Numerical approximations to a singularly perturbed convection-diffusion problem with a discontinuous initial condition
Resumen: A singularly perturbed parabolic problem of convection-diffusion type with a discontinuous initial condition is examined. An analytic function is identified which matches the discontinuity in the initial condition and also satisfies the homogenous parabolic differential equation associated with the problem. The difference between this analytical function and the solution of the parabolic problem is approximated numerically, using an upwind finite difference operator combined with an appropriate layer-adapted mesh. The numerical method is shown to be parameter-uniform. Numerical results are presented to illustrate the theoretical error bounds established in the paper. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Idioma: Inglés
DOI: 10.1007/s11075-021-01098-6
Año: 2021
Publicado en: NUMERICAL ALGORITHMS 88, 4 (2021), 1851-1873
ISSN: 1017-1398

Factor impacto JCR: 2.37 (2021)
Categ. JCR: MATHEMATICS, APPLIED rank: 52 / 267 = 0.195 (2021) - Q1 - T1
Factor impacto CITESCORE: 4.7 - Mathematics (Q1)

Factor impacto SCIMAGO: 0.983 - Applied Mathematics (Q1)

Tipo y forma: Artículo (PrePrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2023-05-18-15:59:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-09-21, última modificación el 2023-05-19


Preprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)