000118656 001__ 118656 000118656 005__ 20240319081018.0 000118656 0247_ $$2doi$$a10.1103/PhysRevApplied.17.064028 000118656 0248_ $$2sideral$$a129570 000118656 037__ $$aART-2022-129570 000118656 041__ $$aeng 000118656 100__ $$0(orcid)0000-0002-9253-7926$$aCastro, A.$$uUniversidad de Zaragoza 000118656 245__ $$aOptimal Control of Molecular Spin Qudits 000118656 260__ $$c2022 000118656 5060_ $$aAccess copy available to the general public$$fUnrestricted 000118656 5203_ $$aWe demonstrate, numerically, the possibility of manipulating the spin states of molecular nanomagnets with shaped microwave pulses designed with quantum optimal control theory techniques. The state-to-state or full gate transformations can be performed in this way in shorter times than using simple monochromatic resonant pulses. This enhancement in the operation rates can therefore mitigate the effect of decoherence. The optimization protocols and their potential for practical implementations are illustrated by simulations performed for a simple molecular cluster hosting a single Gd3+ ion. Its eight accessible levels (corresponding to a total spin S=7/2) allow encoding an eight-level qudit or a system of three coupled qubits. All necessary gates required for universal operation can be obtained with optimal pulses using the intrinsic couplings present in this system. The application of optimal control techniques can facilitate the implementation of quantum technologies based on molecular spin qudits. 000118656 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E09-17R-Q-MAD$$9info:eu-repo/grantAgreement/EC/H2020/862893/EU/Molecular spin qudits offering new hope for quantum computing/FATMOLS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 862893-FATMOLS$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-115221GB-C41$$9info:eu-repo/grantAgreement/ES/MICINN/PCI2018-093116$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-094792-B-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096075-B-C21$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-82426-P 000118656 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000118656 590__ $$a4.6$$b2022 000118656 592__ $$a1.492$$b2022 000118656 591__ $$aPHYSICS, APPLIED$$b43 / 160 = 0.269$$c2022$$dQ2$$eT1 000118656 593__ $$aPhysics and Astronomy (miscellaneous)$$c2022$$dQ1 000118656 594__ $$a8.6$$b2022 000118656 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000118656 700__ $$aGarcía Carrizo, A. 000118656 700__ $$aRoca, S. 000118656 700__ $$0(orcid)0000-0003-4478-1948$$aZueco, D. 000118656 700__ $$0(orcid)0000-0001-6284-0521$$aLuis, F. 000118656 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica 000118656 773__ $$g17, 6 (2022), 064028 [13 pp.]$$pPhys. rev. appl.$$tPhysical Review Applied$$x2331-7019 000118656 8564_ $$s2561726$$uhttps://zaguan.unizar.es/record/118656/files/texto_completo.pdf$$yVersión publicada 000118656 8564_ $$s2913263$$uhttps://zaguan.unizar.es/record/118656/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000118656 909CO $$ooai:zaguan.unizar.es:118656$$particulos$$pdriver 000118656 951__ $$a2024-03-18-15:56:27 000118656 980__ $$aARTICLE