000118651 001__ 118651
000118651 005__ 20240319081018.0
000118651 0247_ $$2doi$$a10.1093/mnras/stac1418
000118651 0248_ $$2sideral$$a129564
000118651 037__ $$aART-2022-129564
000118651 041__ $$aeng
000118651 100__ $$0(orcid)0000-0002-3312-5710$$aCalvo, Manuel$$uUniversidad de Zaragoza
000118651 245__ $$aOn the numerical integration of an explicit solution of the homologous collapse’s radial evolution in time
000118651 260__ $$c2022
000118651 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118651 5203_ $$aIn a recent paper, Slepian and Philcox derive an explicit solution of the homologous collapse from rest of a uniform density sphere under its self-gravity as a function of time. Their solution is given in terms of two curvilinear integrals along a suitable Jordan contour; in practice, it must be approximated by a quadrature rule. The aim of this paper is to examine how the choice of the contour and the quadrature rule affects the accuracy and the efficiency of this integral solution approximation. More precisely, after a study of the complex roots of a transcendental equation that relates time with the variable, some alternative Jordan contours that turn out to be more convenient are proposed. Then, by using as quadrature rule the composite trapezoidal rule because of its reliability and spectral convergence accuracy, some numerical experiments are presented to show that the combination of contours and quadrature rule allows us to obtain numerical results with high accuracy and low computational cost.
000118651 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-20R$$9info:eu-repo/grantAgreement/ES/DGA-FSE/E41-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-109045GB-C31$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-117066GB-I00
000118651 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000118651 590__ $$a4.8$$b2022
000118651 592__ $$a1.734$$b2022
000118651 591__ $$aASTRONOMY & ASTROPHYSICS$$b17 / 69 = 0.246$$c2022$$dQ1$$eT1
000118651 593__ $$aSpace and Planetary Science$$c2022$$dQ1
000118651 593__ $$aAstronomy and Astrophysics$$c2022$$dQ1
000118651 594__ $$a9.5$$b2022
000118651 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118651 700__ $$0(orcid)0000-0001-5208-4494$$aElipe, Antonio$$uUniversidad de Zaragoza
000118651 700__ $$0(orcid)0000-0002-4238-3228$$aRández, Luis$$uUniversidad de Zaragoza
000118651 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000118651 773__ $$g514, 1 (2022), 1258-1265$$pMon. not. R. Astron. Soc.$$tMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY$$x0035-8711
000118651 8564_ $$s1379488$$uhttps://zaguan.unizar.es/record/118651/files/texto_completo.pdf$$yVersión publicada
000118651 8564_ $$s2348560$$uhttps://zaguan.unizar.es/record/118651/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118651 909CO $$ooai:zaguan.unizar.es:118651$$particulos$$pdriver
000118651 951__ $$a2024-03-18-15:56:21
000118651 980__ $$aARTICLE