M .

For a σ-invariant set M we will assume in this section that ∩∞p=1Mp 6= ∅.
We consider the set sequence (Tσ|p(M))p∈N and let us notice that even if M is σ-invariant,

it is not a nested decreasing sequence, that is to say, Tσ|p(M) may not contain Tσ|(p+1)(M). For

instance Tn1(M) may not contain Tn2 ◦ Tn1(M). As usual, kn is the contractivity factor of Tn.

Theorem 6.1. If X is complete, M ⊆ X is σ-invariant and bounded, and Kp :=
∏p

j=1 knj
→ 0

as p tends to infinity, then there exists x̃σ ∈M such that

lim
p→∞

Tσ|p(x) = x̃σ,

for any x ∈ M. Further if M is closed, then there exists a unique quasi-fixed point of (Tnj
),

x̃σ ∈M, globally attracting in M , and the sequence of self-maps (Tσ|p)p∈M converges uniformly

in M to the constant map Tσ defined as Tσ(x) = x̃σ, for all x ∈M .
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Proof. Let us consider Mp = Tσ|p(M), and Np := ∩pj=1Mj. As M is σ-invariant, the sequence

(Np) is a nested sequence of closed sets in M (complete):

M ⊇M1 ⊇ (M1 ∩M2) ⊇ . . . ⊇ (∩pj=1Mj) ⊇ . . .

and

diam(Np) ≤ diam(Mp) = diam(Mp) ≤ (

p∏
j=1

knj
)diam(M)→ 0,

as p→∞. Consequently, applying the Cantor’s intersection theorem:

∩∞p=1Np = {x̃σ}.

where x̃σ ∈M . If x ∈M , let us denote

xp := Tσ|p(x) ∈Mp.

x̃σ ∈Mp since

x̃σ ∈ Np = (∩pj=1Mj) ⊆Mp.

Then we have

d(xp, x̃σ) ≤ diam(Mp) = diam(Mp) ≤ Kpdiam(M), (6.14)

and consequently limp→∞ xp = x̃σ.

If M is closed, x̃σ ∈ M and limxp = x̃σ, for all x ∈ M. Hence x̃σ is a globally attracting

quasi-fixed point in M . For the convergence of the maps Tσ|p to Tσ defined as Tσ(x) = x̃σ for all

x ∈M , let us think that

d(Tσ|p(x), Tσ(x)) = d(xp, x̃σ) ≤ Kpdiam(M),

and Tσ|p → Tσ uniformly when p tends to infinity.

As a consequence of the previous result, we have the following proposition.

Proposition 6.1. If X is a complete metric space, M ⊆ X is σ-invariant and compact, and Kp

tends to zero, there exists a quasi-fixed point x̃σ ∈ M globally attracting in M . The sequence

(Tσ|p) converges uniformly to Tσ, and limp→∞Np = {x̃σ} in the Hausdorff metric.
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Proof. It is a particular case of the previous proposition. In this case (Np) is a nested and decreas-

ing sequence of compacts, whose intersection is a singleton. A decreasing sequence of compacts

is Cauchy. As the space K(X) of compacts of X is complete, the sequence is convergent to its

intersection.

Theorem 6.2. IfX is complete and bounded and the contractivity factors kn satisfy the inequality

k := sup kn < 1 then ∀σ ∈ Σ∞, σ = (n1n2 . . .), the sequence of self-maps (Tnj
) owns a quasi-

fixed point x̃σ ∈ X globally asymptotically stable, that is to say, the iterative scheme

xk+1 = Tnk
xk (6.15)

for all k ≥ 1 is convergent to x̃σ ∈ X , and this limit does not depend on the starting point

x1 ∈ X . In particular,

lim
n→∞

τn(x) = x̃σ∗ ,

for all x ∈ X and σ∗ = (123 . . .).

For any σ ∈ Σ∞, the sequence of maps (Tσ|p)p∈N converges uniformly to Tσ defined as Tσ(x) =

x̃σ ∀x ∈ X.

Proof. The existence, attraction and stability are straightforward consequences of Theorems 6.1

and 4.1.

Corollary 6.1. If X is compact, any iterative scheme of type (6.15) is convergent with the hy-

pothesis given on the contractivity factors.

On the hypotheses of Theorem 6.2, let us consider now the set Q of quasi-fixed points of the

sequences (Tnj
) for any σ = (n1n2 . . .), and the map

π : Σ∞ → Q

defined as π(σ) = x̃σ.

Definition 6.2. σ is called an address for x̃σ.

We have the following result.
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Theorem 6.3. IfX is complete and bounded and the contractivity factors kn satisfy the inequality

k := sup kn < 1, the map π defined above is continuous and surjective.

Proof. The surjectivity is obvious from the definition ofQ. Let us define now the map T : Σ∞ →
C(X), where C(X) is the space of continuous (and bounded since X is), defined as T (σ) = Tσ,

where Tσ is defined as in Theorem 6.2.

C(X) is complete with respect to the uniform metric since X is. Let us define Tp : Σ∞ → C(X),

defined as Tp(σ) = Tσ|p = Tnp ◦ Tnp−1 ◦ Tn1 .

First claim: Tp is continuous.

Given ε > 0, σ ∈ Σ∞, σ = (n1n2 . . .). Take δ < Kp =
∏p

j=1 knj
. If dT (σ, σ′) < δ, according to

Proposition 5.1 σ|p = σ′|p and dsup(Tp(σ), Tp(σ′)) = dsup(Tσ|p, Tσ′|p) < ε. Hence Tp is continu-

ous.

Second claim: (Tp) converges uniformly to T .

d∗(Tp, T ) := sup
σ∈Σ∞

dsup(Tp(σ), T (σ)) = sup
σ∈Σ∞

sup
x∈X

d(Tσ|p(x), Tσ(x))

then, defining xp := Tσ|p(x),

d∗(Tp, T ) = sup
σ∈Σ∞

sup
x∈X

d(xp, x̃σ) ≤ Kpdiam(X) ≤ kpdiam(X),

using the inequality (6.14) for M = X . Consequently d∗(Tp, T ) → 0 as p tends to infinity, and

T is continuous.

The continuity of π is equivalent to that of T since:

d(π(σ), π(σ′)) = d(x̃σ, x̃σ′) = sup
x∈X

(Tσ(x), Tσ′(x)) = dsup(T (σ), T (σ′)).

Definition 6.3. A sequence of self-maps (Tn) is a Picard sequence if there exists x̃ ∈ X such

that limTn ◦ Tn−1 ◦ . . . ◦ T1(x) = x̃ ∀x ∈ X.

Proposition 6.2. On the hypotheses of Theorem 6.3, any sequence (Tnj
) is a Picard sequence.

Remark 6.1. Let us notice that by Theorem 2.1 we have also proved that the sequence of fixed

points of (Tσ|p) converges to a quasi-fixed point for any σ ∈ Σ∞ with the hypotheses given.
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7. The fractal set of quasi-fixed points

In this section we consider backward orbits of type:

{Tn1 ◦ Tn2 ◦ . . . Tnp(x)}

and quasi-fixed points defined for σ = (n1n2 . . .) as

x̃σ = lim
p→∞

Tn1 ◦ Tn2 ◦ . . . Tnp(x̃σ).

For the sake of simplicity we will use the same notation for the backward orbits:

Tσ|p := Tn1 ◦ Tn2 ◦ . . . ◦ Tnp ,

for p ∈ N and σ ∈ Σ∞. Let us define a σ-invariant set M as in the previous section, that is to

say, satisfying Tnj
(M) ⊆ M if σ = (n1n2 . . .). If M is σ-invariant then Tσ|p(M) ⊆ M for all

p ∈ N. Also we have, if M is bounded,

diam(Tσ|p(M)) ≤ (

p∏
j=1

knj
)diam(M). (7.16)

Unlike the case of the previous section, if M is σ-invariant the sequence (Tσ|p(M)) is a nested

decreasing sequence, that is to say,

M ⊇ Tσ|1(M) ⊇ Tσ|2(M) ⊇ . . . ⊇ Tσ|p(M) ⊇ . . .

since for instance

Tn1 ◦ Tn2(M) ⊆ Tn1(M) ⊆M.

Proposition 7.1. If X is complete, M is σ-invariant and bounded, and for σ = (n1, n2 . . .),

Kp :=
∏p

j=1 knj
→ 0 as p→∞, then there exists x̃σ ∈M such that for all x ∈M

lim
p→∞

Tn1 ◦ Tn2 ◦ . . . ◦ Tnp(x) = x̃σ.

Further if M is σ-invariant and closed, there exists a unique quasi-fixed point x̃σ ∈ M globally

attracting in M , and the sequence of maps (Tσ|p) converges uniformly in M to Tσ defined as

Tσ(x) = x̃σ for all x ∈M.
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Proof. Let us define Mp := Tσ|p(M). We have then a nested sequence of closed sets

M ⊇M1 ⊇M2 ⊇ . . . ⊇Mp ⊇ . . .

whose diameter tends to zero since

diam(Mp) = diam(Mp) ≤ Kpdiam(M).

By the Cantor’s intersection theorem, there exists x̃σ ∈M such that

∩p∈NMp = {x̃σ}.

If x ∈ M , let us define as usual xp = Tσ|p(x) ∈ Mp. Since xp, x̃σ ∈ Mp then d(xp, x̃σ) ≤
diam(Mp) = diam(Mp)→ 0, and thus limp→∞ xp = x̃σ.

If M is closed, x̃σ is a globally attracting quasi-fixed point in M . Let us see that (Tσ|p) converges

uniformly in M to Tσ(x) = x̃σ for x ∈M . It comes from the inequality

dsup(Tσ|p, Tσ) = sup
x∈M

d(xp, x̃σ) ≤ Kpdiam(M).

Proposition 7.2. If X is a complete metric space, M ⊆ X is σ-invariant and compact, and

Kp → 0, there exists a quasi-fixed point x̃σ ∈ M globally attracting in M . The sequence

(Tσ|p(M)) converges to {x̃σ} in the Hausdorff metric.

Proof. It is a particular case of the previous proposition. The sequence (Tσ|p(M)) is a nested

decreasing sequence of compact sets and consequently there exists x̃σ ∈M such that

{x̃σ} = ∩p∈NTσ|p(M).

The sequence of the sets Mp converges to their intersection in the Hausdorff metric dH .

Let us define, as in the previous section, the set Q of quasi-fixed points associated to the

sequence (Tn), and let us see that it is a fractal set.
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Theorem 7.1. If X is a complete and bounded metric space, and the contractivity factors are

such that k := sup kn < 1 then ∀σ ∈ Σ∞, σ = (n1n2 . . . ), the sequence of self-maps (Tnj
) owns

a global attractor x̃σ ∈ X , and the sequence (Tσ|p) converges uniformly to the constant map

defined as Tσ(x) = x̃σ for all x ∈ X. The transformation

π : Σ∞ → Q,

defined as π(σ) = x̃σ is surjective and continuous. Further Q is a fractal set.

Proof. The first part is analogous to that of Theorem 6.3. Let us prove now that Q is a fractal

set. Q is defined in this case as

Q = ∪σ∈Σ∞(∩p∈NTσ|p(X)).

If s is the shift map, defined as s(σ) = (n2n3 . . .),

Tn1(x̃s(σ)) = lim
p→∞

Tn1 ◦ Tn2 ◦ . . . ◦ Tnp(x) = π(σ),

and consequently Tn1(π(s(σ))) = π(σ). Consequently Q is an invariant set of the countable

iterated function system {X, (Tn)}, that is to say,

Q = ∪n∈NTn(Q).

As Q is the union of ”copies” of itself, it is a fractal set.

Let us notice that the concept of invariance here is more restrictive than in Section 3, where

only forward invariant sets are considered.

Remark 7.1. This result proves that quasi-fixed points are the ”atoms” of a fractal set linked to

the countable iterated function system {X, (Tn)}.

Remark 7.2. The set Q may not be a compact but if the cardinal of (Tn) is finite then Q is

compact (see for instance [6], [10], [19]).
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If the space X is compact, the sequence (Tσ|p(B)) is composed of compact sets if B is

compact. According to the theory of countable iterated function systems, defining ∀B ∈ K(X)

the transformation

T (B) = ∪∞n=1Tn(B) ∈ K(X),

One has limm→∞ T
m(B) = A for some compact A ⊆ X (see for instance [11], [17], [18]).
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