000118657 001__ 118657
000118657 005__ 20240319081022.0
000118657 0247_ $$2doi$$a10.1021/acsami.2c04865
000118657 0248_ $$2sideral$$a129638
000118657 037__ $$aART-2022-129638
000118657 041__ $$aeng
000118657 100__ $$aMuzzi, B.
000118657 245__ $$aStar-shaped Magnetic-plasmonic Au@Fe3O4 nano-heterostructures for photothermal therapy
000118657 260__ $$c2022
000118657 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118657 5203_ $$aHere, we synthesize a Au@Fe3O4 core@shell system with a highly uniform unprecedented star-like shell morphology with combined plasmonic and magnetic properties. An advanced electron microscopy characterization allows assessing the multifaceted nature of the Au core and its role in the growth of the peculiar epitaxial star-like shell with excellent crystallinity and homogeneity. Magnetometry and magneto-optical spectroscopy revealed a pure magnetite shell, with a superior saturation magnetization compared to similar Au@Fe3O4 heterostructures reported in the literature, which is ascribed to the star-like morphology, as well as to the large thickness of the shell. Of note, Au@Fe3O4 nanostar-loaded cancer cells displayed magneto-mechanical stress under a low frequency external alternating magnetic field (few tens of Hz). On the other hand, such a uniform, homogeneous, and thick magnetite shell enables the shift of the plasmonic resonance of the Au core to 640 nm, which is the largest red shift achievable in Au@Fe3O4 homogeneous core@shell systems, prompting application in photothermal therapy and optical imaging in the first biologically transparent window. Preliminary experiments performing irradiation of a stable water suspension of the nanostar and Au@Fe3O4-loaded cancer cell culture suspension at 658 nm confirmed their optical response and their suitability for photothermal therapy. The outstanding features of the prepared system can be thus potentially exploited as a multifunctional platform for magnetic-plasmonic applications.
000118657 536__ $$9info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823717-ESTEEM3
000118657 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118657 590__ $$a9.5$$b2022
000118657 592__ $$a2.178$$b2022
000118657 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b27 / 107 = 0.252$$c2022$$dQ2$$eT1
000118657 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ1
000118657 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b55 / 343 = 0.16$$c2022$$dQ1$$eT1
000118657 593__ $$aNanoscience and Nanotechnology$$c2022$$dQ1
000118657 593__ $$aMedicine (miscellaneous)$$c2022$$dQ1
000118657 594__ $$a15.7$$b2022
000118657 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118657 700__ $$aAlbino, M.
000118657 700__ $$aGabbani, A.
000118657 700__ $$aOmelyanchik, A.
000118657 700__ $$aKozenkova, E.
000118657 700__ $$aPetrecca, M.
000118657 700__ $$aInnocenti, C.
000118657 700__ $$aBalica, E.
000118657 700__ $$aLavacchi, A.
000118657 700__ $$aScavone, F.
000118657 700__ $$aAnceschi, C.
000118657 700__ $$aPetrucci, G.
000118657 700__ $$0(orcid)0000-0002-4599-3013$$aIbarra, A.
000118657 700__ $$aLaurenzana, A.
000118657 700__ $$aPineider, F.
000118657 700__ $$aRodionova, V.
000118657 700__ $$aSangregorio, C.
000118657 773__ $$g14, 25 (2022), 29087-29098$$pACS appl. mater. interfaces$$tACS applied materials & interfaces$$x1944-8244
000118657 8564_ $$s7130782$$uhttps://zaguan.unizar.es/record/118657/files/texto_completo.pdf$$yVersión publicada
000118657 8564_ $$s3290853$$uhttps://zaguan.unizar.es/record/118657/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118657 909CO $$ooai:zaguan.unizar.es:118657$$particulos$$pdriver
000118657 951__ $$a2024-03-18-16:22:09
000118657 980__ $$aARTICLE