ANEXOS Capítulo 1

Syntheses

Synthesis of compound 1

To a solution of propargylamine (6.4 μ l, 0.1 mmol) in ethanol/water mixture (1/1) (10 ml), phenyl isothiocyanate was added (11.9 μ l, 0.1 mmol) and the solution stirred for 24 h. A light brown precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 70%

Scheme 1.2. Synthesis of compound 1.

¹**H NMR (ppm) (400 MHz, CDCl₃):** δ = 7.28 (m, 2H, *C*_{ortho}Ph); 7.17 (m, 2H, *C*_{meta}Ph); 7.07 (tt, 1H, *C*_{para}Ph, ³*J*_{HH} = 7.3 Hz, ⁴*J*_{HH} = 2.4 Hz); 5.20 (m, 1H, *CH*₂); 5.12 (m, 1H, *CH*₂); 4.58 (t, 2H, *CH*₂-N, ⁴*J*_{HH} = 2.3 Hz)

Figure 1.1. ¹H NMR spectrum of compound 1 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CDCl₃): $\delta = 158.4$ (s, 1C, N-*C*=N); 145.1 (s, 1C, *C_{ipso}*Ph-NH); 144.2 (s, 1C, *C*=CH₂); 129.1 (s, 2C, *C_{ortho}*Ph) 123.5 (s, 1C, *C_{para}*Ph); 120.9 (s, 2C, *C_{meta}*Ph); 104.2 (s, 1C, *CH*₂); 59.3 (s, 1C, *CH*₂-N)

Figure 1.2. ¹³C APT spectrum of compound 1 in CDCl₃ solution.

Synthesis of compound 2

To a solution of dipropargylamine (10.3 μ l, 0.1 mmol) in ethanol (10 ml), phenyl isothiocyanate was added (11.9 μ l, 0.1 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure and a yellow oil was collected and vacuum dried to give the product.

Yield: 64%

Scheme 1.2. Synthesis of compound 2.

¹**H NMR (ppm) (400 MHz, CDCl₃):** $\delta = 7.26$ (m, 2H, *C*_{ortho}Ph); 7.06 (m, 1H, *C*_{para}Ph); 6.94 (m, 2H, *C*_{meta}Ph); 5.26 (m, 1H, *CH*₂); 5.10 (m, 1H, *CH*₂); 4.38 (d, 2H, *CH*₂ - C \equiv CH, ⁴*J*_{HH} = 2.5 Hz); 4.37 (t, 2H, *CH*₂-N, ⁴*J*_{HH} = 2.3 Hz); 2.33 (t, 1H, *CH*, ⁴*J*_{HH} = 2.5 Hz).

Figure 1.3. ¹H NMR spectrum of compound 2 in CDCl₃solution.

¹³C APT (ppm) (100 MHz, CDCl₃): $\delta = 156.3$ (s, 1C, N-*C*=N); 151.2 (s, 1C, *C_{ipso}*Ph-NH); 137.0 (s, 1C, *C*-CH₂); 129.0 (s, 2C, *C_{ortho}*Ph) 123.6 (s, 1C, *C_{para}*Ph); 121.9 (s, 2C, *C_{meta}*Ph); 106.0 (s, 1C, *CH*₂); 77.4 (s, 1C, *C* \equiv CH); 72.9 (s, 1C, *CH*); 55.1 (s, 1C, *CH*₂-N); 33.3 (s, 1C, *CH*₂ - C \equiv CH).

Figure 1.4. ¹³C APT spectrum of compound 2 in CDCl₃ solution.

To a solution of N-methyl-propargylamine (8.2 μ l, 0.1 mmol) in ethanol/water mixture (1/1) (10 ml), phenyl isothiocyanate was added (11.9 μ l, 0.1 mmol) and the solution stirred for 24 h. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 50%

Scheme 1.3. Synthesis of compound 3.

¹**H** NMR (ppm) (400 MHz, CDCl₃): $\delta = 7.27$ (m, 2H, C_{ortho} Ph); 7.05 (m, 1H, C_{para} Ph); 6.93 (m, 2H, C_{meta} Ph); 5.20 (m, 1H, CH_2); 5.07 (m, 1H, CH_2); 4.28 (t, 2H, CH_2 -N, ⁴ $J_{HH} = 2.3$ Hz); 3.09 (s, 1H, CH_3).

Figure 1.5. ¹H NMR spectrum of compound 3 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CDCl₃): $\delta = 151.8$ (s, 1C, C_{ipso} Ph-NH); 137.6 (s, 1C, $C=CH_2$); 129.0 (s, 2C, C_{ortho} Ph) 123.4 (s, 1C, C_{para} Ph); 122.2 (s, 2C, C_{meta} Ph); 105.3 (s, 1C, CH_2); 58.1 (s, 1C, CH_2 -N); 33.2 (s, 1C, CH_3).

Figure 1.6. ¹³C APT spectrum of compound 2 in CDCl₃ solution.

To a solution of dipropargylamine (10.3 μ l, 0.1 mmol) in ethanol/water mixture (1/1) (10 ml), 3-fluorophenylisothiocyanate was added (12.0 μ l, 0.1 mmol) and the solution stirred for 24 h. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 60%

Scheme 1.4. Synthesis of compound 4.

¹**H NMR (ppm) (400 MHz, CDCl₃):** $\delta = 7.23$ (m, 1H, *II*); 6.98 (td, 1H, *IV*, ⁴*J*_{*HH*}= 10.2 Hz, ⁵*J*_{*HH*}= 2.1 Hz); 6.87 (ddd, 1H, *I*, ³*J*_{*HH*}= 8.0 Hz, ⁴*J*_{*HH*}= 2.0 Hz, ⁴*J*_{*HH*}= 0.9 Hz); 6.75 (tdd, 1H, *III*, ³*J*_{*HH*}= 8.4 Hz, ⁴*J*_{*HH*}= 2.5 Hz, ⁴*J*_{*HH*}= 0.9 Hz); 5.23 (m, 1H, *CH*₂); 5.14 (m, 1H, *CH*₂); 4.56 (t, 2H, *CH*₂-N, ³*J*_{*HH*}= 2.4Hz).

Figure 1.7. ¹H NMR spectrum of compound 4 in CDCl₃ solution.

Figure 1.8. ¹⁹F NMR spectrum of compound 4 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CDCl₃): $\delta = 163.3$ (d, 1C, C_{ipso} Ph, ${}^{1}J_{CF} = 243.7$ Hz); 130.2 (d, 1C, II, ${}^{3}J_{CF} = 9.6$ Hz); 116.4 (d, 1C, I, ${}^{4}J_{CF} = 2.5$ Hz); 110.2 (d, 1C, III, ${}^{2}J_{CF} = 21.12$ Hz); 108.2 (d, 1C, IV, ${}^{2}J_{CF} = 23.8$ Hz); 104.8 (s, 1C, CH_2); 60.44 (s, 1C, CH_2 -N).

Figure 1.9. ¹³C APT spectrum of compound 4 in CDCl₃ solution.

Synthesis of compound 5

To a solution of dipropargylamine (10.3 μ l, 0.1 mmol) in ethanol/water mixture (1/1) (10 ml), 3-fluorophenylisothiocyanate was added (12.0 μ l, 0.1 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure and a yellow oil was collected and vacuum dried to give the product.

Yield: 58%

Scheme 1.5. Synthesis of compound 5.

¹**H NMR (ppm) (400 MHz, CDCl₃):** δ = 7.22 (m, 1H, *II*); 6.72 (m, 3H, *I*+*III*+*IV*); 5.27 (m, 1H, *CH*₂); 5.12 (m, 1H, *CH*₂); 4.38 (t, 2H, *CH*₂-N, ⁴*J*_{HH} = 2.3 Hz); 4.36 (d, 2H, *CH*₂ - C = CH₂);, ⁴*J*_{HH} = 2.5Hz); 2.33 (t, 1H, *CH*, ⁴*J*_{HH} = 2.5 Hz).

Figure 1.10. ¹H NMR spectrum of compound 5 in CDCl₃ solution.

¹⁹F NMR (ppm) (376 MHz, CDCl₃): $\delta = -112.9$ (m, 1F, *Ph-F*).

Figure 1.11. ¹⁹F NMR spectrum of compound 5 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CDCl₃): $\delta = 164.5$ (d, 1C, C_{ipso} Ph, ${}^{1}J_{CF} = 243.7$ Hz); 156.8 (s, 1C, N-*C*=N); 152.9 (d, 1C, C_{ipso} Ph-NH, ${}^{3}J_{CF} = 9.6$ Hz); 136.7 (s, 1C, *C*=CH₂); 130.1 (d, 1C, *II*, ${}^{3}J_{CF} = 9.6$ Hz); 117.8 (d, 1C, *I*, ${}^{4}J_{CF} = 2.7$ Hz); 110.4 (d, 1C, *III*, ${}^{2}J_{CF} = 21.1$ Hz); 109.2 (d, 1C, *IV*, ${}^{2}J_{CF} = 22.0$ Hz); 106.4 (s, 1C, *CH*₂); 77.5 (s, 1C, *C* = CH); 73.1 (s, 1C, *CH*); 55.2 (s, 1C, *CH*₂-N); 35.3 (s, 1C, *CH*₂ - C = CH).

Figure 1.12. ¹³C APT spectrum of compound 5 in CDCl₃ solution.

To a solution of N-methyl-propargylamine (8.2 μ l, 0.1 mmol) in ethanol (10 ml), 3fluorophenylisothiocyanate was added (12.0 μ l, 0.1 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure and a transparent oil was collected and vacuum dried to give the product.

Yield: 60%

Scheme 1.6. Synthesis of compound 6.

¹**H NMR (ppm) (400 MHz, CDCl₃):** δ = 7.20 (m, 1H, *II*); 6.74 (m, 1H, *IV*); 6.71 (m, 1H, *I*); 6.65 (m, 1H, *III*); 5.21 (m, 1H, *CH*₂); 5.09 (m, 1H, *CH*₂); 4.28 (t, 2H, *CH*₂-N, ⁴*J*_{HH} = 2.3 Hz); 3.07 (s, 3H, *CH*₃).

Figure 1.13. ¹H NMR spectrum of compound 6 in CDCl₃ solution.

Figure 1.14. ¹⁹F NMR spectrum of compound 6 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CDCl₃): $\delta = 163.8$ (d, 1C, C_{ipso} Ph, ${}^{1}J_{CF} = 245.3$ Hz); 157.8 (s, 1C, N-*C*=N); 154.0 (d, 1C, C_{ipso} Ph-NH, ${}^{3}J_{CF} = 9.6$ Hz); 137.6 (s, 1C, *C*=CH₂); 130.3 (d, 1C, *II*, ${}^{3}J_{CF} = 9.7$ Hz); 118.3 (d, 1C, *I*, ${}^{4}J_{CF} = 2.7$ Hz); 110.2 (d, 1C, *III*, ${}^{2}J_{CF} = 21.3$ Hz); 109.7 (d, 1C, *IV*, ${}^{2}J_{CF} = 22.0$ Hz); 105.9 (s, 1C, *CH*₂); 57.9 (s, 1C, *CH*₂-N); 32.8 (s, 1C, *CH*₃).

Figure 1.15. ¹³C APT spectrum of compound 6 in CDCl₃ solution.

Synthesis of compound 7

To a solution of 1-amino-3-butyne (8.2 μ l, 0.1 mmol) in ethanol/water mixture (1/1) (10 ml), isothiocyanate was added (12.0 μ l, 0.1 mmol) and the solution stirred for 24 h. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 58%

Scheme 1.7. Synthesis of compound 7.

¹**H** NMR (ppm) (400 MHz, CDCl₃): $\delta = 7.82$ (s, 1H, *NH*-Ph); 7.44 (m, 2H, *H*_{ortho}Ph); 7.32 (tt, 1H, *H*_{para}Ph, ³*J*_{HH} = 7.5 Hz, ⁴*J*_{HH} = 1.1 Hz); 7.25 (m, 2H, *H*_{meta}Ph); 6.41 (s br, 1H, *NH*-CH₂); 3.81 (m, 2H, CH₂-*CH*₂-NH); 2.55 (td, 2H, *CH*₂-CH₂-NH, ³*J*_{HH} = 6.3 Hz, ⁴*J*_{HH} = 2.6 Hz); 1.93 (t, 1H, *CH*, ⁴*J*_{HH} = 2.6 Hz).

Figure 1.16. ¹H NMR spectrum of compound 7 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CDCl₃): $\delta = 180.8$ (s, 1C, C=S); 135.9 (s, 1C, C_{ipso} Ph=; 130.3 (s, 2C, C_{ortho} Ph); 127.6 (s, 1C, C_{para} Ph); 125.4 (s, 2C, C_{meta} Ph); 81.5 (s, 1C, $C \equiv$ CH); 70.4 (s, 1C, CH); 43.7 (s, 1C, CH₂-CH₂-NH); 18.9 (s, 1C, CH₂-CH₂-NH).

Figure 1.17. ¹³C APT spectrum of compound 7 in CDCl₃ solution.

To a solution of 1-amino-3-butyne (8.2 μ l, 0.1 mmol) in ethanol (10 ml), 3fluorophenylisothiocyanate was added (12.0 μ l, 0.1 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure and a white solid was collected and vacuum dried to give the product.

Yield: 62%

Scheme 1.8. Synthesis of compound 8.

¹**H NMR (ppm) (400 MHz, CDCl₃):** $\delta = 8.07$ (s br, 1H, *NH*-Ph); 7.39 (m, 1H, *II*), 7.01 (m, 3H, *I*+*III*+*IV*), 6.52 (s broad, 1H, *NH*-CH₂); 3.82 (m, 2H, CH₂-*CH*₂-NH); 2.57 (td, 2H, *CH*₂-CH₂-NH, ³ *J*_{*HH*} = 6.2, ⁴ *J*_{*HH*} = 2.6 Hz); 2.00 (t, 1H, *CH*, ⁴*J*_{*HH*} = 2.6 Hz).

Figure 1.18. ¹H NMR spectrum of compound 8 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CDCl₃): $\delta = 180.5$ (s, 1C, *C*=*S*), 163.5 (d, 1C, *C_{ipso}*Ph-F, ¹*J_{CF}* = 247.8 Hz); 137.6 (d, 1C, *C_{ipso}*Ph-F, ³*J_{CF}* = 9.4 Hz); 131.7 (d, 1C, *II*, ³*J_{CF}* = 9.2 Hz); 120.5 (d, 1C, *I*, ⁴*J_{CF}* = 3.2 Hz); 114.3 (d, *III*, ²*J_{CF}* = 20.9 Hz); 112.3 (d, *IV*, ²*J_{CF}* = 23.3 Hz); 81.5 (s, 1C, *C* \equiv CH); 70.7 (s, 1C, *CH*); 43.7 (s, 1C, CH₂-*CH*₂-NH); 18.9 (s, 1C, *CH*₂-CH₂-NH).

Figure 1.19. ¹³C APT spectrum of compound 8 in CDCl₃ solution.

To a solution of propargylamine (12.8 μ l, 0.2 mmol) in ethanol (20 ml) was added some excess of phenyl isothiocyanate (71.5 μ l, 0.6 mmol) and the solution stirred for 72 h. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 75%

Scheme 1.9. Synthesis of compound 9.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.67 (m, 2H, *Ph*); 7.42 (m, 4H, *Ph*); 7.23 (m, 2H, *Ph*); 7.13 (m, 2H, *Ph*); 5.52 (m, 1H, *CH*₂); 5.38 (t, 2H, *CH*₂-N, ⁴*J*_{*HH*} = 2.4 Hz); 5.24(dt, 1H, *CH*₂, ²*J*_{*HH*} = 2.7 Hz, ⁴*J*_{*HH*} = 2.2 Hz).

Figure 1.20. ¹H NMR spectrum of compound 9 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): δ = 178.6 (s, 1C, *C*=O); 158.6 (s, 1C, N=*C*-N); 149.2 (s, 1C, *C_{ipso}*Ph-N); 139.9 (s, 1C, *C_{ipso}*Ph-NH); 132.8 (s, 1C, CH₂=*C*); 130.3 (s, 2C, *Ph*); 129.4 (s, 2C, *Ph*); 126.8 (s, 2C, *Ph*); 126.3 (s, 1C, *Ph*); 125.2 (s, 1C, *Ph*); 122.3 (s, 2C, *Ph*); 107.9 (s, 1C, *CH*₂); 60.9 (s, 1C, *CH*₂-N).

Figure 1.21. ^{13}C APT spectrum of compound 9 in (CD₃)₂CO solution.

To a solution of propargylamine (12.8 μ l, 0.2 mmol) in ethanol (20 ml) was added some excess of 3-fluorophenyl isothiocyanate (72.0 μ l, 0.6 mmol) and the solution stirred for 72 h. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 73%

Scheme 1.10. Synthesis of compound 10.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.79-6.97 (m, 8H, *arom.*); 5.54 (m, 1H, *CH*₂); 5.38 (t, 2H, *CH*₂-N; *J*_{HH} = 2.4 Hz); 5.28 (m, 1H, *CH*₂).

Figure 1.22. ¹H NMR spectrum of compound 10 in (CD₃)₂CO solution.

¹⁹**F NMR (ppm) (376 MHz, (CD₃)₂CO):** δ = -110.99 (m, 1F, *Ph-F*); -111.50 (m, 1F, *Ph-F*).

Figure 1.23. ¹⁹F NMR spectrum of compound 10 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 165.5$ (s, 1C, *C*=*S*); 157.9 (s, 1C, N=*C*-N); 150.0 (s, 1C, *C_{ipso}Ph*); 140.9 (s, 1C, *C_{ipso}Ph*); 131.2 (s, 1C, *CH*₂=*C*-*CH*₂); 131.9 (d, 1C, *C_{meta}Ph*, ³*J_{CF}*= 9.5Hz); 130.9 (d, 1C, *C_{meta}Ph*, ³*J_{CF}*= 9.4Hz); 120.8 (d, 1C, *C_{para}Ph*, ⁴*J_{CF}*= 3.0Hz); 118.4 (d, 1C, *C_{para}Ph*, ⁴*J_{CF}*= 3.0Hz); 113.3 (d, 1C, *C_{ortho}Ph*, ²*J_{CF}*= 21.4Hz); 112.9 (d, 1C, *C_{ortho}Ph*, ²*J_{CF}*= 21.3Hz); 112.0 (d, 1C, *C_{ortho}Ph*, ²*J_{CF}*= 25.6Hz); 109.8 (d, 1C, *C_{ortho}Ph*, ²*J_{CF}*= 23.3Hz); 108.3 (s, 1C, *CH*₂); 61.0 (s, 1C, *CH*₂-N).

Figure 1.24. ¹³C APT spectrum of compound 10 in (CD₃)₂CO solution.

Synthesis of compound 11

To a solution of propargylamine (12.8 μ l, 0.2 mmol) in ethanol (20 ml) was added some excess of bencyl isothiocyanate (78 μ l, 0.6 mmol) and the solution stirred for 72 h. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 75%

Scheme 1.11. Synthesis of compound 11.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** $\delta = 12.71$ (s br, 1H, *NH*); 7.32-7.29 (m, 5H, *Ph*); 7.25-7.23 (m, 3H, *Ph*); 7.16-7.13 (m, 2H, *Ph*); 5.52 (m, 1H, *CH*₂); 5.30 (m, 1H, *CH*₂); 5.26 (t, 2H, *CH*₂-*N*, ⁴*J*_{*HH*} = 2.3 Hz); 4.81 (d, 2H, NH-*CH*₂, ³*J*_{*HH*} = 4.9 Hz); 4.41 (s, 2H, N-*CH*₂-Ph).

Figure 1.25. ¹H NMR spectrum of compound 11 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 180.2$ (s, 1C, *C*=*S*); 156.9 (s, 1C, N-*C*=N); 139.5 (s, 1C, *C_{ipso}*Ph-CH₂-N); 138.2 (s, 1C, *C_{ipso}*Ph-CH₂-NH); 133.2 (s, 1C, *C*=CH₂); 129.5-127.8 (s, 10C, *Ph*); 107.8 (s, 1C, *CH*₂); 60.4 (s, 1C, *CH*₂-*N*); 59.0 (s, 1C, N-*CH*₂-Ph); 50.2 (s, 1C, NH-*CH*₂).

Figure 1.26. ¹³C APT spectrum of compound 11 in (CD₃)₂CO solution.

To a solution of propargylamine (6.4 μ l, 0.1 mmol) in ethanol (5 ml), phenyl isocyanate (10.8 μ l, 0.1 mmol) was added and the solution stirred for 24h. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 99%

Scheme 1.12. Synthesis of compound 12.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.99 (s, 1H, *NH*-Ph); 7.47 (m, 2H, *H*_{ortho}Ph); 7.22 (m, 2H, *H*_{meta}Ph); 6.93 (tt, 1H, *H*_{para}Ph, ³*J*_{HH} = 7.6 Hz, ⁴*J*_{HH} = 1.1 Hz) 6.04 (s br, 1H, *NH*-CH₂); 4.00 (dd, 2H, *CH*₂, ³*J*_{HH} = 5.7 Hz, ⁴*J*_{HH} = 2.5 Hz); 2.64 (t, 1H, *CH*, ⁴*J*_{HH} = 2.5 Hz).

Figure 1.27. ¹H NMR spectrum of compound 12 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 155.6$ (s, 1C, *CO*); 141.3 (s, 1C, *C_{ipso}Ph*); 129.5 (s, 2C, *C_{ortho}Ph*); 122.5 (s, 1C, *C_{para}Ph*); 119.2 (s, 2C, *C_{meta}Ph*); 82.3 (s, 1C, *C* \equiv CH); 71.8 (s, 1C, *CH*); 29.8 (s, 1C, *CH*₂).

Figure 1.28. ¹³C APT spectrum of compound 12 in (CD₃)₂CO solution.

To a solution of compound **9** (32.5 mg, 0.1 mmol) in CH_2Cl_2 (10 ml) was added $[Ag(OTf)(PPh_3)]$ (51.9 mg, 0.1 mmol) and the solution stirred for 2 h at room temperature with the exclusion of light. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) was added to precipitated a white solid which was collected and vacuum dried to give the product.

Yield: 64%

Scheme 1.13. Synthesis of compound 13.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.54 (m, 21H, *Ph*); 7.26 (m, 1H, *Ph*); 7.20 (m, 1H, *Ph*); 7.12 (m, 2H, *Ph*); 5.59 (s br, 1H, *CH*₂); 5.46 (t br, 2H, *CH*₂-N); 5.35 (s br, 1H, *CH*₂).

Figure 1.29. ¹H NMR spectrum of compound 13 in (CD₃)₂CO solution.

³¹P{¹H} NMR (ppm) (162 MHz, (CD₃)₂CO): $\delta = 12.0$ (s br, 1P, *PPh*₃).

Figure 1.30. ³¹P{¹H} NMR spectrum of compound 13 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 134.8$ (d, 6C, *C*_{ortho}PPh₃, ³*J*_{H-P}= 15.6 Hz); 130.2 (d, 6C, *C*_{meta}PPh₃, ³*J*_{H-P}= 9.6 Hz); 132.2-122.1 (s, 13C, *C*_{para}PPh₃ + *Ph*); 109.0 (s, 1C, *CH*₂); 60.8 (s, 1C, *CH*₂-N).

Figure 1.31. ¹³C APT spectrum of compound 13 in (CD₃)₂CO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₅H₃₀AgN₃PS₂]⁺ 694.0664. Found 694.0647.

Figure 1.32. MS (ESI+ µ-TOF) compound 12.

Synthesis of compound 14

To a solution of compound **10** (36.1 mg, 0.1 mmol) in CH_2Cl_2 (10 ml) was added [Ag(OTf)(PPh₃)] (51.9 mg, 0.1 mmol) and the solution stirred for 2 h at room temperature with the exclusion of light. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) was added to precipitated a white solid which was collected and vacuum dried to give the product.

Yield: 61%

Scheme 1.14. Synthesis of compound 14.

¹**H** NMR (ppm) (400 MHz, (CD₃)₂CO): $\delta = 7.51-7.34$ (m, 20H, *arom.* + *PPh*₃); 7.06-6.95 (m, 3H, *Ph*); 5.57 (s, 1H, *CH*₂); 5.46 (s, 2H, *CH*₂); 5.36 (m, 1H, *CH*₂-N).

Figure 1.33. ¹H NMR spectrum of compound 14 in (CD₃)₂CO solution.

¹⁹**F**{¹**H**} **NMR (ppm) (376 MHz, (CD₃)₂CO):** $\delta = -79.92$ (s, 1F, *OTf*); -113.81(m, 1F, *Ph*); -114.25 (m, 1F, *Ph*).

Figure 1.34. ¹⁹F{¹H} NMR spectrum of compound 14 in (CD₃)₂CO solution.

Figure 1.35. ³¹P{¹H} NMR spectrum of compound 14 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 165.2$ (s, 1C, *C*=*S*); 162.7 (s, 1C, *C*_{quaternary}); 134.7 (d, 6C, *C*_{ortho}*PPh*₃, ²*J*_{*CP*} = 15.3Hz); 132.1 (s, 3C, *C*_{para}*PPh*₃); 131.4 (d, 3C, *C*_{ipso}*PPh*₃, ¹*J*_{*CP*} = 35.1Hz); 130.2 (d, 6C, *C*_{meta}*PPh*₃, ³*J*_{*CP*} = 8.6 Hz); 118.3-109.6 (m, 10C, *Ph*-*F*); 109.5 (s, 2C, *CH*₂); 61.0 (s, 1C, *CH*₂-N).

Figure 1.36. ¹³C APT spectrum of compound 14 in (CD₃)₂CO solution.

Synthesis of compound 15

To a solution of compound **11** (35.3 mg, 0.1 mmol) in CH_2Cl_2 (10 ml) was added [Ag(OTf)(PPh₃) (51.9 mg, 0.1 mmol) and the solution stirred for 2 h at room temperature with the exclusion of light. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) was added to precipitated a white solid which was collected and vacuum dried to give the product.

Yield: 60%

Scheme 1.15. Synthesis of compound 15.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.55-7.26 (m, 25H, *Ph*); 5.46 (m, 1H, *CH*₂); 5.38 (t, 2H, *CH*₂-N); 5.34 (m, 1H, *CH*₂); 4.95 (d, 2H, NH-*CH*₂, *J*_{*HH*} = 4.8 Hz); 4.44 (s, 2H, N-*CH*₂).

Figure 1.37. ¹H NMR spectrum of compound 15 in (CD₃)₂CO solution.

³¹P{¹H} NMR (ppm) (162 MHz, (CD₃)₂CO): $\delta = 11.5$ (s, 1P, *PPh*₃).

Figure 1.38. ³¹P{¹H} NMR spectrum of compound **15** in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 177.9$ (s, 1C, *C*=*S*); 158.2 (s, 1C, N-*C*=N); 138.8 (s, 1C, *C_{ipso}*Ph-CH₂-N); 136.5 (s, 1C, *C_{ipso}*Ph-CH₂-NH); 133.2 (s, 1C, *C*=CH₂); 134.7 (d, 6C, *C_{ortho}*PPh₃, ²*J_{HP}*= 15.3 Hz); 132.1 (s, 3C, *C_{para}*PPh₃); 131.6 (d, 3C, *C_{ipso}PPh₃*, ¹*J_{HP}*= 31.5 Hz); 130.2 (d, 6C, *C_{meta}*PPh₃, ³*J_{HP}*= 8.4 Hz);129.8-128.1 (m, 10C, *Ph*); 108.9 (s, 1C, *CH*₂); 60.6 (s, 1C, *CH*₂-N); 59.2 (s, 1C, Ph-*CH*₂-N=C); 51.3 (s, 1C, Ph-*CH*₂-NH).

Figure 1.39. ¹³C APT spectrum of compound 15 in (CD₃)₂CO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₇H₃₄AgN₃PS₂]⁺ 724.0975. Found 724.0977.

Figure 1.40. MS (ESI+ µ-TOF) compound 12.

Synthesis of compound 16

To a solution of compound **9** (65.0 mg, 0.2 mmol) in CH_2Cl_2 (10 ml) was added AgOTf (25.7 mg, 0.1 mmol) and the solution stirred for 1 h at room temperature with the exclusion of light. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) was added to precipitated a white solid which was collected and vacuum dried to give the product.

Yield: 87%

Scheme 1.16. Synthesis of compound 16.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** $\delta = 7.61$ (m, 4H, *Ph*); 7.41 (m, 10H, *Ph*); 7.26 (t br, 2H, *Ph*); 7.11 (d br, 4H, *Ph*); 5.64 (s br, 2H, *CH*₂); 5.42 (s br, 4H, *CH*₂-N); 5.39 (s br, 2H, *CH*₂).

Figure 1.41. ¹H NMR spectrum of compound 16 in $(CD_3)_2CO$ solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 178.8$ (s, 2C, *C*=*S*); 160.1 (s, 2C, *C*_{quaternary}); 148.1 (s, 2C, *C*_{ipso}); 137.5 (s, 2C, *C*_{ipso}); 132.0 (s, 2C, *C*_{quaternary}); 131.1-122.1 (s, 20C, *Ph*); 109.1 (s, 2C, *CH*₂); 60.7 (s, 2C, *CH*₂-N).

Figure 1.42. ¹³C APT spectrum of compound 16 in (CD₃)₂CO solution.

To a solution of compound **10** (72.0 mg, 0.2 mmol) in CH_2Cl_2 (10 ml), AgOTf was added (25.7 mg, 0.1 mmol) and the solution stirred for 1 h at room temperature with the exclusion of light. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) was added to precipitated a white solid which was collected and vacuum dried to give the product.

Yield; 90%

Scheme 1.17. Synthesis of compound 17.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.61-6.92 (m, 16H, *arom.*), 5.64 (s br, 2H, *CH*₂); 5.44 (s br, 4H, *CH*₂-N); 5.42 (s br, 2H, *CH*₂).

Figure 1.43. ¹H NMR spectrum of compound 17 in (CD₃)₂CO solution.

¹⁹**F**{¹**H**} **NMR (ppm) (376 MHz, (CD₃)₂CO):** δ = -79.9 (s, 1F, OTf); -112.24 (m, 2F, *Ph*); -114.15 (m, 2F, *Ph*).

Figure 1.44. ¹⁹F NMR spectrum of compound 17 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 168.1$ (s, 2C, *C*=*S*); 132.5 (d, 4C, *II*, ³*J*_{*HF*} = 9.2Hz); 132.2 (d, 4C, *II*, ³*J*_{*HF*} = 9.3Hz); 123.1 (s, 2C, *I*); 118.2 (s, 2C, *I*); 116.4 (d, 2C, *III*, ²*J*_{*HF*} = 21.9Hz); 114.6 (d, 2C, *IV*, ²*J*_{*HF*} = 24.8Hz); 113.6 (d, 2C, *III*, ²*J*_{*HF*} = 22.1Hz); 109.7(d, 2C, *IV*, ²*J*_{*HF*} = 23.9Hz); 109.5 (s, 2C, *CH*₂); 60.8 (s, 2C, *CH*₂-N).

Figure 1.45. ¹³C APT spectrum of compound 17 in (CD₃)₂CO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₄H₂₆AgF₄N₆S₄]⁺ 831.0079. Found 831.0056.

Figure 1.46. MS (ESI+ µ-TOF) compound 17.

Synthesis of compound 18

To a solution of compound **11** (72.0 mg, 0.2 mmol) in CH_2Cl_2 (10 ml) was added AgOTf (25.7 mg, 0.1 mmol) and the solution stirred for 1 h at room temperature with the exclusion of light. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) was added to precipitated a white solid which was collected and vacuum dried to give the product.

Yield: 88%

Scheme 1.18. Synthesis of compound 18.

¹**H** NMR (ppm) (400 MHz, (CD₃)₂CO): $\delta = 7.33$ (m, 10H, *Ph*); 7.24 (m, 6H, *Ph*); 7.13 (m,4H, *Ph*); 5.52 (m, 2H, *CH*₂); 5.39 (m, 4H, *CH*₂-N); 5.35 (m, 2H, *CH*₂); 4.98 (m, 4H, NH-*CH*₂); 4.43 (s, 4H, N-*CH*₂).

Figure 1.47. 1 H NMR spectrum of compound 18 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 176.5$ (s, 2C, *C*=*S*); 156.5 (s, 2C, *N*-*C*=*N*); 138.7 (s, 2C, *C_{ipso}*Ph-CH₂-N); 136.0 (s, 2C, *C_{ipso}*Ph-CH₂-NH); 132.0 (s, 2C, CH₂=*C*); 130.0-128.1 (s, 20C, *Ph*); 109.0 (s, 2C, *CH*₂); 60.5 (s, 2C, *CH*₂-N); 59.2 (s, 1C, Ph-*CH*₂-N=C); 51.5 (s, 1C, Ph-*CH*₂-NH).

Figure 1.48. ¹³C APT spectrum of compound 18 in (CD₃)₂CO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₈H₃₈AgN₆S₄]⁺ 815.1083. Found 815.1099.

Figure 1.49. MS (ESI+ µ-TOF) compound 18.

Synthesis of compound 22

To a solution of Au(tht)₂OTf (52.2 mg, 0.1 mmol) which has been prepared *in situ* in CH_2Cl_2 (10 ml) was added compound **9** (65.0 mg, 0.2 mmol) and the solution stirred for 3 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) was added to precipitated a white solid which was collected and vacuum dried to give the product.

Yield: 50%

Scheme 1.22. Synthesis of compound 22.

¹**H** NMR (ppm) (400 MHz, (CD₃)₂CO): $\delta = 7.59-7.11(m, 20H, Ph)$; 5.67 (s br, 2H, *CH*₂); 5.43 (s br, 6H, *CH*₂-N + *CH*₂).

Figure 1.50. ¹H NMR spectrum of compound 22 in (CD₃)₂CO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, (CD₃)₂CO): $\delta = -80.1$ (s, 3F, *OTf*).

Figure 1.51. ¹⁹F{¹H} NMR spectrum of compound 22 in (CD₃)₂CO solution.

¹³C APT (ppm) (400 MHz, (CD₃)₂CO): 138.8-131.8 (s, 4C, C_{quaternary}); 130.6-122.1 (s, 20C, Ph); 109.5 (s, 2C, CH₂); 60.2 (s, 2C, CH₂-N).

Figure 1.52. ¹³C APT spectrum of compound 22 in (CD₃)₂CO solution..

To a solution of $Au(tht)_2OTf$ (52.2 mg, 0.1 mmol) which has been prepared *in situ* in CH_2Cl_2 (10 ml) was added compound **10** (72.0 mg, 0.2 mmol) and the solution stirred for 3 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) was added to precipitated a white solid which was collected and vacuum dried to give the product.

Yield: 50%

Scheme 1.23. Synthesis of compound 23.

¹**H** NMR (ppm) (400 MHz, (CD₃)₂CO): $\delta = 7.64-6.92$ (m, 16H, *arom*), 5.70 (d br, 2H, *CH*₂); 5.47 (d br, 6H, *CH*₂-N + *CH*₂).

Figure 1.53. ¹H NMR spectrum of compound 23 in (CD₃)₂CO solution.

¹⁹**F NMR (ppm) (376 MHz, (CD₃)₂CO):** δ = -73.5 (s, 1F, OTf); -106.4 (m, 1F, *Ph*); -107.5 (m, 1F, *Ph*).

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 166.2$ (s, 2C, *C*=*S*); 162.8 (s, 1C, *C*_{quaternary}); 132.1 (d, 4C, *II*, ³*J*_{CF} = 9.3Hz); 132.1 (d, 4C, *II*, ³*J*_{CF} = 9.4Hz); 118.3 (s, 4C, *I*); 113.4 (d, 4C, *III*, ²*J*_{CF} = 21.2Hz); 109.7 (d, 4C, *IV*, ²*J*_{CF} = 23.5Hz); 109.2 (s, 2C, *CH*₂); 60.9 (s, 1C, *CH*₂-N).

Figure 1.55. ¹³C APT spectrum of compound 23 in (CD₃)₂CO solution.

Synthesis of compound 24

To a solution of $Au(tht)_2OTf$ (52.2 mg, 0.1 mmol) which has been prepared *in situ* in CH_2Cl_2 (10 ml) was added compound **11** (72.0 mg, 0.2 mmol) and the solution stirred for 3 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) was added to precipitated a white solid which was collected and vacuum dried to give the product.

Yield: 64%

Scheme 1.24. Synthesis of compound 24.

¹**H** NMR (ppm) (400 MHz, (CD₃)₂CO): $\delta = 7.32-7.14$ (m, 20H, *Ph*); 5.60 (s br, 2H, *CH*₂); 5.42 (m, 6H, *CH*₂-N, *CH*₂); 5.08 (m, 2H, NH-*CH*₂); 4.48 (s, 2H, N-*CH*₂).

Figure 1.56. ¹H NMR spectrum of compound 24 in (CD₃)₂CO solution.

¹⁹F{¹H} NMR (ppm) (376 MHz, (CD₃)₂CO): $\delta = -79.8$ (s, 1F, *OTf*).

Figure 1.57. ${}^{19}F{}^{1}H$ NMR spectrum of compound 24 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 176.1$ (s, 2C, *C*=*S*); 158.2 (s, 2C, N-*C*=N); 138.9 (s, 2C, *C_{ipso}*Ph-CH₂-N); 136.9 (s, 2C, *C_{ipso}*Ph-CH₂-NH); 133.3 (s, 2C, *CH*₂=*C*); 129.7-128.1 (s, 20C, *Ph*); 108.9 (s, 2C, *C*=CH₂); 60.4 (s, 2C, *CH*₂); 59.1 (s, 2C, Ph-*CH*₂-N=C); 51.2 (s, 2C, Ph-*CH*₂-NH).

Figure 1.58. ¹³C APT spectrum of compound 24 in (CD₃)₂CO solution.

To a solution of compound **9** (32.5 mg, 0.1 mmol) in CH_2Cl_2 (10 ml) was added [Au(C₆F₅)(tht)] (45.3 mg, 0.1 mmol) and the solution stirred for two hours and half at room temperature. The solution was concentrated under reduced pressure to approximately 1 ml and a white solid was precipitating which was collected and vacuum dried to give the product.

Yield: 80%

Scheme 1.25. Synthesis of compound 25.

¹**H** NMR (ppm) (400 MHz, (CD₃)₂CO): $\delta = 7.39-7.12$ (m, 10H, *Ph*); 5.67 (s br, 1H, *CH*₂); 5.55 (t br, 2H, *CH*₂-N); 5.40 (s br, 1H, *CH*₂).

Figure 1.59: ¹H NMR spectrum of compound 25 in (CD₃)₂CO solution.

¹⁹**F NMR** (**ppm**) (**376 MHz**, (**CD**₃)₂**CO**): δ = -116.4 (m, 2F, *F*_{ortho}C₆F₅); -164.1 (t, 1F, *F*_{para}C₆F₅, ³*J*_{FF} = 19.7 Hz); -166.3 (m, 2F, *F*_{meta}C₆F₅).

Figure 1.60: ¹⁹F {¹H} NMR spectrum of compound 25 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): δ = 148.1 (s, 1C, *C_{ipso}Ph*); 138.2 (s, 1C, *C_{ipso}Ph*); 132.1 (s, 1C, CH₂=*C*); 130.4 (s, 4C, *C_{ortho}Ph*); 129.3 (s, 1C, *C_{para}Ph*); 127.4 (s, 2C, *C_{meta}Ph*); 127.0 (s, 1C, *C_{para}Ph*); 121.1 (s, 2C, *C_{meta}Ph*); 109.2 (s, 1C, *CH*₂); 60.5 (s, 1C, *CH*₂-N).

Figure 1.61: ¹³C APT spectrum of compound 25 in (CD₃)₂CO solution.

To a solution of compound **10** (36.1 mg, 0.1 mmol) in CH_2Cl_2 (10 ml) was added [Au(C₆F₅)(tht)] (45.3 mg, 0.1 mmol) and the solution stirred for two hours and half at room temperature. The solution was concentrated under reduced pressure to approximately 1 ml and a white solid was precipitating which was collected and vacuum dried to give the product.

Yield: 52%

Scheme 1.26. Synthesis of compound 26.

¹**H** NMR (ppm) (400 MHz, (CD₃)₂CO): $\delta = 7.48$ (m, 2H, *Ph-F*); 7.25 (m, 2H, *Ph-F*); 6.99 (m, 4H, *Ph-F*); 5.70 (s br, 1H, *CH*₂); 5.55 (t br, 2H, *CH*₂-N); 5.43 (s br, 1H, *CH*₂).

Figure 1.62. ¹H NMR spectrum of compound 26 in (CD₃)₂CO solution.

¹⁹**F** NMR (**ppm**) (**376** MHz, (**CD**₃)₂**CO**): $\delta = -114.0$ (m, 1F, *Ph-F*); -114.0 (m, 1F, *Ph-F*); -116.6 (m, 2F, *F*_{ortho}C₆F₅); -163. (t, 1F, *F*_{para}C₆F₅, ³*J*_{FF} = 19.7 Hz); -166.2 (m, 2F, *F*_{meta}C₆F₅).

Figure 1.63. ¹⁹F {¹H} NMR spectrum of compound 26 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 165.1$ (d, 1C, C_{ipso} Ph-F, ${}^{3}J_{CF} = 15.3$ Hz); 162.7 (d, 1C, C_{ipso} Ph-F, ${}^{3}J_{CF} = 15.8$ Hz); 132.2 (d, 1C, II, ${}^{3}J_{HF} = 9.4$ Hz); 132.0 (d, 1C, II, ${}^{3}J_{CF} = 9.4$ Hz); 131.6 (s, 1C, CH₂=C); 123.8 (s, 1C, I); 118.2 (s, 1C, I); 116.2 (d, 1C, III, ${}^{2}J_{CF} = 21.3$ Hz); 115.3 (d, 1C, IV, ${}^{2}J_{CF} = 28.5$ Hz); 113.6 (d, 1C, III, ${}^{2}J_{CF} = 21.3$ Hz); 109.7 (d, 1C, IV, ${}^{2}J_{CF} = 23.7$ Hz); 109.6 (s, 1C, CH_{2}); 60.6 (s, 1C, CH_{2} -N).

Figure 1.64. ¹³C APT spectrum of compound 26 in (CD₃)₂CO solution.

To a solution of compound **11** (35.3 mg, 0.1 mmol) in CH_2Cl_2 (10 ml) was added [Au(C₆F₅)(tht)] (45.3 mg, 0.1 mmol) and the solution stirred for two hours and half at room temperature. The solution was concentrated under reduced pressure to approximately 1 ml and a white solid was precipitating which was collected and vacuum dried to give the product.

Yield: 75%

Scheme 1.27. Synthesis of compound 27.

¹**H** NMR (ppm) (400 MHz, (CD₃)₂CO): $\delta = 7.37-7.11$ (m, 10H, *Ph*); 5.67 (s br, 1H, *CH*₂); 5.57 (m, 2H, *CH*₂-N) 5.45 (m, 1H, *CH*₂); 5.34 (m, 2H, NH-*CH*₂); 4.48 (s, 2H, N-*CH*₂).

Figure 1.65. ¹H NMR spectrum of compound 27 in (CD₃)₂CO solution.

¹⁹**F NMR** (**ppm**) (**376 MHz**, (**CD**₃)₂**CO**): δ = -117.7 (m, 2F, *F*_{ortho}C₆F₅); -163.4 (t, 1F, *F*_{para}C₆F₅, ³*J*_{FF} = 19.6 Hz); -166.7 (m, 2F, *F*_{meta}C₆F₅).

Figure 1.66. ¹⁹F {¹H} NMR spectrum of compound 27 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 157.9$ (s, 1C, N-*C*=N); 138.5 (s, 1C, *C_{ipso}*Ph-F); 132.0 (s, 1C, CH₂=C); 129.8-128.1 (m, 10C, *Ph*); 109.3 (s, 1C, *CH*₂); 60.5 (s, 1C, *CH*₂-N); 59.1 (s, 1C, Ph-*CH*₂-N=C); 52.3 (s, 1C, Ph-*CH*₂-NH).

Figure 1.67. ¹³C APT spectrum of compound 27 in (CD₃)₂CO solution.

To a solution of dipropargylamine (10.3 μ l, 0.1 mmol) in ethanol (10 ml) was added bencylisothiocianate (13.2 μ l, 0.1 mmol) and the mixture stirred for 24h. The solution was concentrated under reduced pressure and a yellow oil was collected and vacuum dried to give the product.

Yield: 99%

Scheme 1.28. Synthesis of compound 28.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.29 (m, 5H, *Ph*); 5.41 (m, 1H, *CH*₂); 5.25 (m, 1H, *CH*₂); 4.36 (s, 2H, N-*CH*₂-Ph); 4.31 (t, 2H, *CH*₂-N, ⁴*J*_{HH} = 2.2 Hz); 4.28 (d, 2H, *CH*₂ - C \equiv CH, ⁴*J*_{HH} = 2.5 Hz); 2.78 (t, 1H, *CH*, ⁴*J*_{HH} = 2.5 Hz).

Figure 1.68. ¹H NMR spectrum of compound 28 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 140.9$ (s, 1C, $C_{ipso}Ph$); 137.3 (s, 1C); 128.1 (s, 2C, $C_{orto}Ph$); 127.2 (s, 1C, $C_{para}Ph$); 126.3 (s, 2C, $C_{meta}Ph$); 105.9 (s, 1C, CH_2); 73.0 (s, 1C, CH); 57.9 (s, 1C, N- CH_2 -Ph); 54.6 (s, 1C, CH_2 -N); 34.6 (s, 1C, CH_2 – C \equiv CH).

Figure 1.69. ¹³C APT spectrum of compound 28 in (CD₃)₂CO solution.

To a solution of dipropargylamine (21.0 μ l, 0.2 mmol) in ethanol (10 ml) was added phenylisocynate (22 μ l, 0.2 mmol) and the mixture stirred for 24h at 40°C. The solution was concentrated under reduced pressure and a yellow oil was collected and vacuum dried to give the product.

Yield: 99%

Scheme 1.28. Synthesis of compound 32.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 8.04 (s br, 1H, *NH*); 7.55 (m, 2H, *H_{meta}Ph*); 7.25 (m, 2H, *H_{ortho}Ph*); 6.99 (tt, 1H, *H_{para}Ph*, ³*J_{HH}* = 7.4 Hz, ⁴*J_{HH}* = 1.2 Hz); 4.35 (d, 4H, *CH*₂, ⁴*J_{HH}* = 2.5 Hz); 2.83 (t, 1H, *CH*, ⁴*J_{HH}* = 2.4 Hz).

Figure 1.70 ¹H NMR spectrum of compound 32 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 155.1$ (s, 1C, *CO*); 140.9 (s, 1C, *C_{ipso}Ph*); 129.3 (s, 2C, *C_{ortho}Ph*); 123.4 (s, 1C, *C_{para}Ph*); 120.7 (s, 2C, *C_{meta}Ph*); 79.8 (s, 2C, CH₂ – $C \equiv$ CH); 74.1 (s, 2C, *CH*); 36.1 (s, 2C, *CH*₂).

Figure 1.71 ¹³C APT spectrum of compound 32 in (CD₃)₂CO solution.

To a solution of dipropargylamine (51.7 μ l, 0.5 mmol) in ethanol (10 ml) was added 3fluorophenylisocynate (57.1 μ l, 0.5 mmol) and the mixture stirred for 24h at 40°C. The solution was concentrated under reduced pressure and a yellow oil was collected and vacuum dried to give the product.

Yield: 99%

Scheme 1.29. Synthesis of compound 33.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** $\delta = 8.24$ (s br, 1H, NH); 7.53 (m, 1H, *IV*); 7.26 (m, 2H, *I*+*II*); 6.74 (m, 1H, *III*); 4.35 (d, 4H, *CH*₂, ⁴*J*_{*HH*} = 2.4 Hz); 2.84 (t br, 2H, *CH*).

Figure 1.72 ¹H NMR spectrum of compound 33 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 165.1$ (d, 1C, C_{ipso} Ph-F, ${}^{1}J_{CF} = 20.8$ Hz); 154.9 (s, 1C, *CO*); 142.9 (d, 1C, C_{ipso} Ph-F-NH, ${}^{3}J_{CF} = 11.4$ Hz); 130.7 (d, 1C, *II*, ${}^{3}J_{CF} =$ 9.6 Hz); 116.0 (d, 1C, *I*, ${}^{4}J_{CF} = 2.8$ Hz); 109.6 (d, 1C, *III*, ${}^{2}J_{CF} = 21.5$ Hz); 107.4 (d, 1C, *IV*, $J_{CF} = 26.8$ Hz); 79.6 (s, 2C, CH₂ – $C \equiv$ CH);); 74.2 (s, 2C, *CH*); 36.1 (s, 2C, *CH*₂).

Figure 1.74 ¹³C APT spectrum of compound 33 in (CD₃)₂CO solution.

Synthesis of compound 34

To a solution of dipropargylamine (51.7 μ l, 0.5 mmol) in ethanol (10 ml) was added benzylisocynate (61.8 μ l, 0.2 mmol) and the mixture stirred for 24h at 40°C. The solution was concentrated under reduced pressure and a yellow oil was collected and vacuum dried to give the product.

Yield: 99%

Scheme 1.30. Synthesis of compound 34.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.32 (m, 5H, *Ph*); 6.55 (s br, 1H, *NH*); 4.41 (d, 2H, NH-*CH*₂-Ph, ³*J*_{*HH*} = 5.8 Hz); 4.25 (d, 4H, *CH*₂, ⁴*J*_{*HH*} = 2.4 Hz); 2.78 (t, 2H, *CH*, ⁴*J*_{*HH*} = 2.4 Hz).

Figure 1.75. ¹H NMR spectrum of compound 34 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 157.4$ (s, 1C, *CO*); 141.4 (s, 1C, *C_{ipso}Ph*); 129.0 (s, 2C, *C_{ortho}Ph*); 128.2 (s, 1C, *C_{para}Ph*); 127.5 (s, 2C, *C_{meta}Ph*); 80.1 (s, 2C, CH₂ – $C \equiv$ CH); 73.7 (s, 2C, *CH*); 45.1 (s, 1C, NH-*CH*₂-Ph); 35.8 (s, 2C, *CH*₂).

Figure 1.76. ¹³C APT spectrum of compound 34 in (CD₃)₂CO solution.

To a solution of 4-ethynylaniline (12 mg, 0.1 mmol) in ethanol/water mixture (1/1), phenylisothiocyanate was added (12.0 μ l, 0.1 mmol) and the mixture was stirred for 24 hours. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 50 %

Scheme 1.31. Synthesis of compound 35.

¹**H NMR (ppm) (400 MHz, CD₂Cl₂):** δ = 7.88 (s br, 1H, *NH*); 7.74 (s br, 1H, *NH*); 7.51-7.32 (m, 9H, *arom.*); 3.10 (s, 1H, *CH*).

Figure 1.77. ¹H NMR spectrum of compound 35 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CD₂Cl₂): $\delta = 179.8$ (s, 1C, *C*=*S*); 147.1 (s, 1C, *C*_{*ipso*}); 137.9 (s, 1C, *C*_{*ipso*}); 133.2-124.4 (m, 10C, *arom*.); 120.4 (s, 1C, *C*_{*ipso*}); 83.0 (s, 1C, *C* \equiv CH); 78.0 (s, 1C, *CH*).

Figure 1.78. ¹³C APT spectrum of compound 35 in CDCl₃ solution.

To a solution of 4-ethynylaniline (12 mg, 0.1 mmol) in ethanol/water mixture (1/1), 3fluorophenylisothiocyanate was added (12.0 μ l, 0.1 mmol) and the mixture was stirred for 24 hours. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 46 %

Scheme 1.32. Synthesis of compound 36.

¹**H NMR (ppm) (400 MHz, CD₂Cl₂):** δ = 7.86 (s br, 1H, *NH*); 7.84 (s br, 1H, *NH*); 7.53-7.35 (m, 5H, *arom.*+*II*); 7.22 (dt, 1H, *IV*, ³*J*_{*HF*} = 9.7 Hz, ⁴*J*_{*HH*} = 2.2 Hz); 7.13 (m, 1H, *I*); 6.99 (m, 1H, *III*); 3.12 (s, 1H, *CH*).

Figure 1.79. ¹H NMR spectrum of compound 36 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CD₂Cl₂): δ = 179.6 (s, 1C, *C*=*S*); 133.5 (s, 2C, *arom.*); 131.0 (d, 1C, *II*. ³*J*_{CF} = 9.2 Hz); 124.6 (s, 2C, *arom.*); 120.3 (d, 1C, *I*, ⁴*J*_{CF} = 3.2 Hz); 114.1 (d, 1C, *III*, ²*J*_{CF} = 20.9 Hz); 112.3 (d, 1C, *IV*, ²*J*_{CF} = 24.1 Hz); 78.3 (s, 1C, *CH*).

Figure 1.80. ¹³C APT spectrum of compound 36 in CDCl₃ solution.

To a solution of 3-ethynylaniline (11.3 μ l, 0.1 mmol) in ethanol (10 mL), phenylisothiocyanate was added (12.0 μ l, 0.1 mmol) and the mixture was stirred for 24 hours. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 48 %

Scheme 1.33. Synthesis of compound 37.

¹**H NMR (ppm) (400 MHz, CD₂Cl₂):** δ = 8.04 (s br, 1H, *NH*); 7.87 (s br, 1H, *NH*); 7.48-7.34 (m, 9H, *arom.*); 3.11 (s, 1H, *CH*).

Figure 1.81. ¹H NMR spectrum of compound 37 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CD₂Cl₂): $\delta = 138.2$ (s, 1C, C_{ipso}); 137.4 (s, 1C, C_{ipso}); 131.1-124.1 (m, 10C, *arom.*); 83.2 (s, 1C, $C \equiv CH$); 79.1 (s, 1C, *CH*).

To a solution of 3-ethynylaniline (11.2 μ l, 0.1 mmol) in ethanol/water mixture (1/1), 3fluorophenylisothiocyanate was added (12.0 μ l, 0.1 mmol) and the mixture was stirred for 24 hours. A white precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 46 %

Scheme 1.34. Synthesis of compound 38.

¹**H NMR (ppm) (400 MHz, CD₂Cl₂):** δ = 8.06 (s br, 1H, *NH*); 8.04 (s br, 1H, *NH*); 7.46-7.7.33 (m, 5H, *arom.*+*II*); 7.20 (dt, 1H, *IV*, ³*J*_{*HF*} = 9.7 Hz, ⁴*J*_{*HH*} = 2.2 Hz); 7.11 (m, 1H, *I*); 6.98 (m, 1H, *III*); 3.13 (s, 1H, *CH*).

Figure 1.83. ¹H NMR spectrum of compound 38 in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CD₂Cl₂): $\delta = 179.8$ (s, 1C, *C*=*S*); 163.0 (d, 1C, *C_{ipso}*Ph-F, ¹*J_{CF}* = 246.6 Hz); 138.6 (d, 1C, *C_{ipso}*Ph-F, ³*J_{CF}* = 9.9 Hz); 137.7 (s, 1C, *C_{ipso}*Ph-*C* \equiv CH₂); 130.9, 129.8, 128.6, 125.9 (s, 4C, *arom.*); 130.8 (d, 1C, *II.* ³*J_{CF}* = 9.9 Hz); 123.8 (s, 1C, *C* \equiv CH); 120.5 (d, 1C, *I*, ⁴*J_{CF}* = 3.1 Hz); 114.1 (d, 1C, *III*, ²*J_{CF}* = 21.0 Hz); 112.5 (d, 1C, *IV*, ²*J_{CF}* = 24.0 Hz); 82.4 (s, 1C, *C* \equiv CH); 78.8 (s, 1C, *CH*).

Figure 1.84. ¹³C APT spectrum of compound 38 in CDCl₃ solution.

Synthesis of compound 39

To a solution of 2-ethynylaniline (11.2 μ l, 0.1 mmol) in ethanol (10 mL), phenylisothiocyanate was added (12.0 μ l, 0.1 mmol) and the mixture was stirred for 24 hours. A brown precipitated was formed which was filtered and vacuum dried to give the product.

Yield: 45 %

Scheme 1.35. Synthesis of compound 39.

¹**H NMR (ppm) (400 MHz, CD₂Cl₂):** δ = 8.79 (s br, 1H, *NH*); 7.65 (s br, 1H, *NH*); 7.79-7.33 (m, 9H, *arom.*); 3.11 (s, 1H, *CH*).

Figure 1.85. ¹H NMR spectrum of compound **39** in CDCl₃ solution.

¹³C APT (ppm) (100 MHz, CD₂Cl₂): $\delta = 179.1$ (s, 1C, C=S); 140.0 (s, 1C, C_{ipso}); 136.0 (s, 1C, C_{ipso});132.6-125.1 (m, 10C, *arom.*); 84.4 (s, 1C, $C \equiv CH_2$); 79.0 (s, 1C, *CH*).

Figure 1.86. ¹³C APT spectrum of compound **39** in CDCl₃ solution.

To a solution of 2-ethynylaniline (56.0 μ l, 0.5 mmol) and 1-fluoro-3isothiocyanatobenzene (60.0 μ l, 0.5 mmol) were mixed in ethanol (10 ml) and the mixture was stirred for 30 minutes. The solution was concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 70 %

Scheme 1.36. Synthesis of compound 40.

¹**H** NMR (ppm) (400 MHz, CD₂Cl₂): $\delta = 8.27$ (s, 1H, H_1); 8.25 (s, 1H, NH); 8.07 (s br, 1H, NH); 7.52 (d, 1H, H_4 , ³ $J_{HH} = 7.5$ Hz); 7.41 (m, 2H, $H_2 + H_7$); 7.26 (d, 1H, H_5 , ² $J_{HF} =$

9.8 Hz); 7.19 (m, 2H, $H_3 + H_8$); 7.05 (td, 1H, H_6 , ${}^{3}J_{HF} = 8.4$, ${}^{3}J_{HH} = 2.6$ Hz); 3.35 (s, 1H, *CH*).

Figure 1.87. ¹H NMR spectrum of compound 40 in CD₂Cl₂ solution.

¹⁹F{¹H} NMR (ppm) (376 MHz, CD₂Cl₂): $\delta = -111.0$ (m, 1F, F).

Figure 1.88. ¹⁹F{¹H} NMR spectrum of compound **40** in CD₂Cl₂ solution.

¹³C APT (ppm) (100 MHz, CD₂Cl₂): $\delta = 179.7$ (s, 1C. *C*=*S*); 164.9 (d, 1C, *C*_{*ipso*}Ph-F, ¹*J*_{*CF*} = 247.7 Hz); 140.2 (s, 1C, *C*_{*ipso*}Ph); 138.7 (d, 1C, *C*_{*ipso*}Ph-F, ³*J*_{*CF*} = 9.9 Hz); 133.4 (s, 1C, *C*₄); 131.7 (d, 1C, *C*₇, ³*J*_{*CF*} = 9.3 Hz); 130.1 (s, 1C, *C*₂); 126.2 (s, 1C, *C*₃); 124.3 (s, 1C, *C*₁); 121.7 (d, 1C, *C*₈, ⁴*J*_{*CF*} = 3.2 Hz); 116.3 (s, 1C, *C*_{*ipso*}Ph-CCH); 114.7 (d, 1C, *C*₆, ²*J*_{*CF*} = 21.1 Hz); 113.4 (d, 1C, *C*₅, ²*J*_{*CF*} = 23.7 Hz); 84.9 (s, 1C, *C* \equiv CH);); 79.5 (s, 1C, *CH*).

Figure 1.89. ¹³C APT spectrum of compound 40 in CD₂Cl₂ solution.

To a solution of 2-ethynylaniline (56.0 μ l, 0.5 mmol) and benzylisocyanate(66.0 μ l, 0.5 mmol) were mixed in ethanol (10 ml) and the mixture was stirred for 30 minutes. The solution was concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 60 %

Scheme 1.37. Synthesis of compound 41.

¹**H NMR (ppm) (400 MHz, CD₂Cl₂):** δ = 7.81 (s br, *NH*-Ph); 7.55 (d, 1H, *H*₁, ³*J*_{HH} = 7.8 Hz); 7.39 (td, 1H, *H4*, ³*J*_{HH} = 7.9 Hz, ⁴*J*_{HH} = 1.4 Hz); 7.34 (m, 5H, *Ph*); 7.29 (m, 1H, *H*₂),

Figure 1.90. ¹H NMR spectrum of compound 41 in CD₂Cl₂ solution.

¹³C APT (ppm) (100 MHz, CD₂Cl₂): $\delta = 181.67$ (s, 1C. *C*=*S*); 134.4 (s, 1C, *C*₄); 130.7 (s, 1C, *C*₂); 129.3 (s, 2C, *C*_{ortho}Ph); 128.2 (s, 2C, *C*_{para}Ph + *C*_I); 126.8 (s, 1C, *C*₃); 124.9 (s, 2C, *C*_{meta}Ph); 84.7 (s, 1C, *CH*); 79.4 (s, 1C, *C* \equiv CH); 49.8 (s, 1C, *CH*₂).

Figure 1.91. ¹³C APT spectrum of compound 41 in CD₂Cl₂ solution.

To a solution of compound **39** (25.2 mg, 0.1 mmol) in ethanol (5 ml), $[Au(NCMe)JohnPhos]SbF_6$ (2.6 mg, 0.005 mmol) was added and the mixture was stirred for 4 hours. The solution was concentrated under reduced pressure. Dichlorometano was added to solve the compound again (2ml), and hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 99%

Scheme 1.38. Synthesis of compound 44.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.77-7.05 (m, 9H, *arom.*); 5.80 (d, 1H, *CH*₂, ²*J*_{*HH*} = 1.3 Hz); 5.26 (d, 1H, *CH*₂, ²*J*_{*HH*} = 1.3 Hz).

Figure 1.92: ¹H NMR spectrum of compound 44 in (CD₃)₂CO solution.

¹³C APT (**ppm**) (**100 MHz**, (**CD**₃)₂**CO**): δ = 131.0-121.1 (s, 9C, *arom*); 111.0 (s, 1C, *CH*₂).

Figure 1.93. ¹³C APT spectrum of compound 44 in CD₂Cl₂ solution.

To a solution of compound **40** (27.0 mg, 0.1 mmol) in ethanol (5 ml), $[Au(NCMe)CyJohnPhos]SbF_6$ (2.9 mg, 0.005 mmol) was added and the mixture was stirred for 4 hours. The solution was concentrated under reduced pressure. Dichlorometano was added to solve the compound again (2ml), and hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 80 %

Scheme 1.39. Synthesis of compound 45.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.88 (s, 1H, *IV*); 7.66 (m, 6H, *I*+*II*+*arom.*); 6.81 (m, 1H, *III*); 5.83 (d, 1H, *CH*₂, ²*J*_{*HH*} = 1.4 Hz); 5.26 (d, 1H, *CH*₂, ²*J*_{*HH*} = 1.4 Hz).

Figure 1.94. ¹H NMR spectrum of compound 45 in CD₂Cl₂ solution.

Figure 1.95. ${}^{19}1{}^{1}H$ NMR spectrum of compound 45 in CD₂Cl₂ solution.

¹³C APT (ppm) (100 MHz, CD₂Cl₂): $\delta = 166.0$ (s, 1C, *C*_{quaternary}); 162.6 (s, 1C, *C*_{quaternary}); 149.0 (s, 1C, N=C-NH); 142.5 (s, 1C, *C*_{ipso}Ph-F); 134.9 s, 1C, *C*_{ipso}Ph-F); 131.1 (s, 1C, *arom.*); 130.1 (d, 1C, *II*, ³*J*_{CF} = 9.6 Hz); 125.7 (s, 1C, *arom.*); 124.9 (s, 1C, *arom.*); 124.6 (s, 1C, *arom.*); 120.6 (s, 1C, *C*=CH₂); 116.4 (s, 1C, *I*); 114.4 (s, 1C, *CH*₂); 109.9 (d, 1C, *III*, ²*J*_{CF} = 21.5 Hz); 107.9 (d, 1C, *IV*, ²*J*_{CF} = 26.6 Hz)

Figure 1.96. ¹³C APT spectrum of compound 45 in CD₂Cl₂ solution.

Synthesis of compound 46

To a solution of compound **41** (26.6 mg, 0.1 mmol) in ethanol (5 ml), $[Au(NCMe)JohnPhos]SbF_6$ (2.6 mg, 0.005 mmol) was added and the mixture was stirred for 4 hours. The solution was concentrated under reduced pressure. Dichlorometano was added to solve the compound again (2ml), and hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 99%

Scheme 1.40. Synthesis of compound 46.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** δ = 7.58 (dd, 1H, H_1 , ${}^{3}J_{HH}$ = 7.8 Hz, ${}^{4}J_{HH}$ = 1.5 Hz); 7.40 (m, 2H, H_3 + *NH*); 7.32-7.22 (m, 5H, *Ph*); 7.10 (dd, 1H, H_4 , ${}^{3}J_{HH}$ = 8.0 Hz, ${}^{4}J_{HH}$ = 1.4 Hz); 7.03 (dt, 1H, H_2 , ${}^{3}J_{HH}$ = 7.5 Hz, ${}^{4}J_{HH}$ = 1.4 Hz); 5.73 (d, 1H, *CH*₂, ${}^{2}J_{HH}$ = 1.2 Hz); 5.19 (d, 1H, *CH*₂, ${}^{2}J_{HH}$ = 1.2 Hz); 4.70 (s, 2H, *CH*₂-Ph).

Figure 1.97. ¹H NMR spectrum of compound 46 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD)₃CO): δ = 152.3 (s, 1C, N=*C*-NH); 146.0 (s, 1C, CH₁-*C*-N); 140.4 (s, 1C, *C_{ipso}Ph*); 135.9 (s, 1C, CH₄-*C*-C=CH₂); 130.8 (s, 2C, *C_{ortho}Ph*); 129.2 (s, 1C, *C_{para}Ph*); 128.7 (s, 1C, H₃); 127.8 (s, 2C, *C_{meta}Ph*); 127.3 (s, 1C, H₄); 124.3 (d, 2C, H₁+H₂); 120.4 (s, 1C, *C*=CH₂); 109.9 (s, 1C, C=*CH*₂); 46.1 (s, 1C, *CH*₂-Ph).

Figure 1.98. ¹³C APT spectrum of compound 46 in (CD₃)₂CO solution.

a) To a solution of compound 44 (25.2 mg, 0.1 mmol) and Au(acac)PPh₃ (55.8 mg, 0.1 mmol) were mixed in CH_2Cl_2 (10 ml) and the mixture stirred 4h. The solution was concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a light brown product which was collected and vacuum dried to give the product.

b) To a solution of compound 44 (25.2 mg, 0.1 mmol) and AuClPPh₃ (49.5 mg, 0.1 mmol) were mixed in MeOH (20 ml) was added an excess of KOH (0.3 mmol, 16.8 mg) and the mixture stirred 5h. The solution was concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a light brown product which was collected and vacuum dried to give the product.

Yield: 50%

Scheme 1.41. Synthesis of compound 47.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** $\delta = 8.53$ (d, 1H, H_4 , ${}^3J_{HH} = 8.0$ Hz); 8.13 (s, 1H, *NH*); 7.90 (m, 2H, H_6); 7.59 (m, 16H, *PPh*₃ + H_1 + H_5); 7.51 (t, 1H, H_2 , ${}^3J_{HH} = 8.0$ Hz); 7.21 (m, 3H, H_3 + H_7); 6.88 (t, 1H, H_8 , ${}^3J_{HH} = 7.3$ Hz).

Figure 1.99. ¹H NMR spectrum of compound 47 in CD₂Cl₂ solution.

³¹P{¹H} NMR (ppm) (376 MHz, (CD₃)₂CO): $\delta = 38.5$ (s, 1P, *PPh*₃).

Figure 1.100. ³¹P{¹H} NMR spectrum of compound **47** in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 154.2$, 148.6 142.9 (s, 3C, *C*_{quaternary}); 135.1 (d, 6C, *C*_{ortho}PPh₃, ²*J*_{CP} = 13.8 Hz); 133.0 (d, 3C, *C*_{para}PPh₃, ⁴*J*_{CP} = 1.8 Hz); 130.5 (d, 6C, *C*_{meta}PPh₃, ³*J*_{CP} = 11.5 Hz); 129.8 (s, 1C, *C*₂); 129.8 (s, 3C, *C*_{ipso}PPh₃); 129.4 (s, 1C, *C*₇); 128.1 (s, 1C, *C*₁); 127.3 (s, 1C, *C*₄); 122.8 (s, 1C, *C*₃); 121.8 (s, 1C, *C*₈); 119.7 (s, 1C, *C*₆); 116.9 (s, 1C, *C*₅).

Figure 1.101. ¹³C APT spectrum of compound 47 in CD₂Cl₂ solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₃H₂₇AuN₂PS]⁺ 711.1293. Found 711.1261

Figure 1.102. MS (ESI+ µ-TOF) compound 47.

Synthesis of compound 48

To a solution of compound **45** (27.3 mg, 0.1 mmol) and Au(acac)PPh₃ (55.8 mg, 0.1 mmol) were mixed in CH_2Cl_2 (10 ml) and the mixture stirred 4h. The solution was concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a light brown product which was collected and vacuum dried to give the product.

Yield: -%

Scheme 1.42. Synthesis of compound 48.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** $\delta = 8.54$ (d, 1H, H_4 , ${}^3J_{HH} = 8.8$ Hz); 8.47(s br, 1H, *NH*); 8.27 (d, 1H, H_6 , ${}^3J_{HF} = 14.3$ Hz); 7.70 (d, 1H, H_1 , ${}^3J_{HH} = 8.2$ Hz); 7.56-7.45 (m, 18H, *PPh*₃ + H_2 + H_8 + H_9); 7.22 (m, 1H, H_3); 6.63 (m, 1H, H_7).

Figure 103. ¹H NMR spectrum of compound 48 in (CD₃)₂CO solution.

¹⁹F{¹H} NMR (ppm) (376 MHz, (CD₃)₂CO): $\delta = -115.1$ (s, 1F, F).

Figure 104.: ${}^{19}F \{{}^{1}H\}$ NMR spectrum of compound 48 in (CD₃)₂CO solution.

³¹P{¹H} NMR (ppm) (162 MHz, (CD₃)₂CO): $\delta = 34.1$ (s, 1P, *PPh*₃).

Figure 105.: ³¹P {¹H} NMR spectrum of compound 48 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 135.0$ (d, 6C, *C*_{ortho}PPh₃, ²*J*_{CP} = 13.8 Hz); 133.0 (d, 3C, *C*_{para}PPh₃, ⁴*J*_{CP} = 2.6 Hz); 130.4 (d, 6C, *C*_{meta}PPh₃, ³*J*_{CP} = 11.7 Hz); 129.9 (s, 1C, *C*₂); 129.8 (s, 3C, *C*_{ipso}PPh₃); 128.2 (s, 1C, *C*₁); 127.4 (s, 1C, *C*₄); 123.1 (s, 1C, *C*₃); 117.4 (s, 1C, *C*₈); 114.9 (s, 1C, *C*₉); 107.4 (d, 1C, *C*₇, ²*J*_{CF} = 21.6 Hz); 106.3 (d, 1C, *C*₆, ²*J*_{CF} = 27.5 Hz).

Figure 106. ¹³C APT spectrum of compound 48 in (CD₃)₂CO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₆H₃₀AuP₂]⁺ 721.149. Found 721.1445; [M]⁺ Calcd for [C₃₃H₂₆AuFN₂PS]⁺ 729.1199. Found 729.1170; Calcd for [C₅₄H₄₆Au₃P₃S]⁺ 1410.829. Found 1409.1120.

Figure 1.107. MS (ESI+ μ -TOF) compound 48.

Figure 1.108. MS (ESI+ μ -TOF) compound 48.

To a solution of compound **46** (26.6 mg, 0.1 mmol) and Au(acac)PPh₃ (55.8 mg, 0.1 mmol) were mixed in CH_2Cl_2 (10 ml) and the mixture stirred 4h. The solution was concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a light brown product which was collected and vacuum dried to give the product.

Yield: -%

Scheme 1.43. Synthesis of compound 47.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** $\delta = 8.45$ (d, 1H, H_4 , ${}^3J_{HH} = 8.0$ Hz); 7.49-7.14 (m, 24H, $PPh_3 + H_1 + H_2 + H_3 + H_5 + H_6 + H_7 + H_8 + H_9$); 6.17 (s, 1H, *NH*); 4.67 (d, 2H, *CH*₂, ${}^3J_{HH} = 5.9$ Hz).

Figure 109. ¹H NMR spectrum of compound 49 in (CD₃)₂CO solution.

Figure 110. ³¹P {¹H} NMR spectrum of compound 49 in (CD₃)₂CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 134.9$ (d, 6C, C_{ortho} PPh₃, ${}^{2}J_{CP} = 13.9$ Hz); 132.9 (s, 3C, C_{para} PPh₃); 130.4 (d, 6C, C_{meta} PPh₃, ${}^{3}J_{CP} = 11.5$ Hz); 129.1 (s, 1C, C_{2}); 128.2 (s, 1C, C_{I}); 127.4 (s, 1C, C_{4}); 121.7 (s, 2C, C_{6}); 115.7 (s, 2C, C_{7}); 45.6 (s, 1C, CH_{2}).

Figure 1.111. ¹³C APT spectrum of compound 49 in (CD₃)₂CO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₆H₃₀AuP₂]⁺ 721.149. Found 721.1455; [M]⁺ Calcd for [C₃₄H₂₈AuN₂PS]⁺ 724.605. Found 725.1413; Calcd for [C₅₄H₄₆Au₃P₃S]⁺ 1410.829. Found 1409.1146.

Figure1.112. MS (ESI+ µ-TOF) compound 49.

To a solution of compound **42** (25.2 mg, 0.1 mmol) and AuClJohnPhos (53.1 mg, 0.1 mmol) were mixed in MeOH (20 ml) was added an excess of KOH (0.3 mmol, 16.8 mg) and the mixture stirred 5h. The solution was concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a light brown product which was collected and vacuum dried to give the product.

Yield: %

Scheme 1.44. Synthesis of compound 50.

¹**H NMR (ppm) (400 MHz, (CD₃)₂CO):** $\delta = 8.49$ (d, 1H, H_4 , ${}^{3}J_{HH} = 8.2$ Hz); 8.08 (m, 1H, *JohnPhos*); 7.84 (m, 2H, *Ph*); 7.63 (m, 2H, *JohnPhos*); 7.46 (t, 1H, H_{para} , ${}^{3}J_{HH} = 7.9$ Hz); 7.37-7.18 (m, 11H, *Ph* + *JohnPhos*); 6.92 (t, 1H, H_{para} , ${}^{3}J_{HH} = 7.3$ Hz); 1.39 (d, 18H, *CH*₃, ${}^{3}J_{HH} = 15.3$ Hz).

Figure 1.113. ¹H NMR spectrum of compound 50 in (CD₃)₂CO solution.

Figure 1.114.: ${}^{31}P$ { ${}^{1}H$ } NMR spectrum of compound 50 in (CD₃)₂ CO solution.

¹³C APT (ppm) (100 MHz, (CD₃)₂CO): $\delta = 154.1$ (s, 1C, *C*_{quaternary}); 150.9 (s, 1C, *C*_{quaternary}); 148.4 (s, 1C, *C*_{quaternary}); 143.6 (s, 1C, *C*_{quaternary}); 135.7 (d, 1C, *C*_{JohnPhos}, ³*J*_{CP} = 1.5 Hz); 133.8 (d, 1C, *C*_{JohnPhos}, ²*J*_{CP} = 7.5 Hz); 131.6 (s br, 1C, *C*_{JohnPhos}); 130.1 (s, 2C, *C*_{ortho}Ph); 129.4 (s, 2C, *C*_{meta}Ph); 129.3 (s, 1C, *C*_{para}Ph); 128.5 (s, 1C, *C*_{JohnPhos}); 128.3 (s, 1C, *C*_{ipso}); 128.1 (d, 1C, *C*_{JohnPhos}, ²*J*_{CP} = 6.2 Hz); 127.8 (s, 1C, *arom*.); 122.3 (s, 1C, *Ph*); 121.8 (s, 1C, *C*_{para}Ph); 119.9 (s, 1C, *Ph*); 116.3 (s, 1C, *Ph*); 38.3 (d, 2C. *C*_{ipso}^tBu, ¹*J*_{CP} = 23.1 Hz); 31.2 (d, 2C, ^tBu, ¹*J*_{CP} = 6.8 Hz).

Figure 1.115. ¹³C APT spectrum of compound 50 in (CD₃)₂CO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₅H₃₉AuN₂PS]⁺ 747.2232. Found 747.2204.

Figure 1.116. MS (ESI+ µ-TOF) compound 50.

Anexos

Capítulo 2

Syntheses

Synthesis of Compound 51

To a solution of 1-Benzylimidazole (282.0 mg, 1 mmol) in toluene (20 ml), N-(2-Bromoethyl)phthalimide was added (108 μ L, 1 mmol) and the solution stirred for 72h (120°C). A white powder formed which was collected, and vacuum dried to give the product. Lately, this white powder was solved in ethanol (20 ml) and an excess of hydrazine was added. The solution stirred for 24 h. a white precipitated was formed and the solution was decanted and vacuum dried to give a transparent oil.

Yield: 99%

Scheme2.1. Synthesis of compound 51.

¹H NMR (ppm) (400 MHz, DMSO): $\delta = 9.30$ (s, 1H, *imidazole*); 7.78 (m, 2H, *imidazole*); 7.42 (m, 5H, *Ph*-CH₂); 5.44 (s, 2H, Ph-*CH*₂-imidazole); 4.13 (m, 2H, NH₂-CH₂-CH₂); 2.91 (m, 2H, NH₂-CH₂-CH₂).

Figure 2.1. ¹H NMR spectrum of compound 52 in DMSO solution.

To a solution of aminoethyl-benzylimidazolium salt (282.0 mg, 1 mmol), phenyl isothiocyanate was added (108 μ L, 1 mmol) and the solution stirred for 24h. A white precipitate formed which was collected, washed with acetonitrile and vacuum dried to give the product.

Yield: 84%

Scheme 2.2. Synthesis of compound 52.

¹**H** NMR (ppm) (400 MHz, DMSO): $\delta = 9.34$ (s, 1H, *imidazole*); 8.72 (s, 1H, CO-*NH*-Ph); 7.80 (m, 2H, *imidazole*); 7.34 (m, 7H, CH₂-*Ph* + *H*_{ortho}PH-NH); 7.21 (m, 2H, *H*_{meta}Ph-NH); 6.90 (m, 1H, *H*_{para}Ph-NH); 6.40 (t, 1H, CH₂-*NH*-CO, ³*J*_{*H*-H} = 5.9 Hz); 5.44

(s, 2H, Ph-*CH*₂-imidazole); 4.28 (t, 2H, NH-CH₂-*CH*₂, ${}^{3}J_{H-H} = 5.5$ Hz); 3.55 (q, 2H, NH-*CH*₂-CH₂, ${}^{3}J_{H-H} = 5.7$ Hz).

Figure 2.2. ¹H NMR spectrum of compound 52 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 155.3$ (s, 1C, *CO*); 140.2 (s, 1C, *C_{ipso}Ph*-NH); 136.6 (s, 1C, *CH*-imidazole); 134.8 (s, 1C, *C_{ipso}Ph*-CH₂); 128.9 (s, 2C, *C_{ortho}Ph*-CH₂); 128.6 (s, 2C, *C_{ortho}Ph*-NH); 128.6 (s, 1C, *C_{para}Ph*-CH₂); 128.1(s, 2C, *C_{meta}Ph*-CH₂); 123.3 (s, 1C, *imidazole*); 122.4 (s, 1C, *imidazole*); 121.2 (s, 1C, *C_{para}Ph*-NH); 117,7 (s, 2C, *C_{meta}Ph*-NH); 51.8(s, 1C, Ph-*CH*₂-imidazole); 49.7 (s, 1C, NH-CH₂-*CH*₂); 40.0 (s, 1C, NH-*CH*₂-CH₂).

Figure 2.3. ¹³C APT spectrum of compound 52 in DMSO solution.

To a solution of aminoethyl-benzylimidazolium salt (282.0 mg, 1 mmol), 3-flurophenyl isothiocyanate was added (114 μ L, 1 mmol) and the solution stirred for 24h. A white precipitate formed which was collected, washed with acetonitrile and vacuum dried to give the product.

Yield: 92%

Scheme 2.3. Synthesis of compound 53.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 9.31$ (s, 1H, *imidazole*); 8.91 (s, 1H, CO-*NH*-Ph); 7.78 (m, 2H, *imidazole*); 7.44 (m, 1H, 4); 7.35 (s, 5H, CH₂-*Ph*); 7.25 (m, 1H, 2); 7.00 (m, 1H, 1); 6.72 (m, 1H, 3); 6.45 (t, 1H, CO-*NH*-CH₂, ${}^{3}J_{H-H} = 5.9$ Hz); 5.43 (s, 2H, Ph-

*CH*₂-imidazole); 4.28 (t, 2H, NH-CH₂-*CH*₂, ${}^{3}J_{H-H} = 5.6$ Hz); 3.55 (q, 2H, NH-*CH*₂-CH₂, ${}^{3}J_{H-H} = 5.8$ Hz).

Figure 2.4. ¹H NMR spectrum of compound 53 in DMSO solution.

¹⁹**F**{¹**H**} **NMR (ppm) (376 MHz, DMSO):** $\delta = -112.3$ (m, 1F, Ph-*F*).

Figure 2.5. ¹⁹F{¹H} NMR spectrum of compound **53** in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 162.4$ (d, 1C, $C_{ipso}Ph$ -F, ${}^{1}J_{C-F} = 240.0$ Hz); 155.5 (s, 1C, CO); 142.1 (d, 1C, $C_{ipso}Ph$ -NH, ${}^{3}J_{C-F} = 11.5$ Hz); 134.7 (s, 1C, CH*imidazole*); 130.1 (d, 1C, 2, ${}^{3}J_{C-F} = 9.8$ Hz); 128.8 (s, 2C, $C_{ortho}Ph$); 128.6 (s, 1C, $C_{para}Ph$); 128.0 (s, 2C, $C_{meta}Ph$); 123.4 (s, 1C, *imidazole*); 122.4 (s, 1C, *imidazole*); 113.4 (s, 1C, I); 107.5 (d, 1C, 3, ${}^{2}J_{C-F} = 21.3$ Hz); 104.4 (d, 1C, 4, ${}^{2}J_{C-F} = 26.5$ Hz); 51.8 (s, 1C, Ph- CH_{2} -imidazole); 49.6 (s, 1C, NH-CH₂- CH_{2}); 40.1 (s, 1C, NH- CH_{2} -CH₂).

Figure 2.6. ¹³C APT spectrum of compound 53 in DMSO solution.

To a solution of aminoethyl-benzylimidazolium salt (282.0 mg, 1 mmol), benzyl isothiocyanate was added (123 μ L, 1 mmol) and the solution stirred for 24h. A white precipitate formed which was collected, washed with acetonitrile and vacuum dried to give the product.

Yield: 73%

Scheme 2.4. Synthesis of compound 54.

¹H NMR (ppm) (400 MHz, DMSO): $\delta = 9.30$ (s, 1H, *imidazole*); 7.77 (m, 2H, *imidazole*); 7.40-7.21 (m, 10H, CH₂-*Ph*); 6.55 (t, 1H, CO-*NH*-CH₂-Ph, ³*J*_{*H*-*H*} = 6.0 Hz); 6.24 (t, 1H, CH₂-CH₂-*NH*-CO, ³*J*_{*H*-*H*} = 5.9 Hz); 5.42 (s, 2H, Ph-*CH*₂-imidazole); 4.23 (t,

2H, CH_2 -CH₂-NH-CO, ${}^{3}J_{H-H} = 5.6$ Hz); 4.16 (d, 2H, NH- CH_2 -Ph, ${}^{3}J_{H-H} = 6.0$ Hz); 3.47 (q, 2H, CH₂- CH_2 -NH-CO, ${}^{3}J_{H-H} = 5.6$ Hz).

Figure 2.7. ¹H NMR spectrum of compound 54 in DMSO solution.

¹³C APT (ppm) (100 MHz, (DMSO): δ = 157.9 (s, 1C, *CO*); 140.6 (s, 1C, *C_{ipso}*Ph-CH₂-NH); 136.5 (s, 1C, *imidazole*); 134.7 (s, 1C, *C_{ipso}Ph*-CH₂-imidazole); 128.9 (s, 2C, CH₂-*Ph*); 128.6 (s, 1C, *C_{para}Ph*CH₂); 128.2 (s, 2C, CH₂-*Ph*); 128.1 (s, 2C, CH₂-*Ph*); 127.0 (s, 2C, CH₂-*Ph*); 126.6 (s, 1C, *C_{para}Ph*-CH₂); 123.3 (s, 1C, *imidazole*-CH₂-CH₂); 122.3 (s, 1C, *imidazole*-CH₂-Ph); 51.8 (s, 1C, Ph-*CH*₂-imidazole); 49.8 (s, 1C, *CH*₂-CH₂-NH-CO); 42.9 (s, 1C, NH-*CH*₂-Ph); 39.5 (s, 1C, CH₂-*CH*₂-NH-CO).

Figure 2.8. ¹³C APT spectrum of compound 54 in DMSO solution.

To a solution of compound **52** (80 mg, 0.2 mmol) and [AuCl(JohnPhos)] (106 mg, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) was added NBu₄(acac) (64 mg, 0.2 mmol) and the mixture stirred for 2.5h. The solution washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 62%

Scheme 2.5. Synthesis of compound 55.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 8.57$ (s br, 1H, CO-*NH*-Ph); 7.99-6.86 (m, 19H, CH₂-*Ph*+*Ph*); 7,57 (m, 2H, *imidazole*); 6.29 (t, 1H, CH₂-*NH*-CO, ³*J*_{*H*-*H*} = 5.9 Hz); 5.18 (s, 2H, Ph-*CH*₂-imidazole); 4.06 (t, 2H, NH-CH₂-*CH*₂, ³*J*_{*H*-*H*} = 6.0 Hz); 3.50 (m, 2H, NH-*CH*₂-CH₂); 1.29 (d, 18H, ^{*t*}*Bu*, ³*J*_{*H*-*P*} = 15.4 Hz).

Figure 2.9. ¹H NMR spectrum of compound 55 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 63.8$ (s, 1P, *JohnPhos*).

Figure 2.10. ³¹P{¹H} NMR spectrum of compound 55 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 187.0$ (d, 1C, C = Au, ${}^{2}J_{C-P} = 115.0$ Hz); 155.1 (s, 1C, *CO*); 148.8 (d, 1C, $C_{ipso}-2$, ${}^{2}J_{C-P} = 14.3$ Hz); 142.9 (d, 1C, $C_{ipso}-3$, ${}^{3}J_{C-P} = 6.1$ Hz); 140.3 (s, 1C, $C_{ipso}Ph$ -NH); 136.4 (s, 1C, $C_{ipso}Ph$ -CH₂); 134.7-117.6 (m, 19C, CH₂-*Ph*+*Ph*+*JohnPhos*); 125.5 (d, 1C, $C_{ipso}-1$, ${}^{1}J_{C-P} = 42.5$ Hz); 122.6 (s, 1C, *imidazole*); 122.3 (s, 1C, *imidazole*); 53.4 (s, 1C, Ph-*CH*₂-*imidazole*); 50.9 (s, 1C, NH-CH₂-*CH*₂); 39.8 (s, 1C, NH-*CH*₂-CH₂); 37.0 (d, 2C, $C_{ipso}{}^{t}Bu$, ${}^{1}J_{C-P} = 23.0$ Hz); 30.3 (d, 6C, ${}^{t}Bu$, ${}^{1}J_{C-P} = 6.4$ Hz).

Figure 2.11. ¹³C APT spectrum of compound 55 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₉H₄₇AuN₄O₂]⁺ 815.3148. Found 815.3113.

Figure 2.12. MS (ESI+ µ-TOF) compound 55.

To a solution of compound **53** (83.86 mg, 0.2 mmol) and [AuCl(JohnPhos)] (106 mg, 0.2 mmol) were mixed in CH_2Cl_2 (10 ml) was added $NBu_4(acac)$ (64 mg, 0.2 mmol) and the mixture stirred for 4.5h. The solution washed with H_2O (3 x 25 ml), dried over Na_2SO_4 and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 60%

Scheme 2.6. Synthesis of compound 56.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 8.95$ (s br, 1H, CO-*NH*-Ph); 7.00-6.68 (m, 13H, CH₂-*Ph*+*JohnPhos*); 7,56 (m, 2H, *imidazole*); 7.46 (m, 1H, 7); 6.97 (m, 1H, 4); 6.68 (m, 1H, 6); 6.46 (t, 1H, CH₂-*NH*-CO, ³*J*_{*H*-*H*} = 5.8 Hz); 5.18 (s, 2H, Ph-*CH*₂-imidazol); 4.06 (t, 2H, NH-CH₂-*CH*₂, ³*J*_{*H*-*H*} = 6.0 Hz); 3.50 (m, 2H, NH-*CH*₂-CH₂); 1.29 (d, 18H, ^{*t*}*Bu*, ³*J*_{*H*-*P*} = 15.4 Hz).

Figure 2.13. ¹H NMR spectrum of compound 56 in DMSO solution.

Figure 2.14. ¹⁹F{¹H} NMR spectrum of compound 56 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 64.1$ (s, 1P, *JohnPhos*).

Figure 2.15. ³¹P{¹H} NMR spectrum of compound 56 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 186.4$ (d, 1C, C = Au, ${}^{2}J_{C-P} = 115.2$ Hz); 162.3 (d, 1C, $C_{ipso}Ph$ -F, ${}^{1}J_{C-F} = 240.1$ Hz); 154.9 (s, 1C, CO); 148.7 (d, 1C, C_{ipso} -2, ${}^{2}J_{C-P} = 14.3$ Hz); 142.9 (d, 1C, C_{ipso} -3, ${}^{3}J_{C-P} = 6.0$ Hz); 142.9 (s, 1C, $C_{ipso}Ph$ -NH); 136.4 (s, 1C, $C_{ipso}Ph$ -CH₂); 134.8-127.3 (m, 10C, 5+*JohnPhos*); 128.6 (s, 2C, $C_{orto}Ph$); 127.8 (s, 1C, $C_{para}Ph$); 126.7 (s, 2C, $C_{meta}Ph$); 125.2 (d, 1C, C_{ipso} -1, ${}^{1}J_{C-P} = 42.5$ Hz); 122.6 (s, 1C, *imidazole*); 122.2 (s, 1C, *imidazole*); 113.2 (d, 1C, 4, ${}^{4}J_{C-F} = 2.3$ Hz); 107.3 (d, 1C, 6, ${}^{2}J_{C-F} = 21.2$ Hz); 104.2 (d, 1C, 7, ${}^{2}J_{C-F} = 26.6$ Hz); 53.4 (s, 1C, Ph-*CH*₂-imidazole); 50.8 (s, 1C, NH-CH₂-*CH*₂); 39.8 (s, 1C, NH-*CH*₂-CH₂); 37.1 (d, 2C, $C_{ipso}{}^{t}Bu$, ${}^{1}J_{C-P} = 23.0$ Hz); 30.3 (d, 6C, ${}^{t}Bu$, ${}^{1}J_{C-P} = 6.4$ Hz).

Figure 2.16. ¹³C APT spectrum of compound 56 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₉H₄₆AuFN₄OP]⁺ 833.3053. Found 833.3034.

Figure 2.17. MS (ESI+ μ -TOF) compound 56.

To a solution of compound **54** (83 mg, 0.2 mmol) and [AuCl(JohnPhos)] (106 mg, 0.2 mmol) were mixed in CH_2Cl_2 (10 ml) was added $NBu_4(acac)$ (64 mg, 0.2 mmol) and the mixture stirred for 2.5h. The solution washed with H_2O (3 x 25 ml), dried over Na_2SO_4 and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 52%

Scheme 2.7. Synthesis of compound 57.

¹**H** NMR (ppm) (400 MHz, DMSO): $\delta = 8.00-6.85$ (m, 21H, CH₂-*Ph*+*JohnPhos*); 6.45 (t, 1H, CO-*NH*-CH₂-Ph, ³*J*_{*H*-*H*} = 6.0 Hz); 6.10 (t, 1H, CH₂-CH₂-*NH*-CO, ³*J*_{*H*-*H*} = 5.8 Hz); 5.18 (s, 2H, Ph-*CH*₂-imidazole); 4.16 (d, 2H, NH-*CH*₂-Ph, ³*J*_{*H*-*H*} = 6.0 Hz); 4.01 (t, 2H, *CH*₂-CH₂-NH-CO, ³*J*_{*H*-*H*} = 6.1 Hz); 3.42 (m, 2H, CH₂-*CH*₂-NH-CO); 1.28 (d, 18H, ^{*t*}*Bu*, ³*J*_{*H*-*P*} = 15.4 Hz).

Figure 2.18. ¹H NMR spectrum of compound 57 in DMSO solution.

Figure 2.19. ³¹P{¹H} NMR spectrum of compound 57 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 186.3$ (d, 1C, C = Au, ${}^{2}J_{C-P} = 115.2$ Hz); 157.8 (s, 1C, *CO*); 148.7 (d, 1C, C_{ipso} -2, ${}^{2}J_{C-P} = 14.3$ Hz); 142.9 (d, 1C, C_{ipso} -3, ${}^{3}J_{C-P} = 6.1$ Hz); 140.7 (s, 1C, $C_{ipso}Ph$ -CH₂-NH); 136.4 (s, 1C, $C_{ipso}Ph$ -CH₂-imidazole); 134.7-126.5 (m, 19C, CH₂-*Ph*+*JohnPhos*); 125.5 (d, 1C, C_{ipso} -1, ${}^{1}J_{C-P} = 42.5$ Hz); 122.4 (s, 1C, *imidazole*); 122.2 (s, 1C, *imidazole*); 53.9 (s, 1C, Ph-*CH*₂-imidazole); 50.9 (s, 1C, NH-CH₂-CH₂); 42.8 (s, 1C, NH-*CH*₂-Ph); 39.8 (s, 1C, NH-*CH*₂-CH₂); 37.1 (d, 2C, C_{ipso} ^t*Bu*, ${}^{1}J_{C-P} = 23.0$ Hz); 30.3 (d, 6C, ^t*Bu*, ${}^{1}J_{C-P} = 6.4$ Hz).

Figure 2.20. ¹³C APT spectrum of compound 57 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₄₀H₄₉AuN₄OP]⁺ 829.3304. Found 829.3274.

To a solution of compound **52** (80 mg, 0.2 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) was added NBu₄(acac) (64 mg, 0.2 mmol) and the mixture stirred. 4.5h later, 2-mercaptopyridine was added (22 mg, 0.2 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite, the filtrate was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 55%

Scheme 2.8. Synthesis of compound 58.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 8.58$ (s br, 1H, CO-*NH*-Ph); 8.13 (s, 1H, *1*); 7,53 (m, 2H, *imidazole*); 7.32-6.88 (m, 13H, *Ph*+CH₂-*Ph*+*arom*); 6.32 (t, 1H, CH₂-*NH*-CO, ³*J*_{*H*-*H*} = 5.9 Hz); 5.42 (s, 2H, Ph-*CH*₂-imidazole); 4.27 (t, 2H, NH-CH₂-*CH*₂, ³*J*_{*H*-*H*} = 5.7 Hz); 3.59 (m, 2H, NH-*CH*₂-CH₂).

Figure 2.22. ¹H NMR spectrum of compound 58 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 155.1$ (s, 1C, *CO*); 148.0 (s, 1C, *I*); 140.3 (s, 1C, *C_{ipso}Ph*-NH); 136.8 (s, 1C, *C_{ipso}Ph*-CH₂); 136.6 (s, 1C, *arom*); 128.6 (s, 2C, *C_{ortho}Ph*-*CH*₂); 128.5 (s, 2C, *C_{ortho}Ph*-NH); 127.9 (s, 1C, *C_{para}Ph*-CH₂); 127.6 (s, 2C, *C_{meta}Ph*-*CH*₂); 126.8 (s, 1C, *arom*); 122.3 (s, 1C, *imidazole*); 121.6 (s, 1C, *imidazole*); 121.1 (s, 1C, *C_{para}Ph*-NH); 117.8 (s, 2C, *C_{meta}Ph*-NH); 117.7 (s, 1C, 2); 53.5 (s, 1C, Ph-CH₂-imidazole); 50.7 (s, 1C, NH-CH₂-CH₂); 40.0 (s, 1C, NH-CH₂-CH₂).

Figure 2.23. ¹³ C APT spectrum of compound 58 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₂₄H₂₅AuN₅OS]⁺ 628.1440. Found 628.1412.

Synthesis of compound 59

To a solution of compound **53** (83.86 mg, 0.2 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH_2Cl_2 (10 ml) was added NBu₄(acac) (64 mg, 0.2 mmol) and the mixture

stirred. 4.5h later, 2-mercaptopyridine was added (22 mg, 0.2 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite, the filtrate was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 53%

Scheme 2.9. Synthesis of compound 59.

¹**H NMR** (**ppm**) (**400 MHz**, **DMSO**): $\delta = 8.88$ (s br, 1H, CO-*NH*-Ph); 8.12 (s, 1H, *I*); 7.51 (m, 2H, *imidazole*); 7.39-7.28 (m, 9H, CH₂-*Ph*+3+4+ *IV*); 7.21 (m, 1H, *II*); 6.96 (m, 1H, *I*); 6.84 (m, 1H, 2); 6.68 (m, 1H, *III*); 6.43 (t br, 1H, CH₂-*NH*-CO); 5.41 (s, 2H, Ph-*CH*₂-imidazole); 4.27 (t br, 2H, NH-CH₂-*CH*₂); 3.59 (m, 2H, NH-*CH*₂-CH₂).

Figure 2.25. ¹H NMR spectrum of compound 59 in DMSO solution.

Figure 2.26. ¹⁹F{¹H} NMR spectrum of compound **59** in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 183.2$ (s, 1C, *C*=Au); 162.3 (d, 1C, *C*_{*ipso}<i>Ph*-*F*, ¹*J*_{*C-F*} = 240.1 Hz); 154.9 (s, 1C, *CO*); 149.7 (s, 1C, *I*); 142.2 (d, 1C, *C*_{*ipso}<i>Ph*-NH, ³*J*_{*C-F*} = 11.5 Hz); 138.1 (s, 1C, *arom*); 136.8 (s, 1C, *C*_{*ipso}<i>Ph*-CH₂); 136.1 (d, 1C, *II*, ³*J*_{*C-F*} = 9.9 Hz); 128.6 (s, 2C, *C*_{ortho}*Ph*); 127.9 (s, 1C, *C*_{*para}<i>Ph*); 127.6 (s, 2C, *C*_{*metaPh*); 127.2 (s, 1C, *arom*); 122.4 (s, 1C, *imidazole*); 121.8 (s, 1C, *imidazole*); 119.6 (s, 1C, 2); 113.4 (s, 1C, *I*); 107.5 (d, 1C, *III*, ²*J*_{*C-F*} = 21.2 Hz); 104.2 (d, 1C, *IV*, ²*J*_{*C-F*} = 26.5 Hz); 53.5 (s, 1C, Ph-*CH*₂-imidazole); 50.7 (s, 1C, NH-CH₂-*CH*₂); 39.8 (s, 1C, NH-*CH*₂-CH₂).}</sub></sub></sub></sub>

Figure 2.27. ¹³ C APT spectrum of compound **59** in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₂₄H₂₄AuFN₅OS]⁺ 646.1346. Found 646.1329.

To a solution of compound **54** (83.0 mg, 0.2 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) was added NBu₄(acac) (64 mg, 0.2 mmol) and the mixture stirred. 4.5h later, 2-mercaptopyridine was added (22 mg, 0.2 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite, the filtrate was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 60%

Scheme 2.10. Synthesis of compound 60.

¹**H NMR** (**ppm**) (**400 MHz**, **DMSO**): $\delta = 8.11$ (s, 1H, *1*); 7.54-7.23 (m, 14H, CH₂-*Ph* + *imidazole* + *arom*); 6.83 (s, 1H, 2); 6.42 (t, 1H, CO-*NH*-CH₂-Ph, ³*J*_{*H*-*H*} = 5.9 Hz); 6.17 (t, 1H, CO-*NH*-CH₂-Ph, ³*J*_{*H*-*H*} = 5.6 Hz); 5.42 (s, 2H, Ph-*CH*₂-imidazole); 4.23 (t, 2H, imidazole-*CH*₂-CH₂, ³*J*_{*H*-*H*} = 5.4 Hz); 4.18 (d, 2H, CO-NH-*CH*₂-Ph, ³*J*_{*H*-*H*} = 5.8 Hz); 3.53 (m, 2H, imidazole-CH₂-CH₂-NH).

Figure 2.29. ¹H NMR spectrum of compound 60 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): δ = 183.1 (s, 1C, *C*=*Au*); 157.9 (s, 1C, *CO*); 148.3 (s, 1C, *1*); 140.7 (s, 1C, *C_{ipso}Ph*-CH₂-NH); 136.8 (s, 1C, *C_{ipso}Ph*-CH₂-imidazole); 136.0 (s, 1C, *arom*); 128.6-126.4 (m, 11C, CH₂-*Ph* + *arom*); 122.2 (s, 1C, *imidazole*); 121.4 (s, 1C, *imidazole*); 117.3 (s, 1C, 2); 53.5 (s, 1C, Ph-*CH*₂-imidazole); 50.8 (s, 1C, imidazole-*CH*₂-CH₂-NH); 42.9 (CO-NH-*CH*₂-Ph); 40.1 (s, 1C, imidazole-CH₂-*CH*₂-NH)

Figure 2.30. ¹³ C APT spectrum of compound 60 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₂₅H₂₇AuN₅OS]⁺ 642.1597. Found 642.1582.

Synthesis of compound 61

To a solution of compound **52** (80.0 mg, 0.2 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH_2Cl_2 (10 ml) was added NBu₄(acac) (64 mg, 0.2 mmol) and the mixture

stirred. 4.5h later, 1-Thio-beta-D-glucose tetraacetate was added (73 mg, 0.2 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite, the filtrate was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 58%

Scheme 2.11. Synthesis of compound 61.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 8.47$ (s br, 1H, CO-*NH*-Ph); 7.51-6.89 (m, 12H, CH₂-*Ph* + *imidazole*); 6.24 (t, 1H, CH₂-*NH*-CO, ³*J*_{*H*-*H*} = 5.8 Hz); 5.39 (m, 2H, Ph-*CH*₂-imidazol); 5.12; 4.84; 3.91 (m, 5H, *thioglucose*); 4.05 (m, 2H, CH₃COO-*CH*₂-6-member ring thioglucose); 4.23 (t, 2H, NH-CH₂-*CH*₂, ³*J*_{*H*-*H*} = 5.9 Hz); 3.57 (m, 2H, NH-*CH*₂-CH₂); 1.96 (m, 12H, *CH*₃).

Figure 2.32. ¹H NMR spectrum of compound 61 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 183.2$ (s, 1C, *C*=Au); 170.0 (s, 4C, *CO-thioglucose*); 155.0 (s, 1C, *CO*); 140.2 (s, 1C, *C_{ipso}Ph*-NH); 136.8 (s, 1C, *C_{ipso}Ph*-CH₂); 128.6-117.8 (m, 12C, CH₂-*Ph*+*imidazole*); 81.7; 77.0; 74.3; 73.5; 68.6 (s, 5C, *thioglucose-ring*); 62.4 (s, 1C, CH₃COO-*CH*₂-6-member ring thioglucose); 53.4 (s, 1C, Ph-*CH*₂-imidazol); 50.5 (s, 1C, NH-CH₂-*CH*₂); 39.8 (s, 1C, NH-*CH*₂-CH₂); 20.3 (s, 4C, *CH*₃).

Figure 2.33. ¹³ C APT spectrum of compound 61 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₃H₄₀AuN₄O₁₀S] 881.72. Found 903.1889 [C₃₃H₄₀AuN₄O₁₀S + Na]⁺.

Figure 2.3. MS (ESI+ µ-TOF) compound 61.

To a solution of compound **53** (83.86 mg, 0.2 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) was added NBu₄(acac) (64 mg, 0.2 mmol) and the mixture stirred. 4.5h later, 1-Thio-beta-D-glucose tetraacetate was added (73 mg, 0.2 mmol) with an excess of K₂CO₃ and the solution stirred overnight. The solution was filtered through celite, the filtrate was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Scheme 2.12. Synthesis of compound 62.

¹**H NMR (ppm) (400 MHz, (DMSO):** $\delta = 8.75$ (s br, 1H, CO-*NH*-Ph); 7.51-7.23 (m, 9H, CH₂-*Ph* + *imidazole* + *II* + *IV*); 7.02 (m, 1H, *I*); 6.69 (m, 1H, *III*); 6.34 (t, 1H, CH₂-*NH*-CO, ³*J*_{*H*-H} = 5.9 Hz); 5.39 (m, 2H, Ph-*CH*₂-*imidazol*); 5.09; 4.78; 3.90 (m, 5H, *thioglucose*); 4.05 (m, 2H, CH₃COO-*CH*₂-6-member ring thioglucose); 4.23 (t, 2H, NH-CH₂-*CH*₂, ³*J*_{*H*-H} = 5.9 Hz); 3.57 (m, 2H, NH-*CH*₂-CH₂); 1.96 (m, 12H, *CH*₃).

Figure 2.35. ¹H NMR spectrum of compound 62 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -112.5$ (s, 1F, *Ph*).

Figure 2.36. ¹⁹ F{¹H} NMR spectrum of compound **62** in DMSO solution.

¹³C APT (ppm) (100 MHz, (DMSO): $\delta = 181.1$ (s, 1C, *C*=Au); 169.5 (s, 4C, *CO-thioglucose*); 162.4 (d, 1C, *C_{ipso}Ph-F*, ¹*J_{C-F}* = 240.2 Hz); 154.9 (s, 1C, *CO*); 142.2 (d, 1C, *C_{ipso}Ph-F*, ³*J_{C-F}* = 11.5 Hz); 136. 9(s, 1C, *C_{ipso}Ph-C*H₂); 130.1 (d, 1C, *II*, ³*J_{C-F}* = 9.8 Hz); 128.6 (s, 2C, *C_{ortho}Ph*); 128.0 (s, 1C, *C_{para}Ph*); 127.7 (s, 2C, *C_{meta}Ph*); 122.3 (s, 1C, *imidazole*); 121.3 (s, 1C, *imidazole*); 113.5 (s, 1C, *I*); 107.4 (d, 1C, *III*, ²*J_{C-F}* = 21.1 Hz); 104.5 (d, 1C, *IV*, ³*J_{C-F}* = 26.4 Hz); 81.7; 77.0; 74.3; 73.5; 68.6 (s, 5C, *thioglucose-ring*); 62.4 (s, 1C, CH₃COO-*CH*₂-6-member ring thioglucose); 53.4 (s, 1C, Ph-*CH*₂-imidazole); 50.4 (s, 1C, NH-CH₂-*CH*₂); 39.8 (s, 1C, NH-*CH*₂-CH₂); 20.3 (s, 4C, *CH*₃).

Figure 2.37. ¹³ C APT spectrum of compound 62 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₃H₃₉AuFN₄O₁₀S] 899.714. Found 921.1815 [C₃₃H₃₉AuFN₄O₁₀S + Na]⁺.

Figure 2.38. MS (ESI+ µ-TOF) compound 62.

To a solution of compound **54** (83.0 mg, 0.2 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) was added NBu₄(acac) (64 mg, 0.2 mmol) and the mixture stirred. 2.5h later, 1-Thio-beta-D-glucose tetraacetate was added (73 mg, 0.2 mmol) with an excess of K₂CO₃ and the solution stirred overnight. The solution was filtered through celite, the filtrate was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 50%

Scheme 2.13. Synthesis of compound 63.

¹**H** NMR (ppm) (400 MHz, DMSO): $\delta = 7.51-7.28$ (m, 12H, CH₂-*Ph* + *imidazole*); 6.39 (t, 1H, CO-*NH*-CH₂-Ph, ³*J*_{*H*-*H*} = 5.9 Hz); 6.07 (t, 1H, CH₂-CH₂-*NH*-CO, ³*J*_{*H*-*H*} = 5.7 Hz); 5.38 (m, 2H, Ph-*CH*₂-imidazol); 5.11; 4.84; 3.91 (m, 5H, *thioglucose*); 4.20 (m, 2H, NH-*CH*₂-Ph + NH-CH₂-*CH*₂); 4.05 (m, 2H, CH₃COO-*CH*₂-6-member ring thioglucose); 3.48 (m, 2H, CH₂-*CH*₂-NH-CO); 1.95 (m, 12H, *CH*₃).

Figure 2.39. ¹H NMR spectrum of compound 63 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 181.0$ (s, 1C, *C*=Au); 169.5 (s, 4C, *CO-thioglucose*); 157.8 (s, 1C, *CO*); 140.7 (s, 1C, *C_{ipso}Ph*-CH₂); 136. 8 (s, 1C, *C_{ipso}Ph*-CH₂); 128.7-126.5 (m, 10C, *Ph*); 122.1 (s, 1C, *imidazole*); 121.1 (s, 1C, *imidazole*); 81.7; 77.0;

74.3; 73.5; 68.6 (s, 5C, *thioglucose-ring*); 62.4 (s, 1C, CH₃COO-*CH*₂-6-member ring thioglucose); 53.4 (s, 1C, Ph-*CH*₂-imidazole); 50.4 (s, 1C, NH-CH₂-*CH*₂); 42.9 (s, 1C, NH-*CH*₂-Ph); 39.8 (s, 1C, NH-*CH*₂-CH₂); 20.4 (s, 4C, *CH*₃).

Figure 2.40. ¹³ C APT spectrum of compound 63 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₄H₄₂AuN₄O₁₀S] 895.229. Found 917.1920 [C₃₄H₄₂AuN₄O₁₀S + Na]⁺,

Figure 2.41. MS (ESI+ µ-TOF) compound 62.

To a solution of compound **52** (160.0 mg, 0.4 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). NBu₄(acac) (128 mg, 0.4 mmol) was added and the mixture stirred for 2.5h. The solution was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure

to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 63%

Scheme 2.14. Synthesis of compound 64.

¹**H NMR** (**ppm**) (400 MHz, DMSO): $\delta = 8.64$ (s br, 2H, CO-*NH*-Ph); 7,57 (s br, 4H, *imidazole*); 7.30 (m, 4H, *H*_{orto}*Ph*-NH); 7.22 (m, 10H, *Ph*-CH₂); 7.15 (m, 4H, *H*_{meta}*Ph*-NH); 6.86 (d, 2H, *H*_{para}Ph-NH); 6.35 (t, 2H, CH₂-*NH*-CO, ³*J*_{*H*-H} = 5.9 Hz); 5.29 (s, 4H, Ph-*CH*₂-imidazole); 4.25 (t, 4H, NH-CH₂-*CH*₂, ³*J*_{*H*-H} = 5.8 Hz); 3.50 (m, 4H, NH-*CH*₂-CH₂).

Figure 2.42. ¹H NMR spectrum of compound 64 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 183.2$ (s, 2C, *C*=Au); 155.3 (s, 2C, *CO*); 140.2 (s, 2C, *C_{ipso}Ph*-NH); 136.8 (s, 2C, *C_{ipso}Ph*-CH₂); 128.6 (s, 4C, *C_{orto}Ph*-CH₂); 128.6 (s, 4C, *C_{orto}Ph*-CH₂); 127.8 (s, 2C, *C_{para}Ph*-CH₂); 127.2 (s, 4C, *C_{meta}Ph*-CH₂); 122.5 (s, 2C, *imidazole*); 122.4 (s, 2C, *imidazole*); 121.1 (s, 2C, *C_{para}Ph*-NH); 117.7 (s, 4C, *C_{meta}Ph*-CH₂); 53.4 (s, 2C, Ph-*CH*₂-imidazole); 50.6 (s, 2C, NH-CH₂-*CH*₂); 40.2 (s, 2C, NH-*CH*₂-CH₂).

Figure 2.43. ¹³ C APT spectrum of compound 64 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₈H₄₀AuN₈O₂]⁺ 837.759. Found 837.2942.

Figure 2.44. MS (ESI+ μ -TOF) compound 64.

To a solution of compound **53** (167.7 mg, 0.4 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). NBu₄(acac) (128 mg, 0.4 mmol) was added and the mixture stirred for 2.5h. The solution was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 61%

Scheme 2.15. Synthesis of compound 65.

¹**H** NMR (ppm) (400 MHz, DMSO): $\delta = 8.87$ (s br, 2H, CO-*NH*-Ph); 7.50 (s, 4H, *imidazole*); 7.34 (dt, 2H, *IV*, ${}^{3}J_{F-H} = 12.3$ Hz, ${}^{4}J_{H-H} = 2.3$ Hz); 7.23 (m, 10H, *Ph*-CH₂); 7.16 (m, 2H, *II*); 6.96 (d, 2H, *I*, ${}^{5}J_{F-H} = 9.3$ Hz); 6.66 (m, 2H, *III*); 6.40 (t, 2H, CH₂-*NH*-CO, ${}^{3}J_{H-H} = 5.9$ Hz); 5.29 (s, 4H, Ph-*CH*₂-imidazole); 4.26 (t, 4H, NH-CH₂-*CH*₂, ${}^{3}J_{H-H} = 5.9$ Hz); 3.50 (m, 4H, NH-*CH*₂-CH₂);

Figure 2.45. ¹H NMR spectrum of compound 65 in DMSO solution.

¹⁹F{¹H} RMN (ppm) (376 MHz, DMSO): $\delta = -112.3$ (m, 1F, *Ph-F*).

Figure 2.46. ¹⁹ F{¹H} NMR spectrum of compound **65** in DMSO solution.

¹³C APT (ppm) (400 MHz, DMSO): $\delta = 183.2$ (s, 2C, *C*=Au); 162.3 (d, 2C, *C_{ipso}Ph-F*, ¹*J_{C-F}* = 240.2 Hz); 155.0 (s, 2C, *CO*); 142.1 (d, 2C, *C_{ipso}Ph-F*, ³*J_{C-F}* = 11.5 Hz); 136.7 (s, 2C, *C_{ipso}Ph-*CH₂) 129.9 (d, 2C, *II*, ³*J_{C-F}* = 9.8 Hz); 128.6 (s, 4C, *C_{ortho}Ph*); 127.8 (s, 2C, *C_{para}Ph*); 127.2 (s, 4C, *C_{meta}Ph*); 122.5 (s, 2C, *imidazole*); 122.4 (s, 2C, *imidazole*); 113.2 (d, 2C, *I*, ³*J_{C-F}* = 2.1 Hz); 107.3 (d, 2C, *III*, ²*J_{C-F}* = 21.2 Hz); 104.2 (d, 2C, *IV*, ³*J_{C-F}* = 26.7 Hz); 53.4 (s, 2C, Ph-*CH*₂-imidazole); 50.4 (s, 2C, NH-CH₂-*CH*₂); 40.0 (s, 2C, NH-*CH*₂-CH₂).

Figure 2.47. ¹³ C APT spectrum of compound 65 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₈H₃₈AuF₂N₈O₂]⁺ 873.2746. Found 873.2784.

Synthesis of compound 66

To a solution of compound **54** (166 mg, 0.4 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH_2Cl_2 (10 ml) until a colourless solution formed (5 min). NBu₄(acac) (128 mg, 0.4 mmol) was added and the mixture stirred for 2.5h. The solution was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 62%

Scheme 2.16. Synthesis of compound 66.

¹**H NMR (ppm) (400 MHz, DMSO):** δ = 7.05 (m, 4H, *imidazole*); 6.83 (m, 20H, CH₂-*Ph*); 6.08 (t, 2H, CO-*NH*-CH₂-Ph, ³*J*_{*H*-*H*} = 5.9 Hz); 5.77 (t, 2H, CH₂-CH₂-*NH*-CO, ³*J*_{*H*-*H*} = 5.6 Hz); 4.92 (s, 4H, Ph-*CH*₂-imidazole); 3.77 (t, 4H, *CH*₂-CH₂-NH-CO, ³*J*_{*H*-*H*} = 5.9 Hz); 3.66 (d, 4H, CH₂-*CH*₂-NH-CO, ³*J*_{*H*-*H*} = 5.9 Hz); 3.00 (m, 4H, CH₂-*CH*₂-NH-CO).

Figure 2.49. ¹H NMR spectrum of compound 66 in DMSO solution.

¹³C APT (**ppm**) (**400** MHz, **DMSO**): δ = 183.1 (s, 2C, *C*=Au); 158.0 (s, 2C, *CO*); 140.6 (s, 2C, *C_{ipso}Ph*-CH₂-NH); 136.9 (s, 2C, *C_{ipso}Ph*-CH₂-imidazole); 128.6-126.4 (m, 20C, *Ph*);122.6 (s, 2C, *imidazole*); 122.4 (s, 2C, *imidazole*); 53.4 (s, 2C, Ph-*CH*₂-imidazole); 50.7 (s, 2C, NH-CH₂-CH₂); 42.8 (s, 2C, Ph-*CH*₂-NH-CO); 39.8 (s, 2C, NH-*CH*₂-CH₂).

Figure 2.50. ¹³ C APT spectrum of compound 66 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₄₀H₄₄AuN₈O₂]⁺ 865.3247. Found 865.3229.

Synthesis of compound 67

To a solution of compound **52** (80.0 mg, 0.2 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH_2Cl_2 (10 ml) was added $NBu_4(acac)$ (64 mg, 0.2 mmol) and the mixture stirred. 2h later, 6-thioguanine was added (33 mg, 0.2 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite, the filtrate was washed with H_2O (3 x 25 ml), dried over Na_2SO_4 and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 84%

Scheme 2.17. Synthesis of compound 67.

¹**H** NMR (ppm) (400 MHz, DMSO): $\delta = 7.53$ (m, 2H, *imidazole*); 7.43 (s, 2H, *imidazole*); 7.15-6.71 (m, 20H, *arom*); 5.44 (s, 4H, Ph-*CH*₂-imidazole); 4.44 (t, 4H, NH-CH₂-*CH*₂, ³*J*_{*H*-*H*} = 5.4 Hz); 3.88 (t, 4H, NH-*CH*₂-CH₂, ³*J*_{*H*-*H*} = 5.4 Hz).

Figure 2.52. ¹H NMR spectrum of compound 67 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 171.4$ (s, 2C, *C*=Au); 160.7 (s, 2C, *CO*); 141.6 (s, 2C, *C_{ipso}Ph*-NH); 137.0 (s, 2C, *C_{ipso}Ph*-CH₂); 128.6 (s, 4C, *Ph_{ortho}*-NH); 127.3 (s, 2C, *Ph_{para}*-CH₂); 126.3(s, 4C, *Ph_{meta}*-CH₂); 124.2 (s, 2C, *imidazole*); 122.2 (s, 2C, *imidazole*); 119.4 (s, 2C, *Ph_{para}*-NH); 117,2 (s, 4C, *Ph_{meta}*-NH); 53.1 (s, 2C, Ph-*CH*₂-imidazole); 45.9 (s, 2C, NH-CH₂-CH₂); 39.8 (s, 2C, NH-*CH*₂-CH₂).

Figure 2.53. ¹³ C APT spectrum of compound 67 in DMSO solution.

Synthesis of compound 68

To a solution of compound **53** (83.86 mg, 0.2 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH_2Cl_2 (10 ml) was added NBu₄(acac) (64 mg, 0.2 mmol) and the mixture stirred. 2h later, 6-thioguanine was added (33 mg, 0.2 mmol) with an excess of K₂CO₃ and the solution stirred overnight. The solution was filtered through celite, the filtrate was washed with H₂O (3 x 25 ml), dried over Na₂SO₄ and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 65%.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 7.53$ (s, 2H, *imidazole*); 7.44 (s, 2H, *imidazole*); 7.32-6.96 (m, 14H, CH₂-*Ph* + 2 + 4); 6.51 (m, 2H, 1); 6.37 (m, 2H, 3); 5.45 (s, 4H, Ph-*CH*₂); 4.44 (t, 4H, *CH*₂-CH₂-NH-CO, ³*J*_{*H*-*H*} = 5.6 Hz); 3.86 (t, 4H, NH-*CH*₂-CH₂, ³*J*_{*H*-*H*} = 5.2 Hz).

Figure 2.54. ¹H NMR spectrum of compound 68 in DMSO solution.

¹⁹**F**{¹**H**} **NMR (ppm) (376 MHz, DMSO):** $\delta = -113.3$ (m, 1F, Ph-*F*).

Figure 2.55. ¹⁹ F{¹H} NMR spectrum of compound 68 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 171.1$ (s, 2C, C=Au); 162.4 (d, 2C, $C_{ipso}Ph$ -F, ¹ $J_{C-F} = 238.8$ Hz); 160.5 (s, 2C, CO); 143.5 (d, 2C, $C_{ipso}Ph$ -NH, ³ $J_{C-F} = 11.8$ Hz); 137.1 (s, 2C, $C_{ipso}Ph$ - CH_2); 129.3 (d, 2C, 2, ³ $J_{C-F} = 10.7$ Hz); 128.5 (s, 2C, $C_{ortho}Ph$); 127.4 (s, 2C, $C_{para}Ph$); 126.5 (s, 4C, $C_{meta}Ph$); 122.2 (s, 4C, *imidazole*); 112.9 (s, 4C, I); 105.5 (d, 2C, 3, ² $J_{C-F} = 20.9$ Hz); 103.7 (d, 2C, 4, ² $J_{C-F} = 26.3$ Hz); 53.2 (s, 1C, Ph- CH_2 -imidazole); 47.0 (s, 2C, NH-CH₂- CH_2); 39.8 (s, 2C, NH- CH_2 -CH₂).

Figure 2.56. ¹³ C APT spectrum of compound 68 in DMSO solution.

Synthesis of compound 69

To a solution of compound **54** (83.0 mg, 0.2 mmol) and [AuCl(tht)] (64 mg, 0.2 mmol) were mixed in CH_2Cl_2 (10 ml) was added $NBu_4(acac)$ (64 mg, 0.2 mmol) and the mixture stirred. 2h later, 6-thioguanine was added (33 mg, 0.2 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite, the filtrate was washed with H_2O (3 x 25 ml), dried over Na_2SO_4 and then concentrated under reduced pressure to approximately 1 ml. Hexane (10 ml) was added to precipitate a white product which was collected and vacuum dried to give the product.

Yield: 73%

Scheme 2.19. Synthesis of compound 69.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 7.52-7.42$ (m, 2H, *imidazole*); 7.35-7.22 (m, 10H, CH₂-*Ph*); 6.41 (t, 1H, CO-*NH*-CH₂-Ph, ³*J*_{*H*-*H*} = 6.1 Hz); 6.12 (t, 1H, CH₂-CH₂-*NH*-CO, ³*J*_{*H*-*H*} = 6.0 Hz); 5.35 (s, 2H, Ph-*CH*₂-imidazol); 4.18 (m, 4H, *CH*₂-CH₂-NH-CO + CH₂-*CH*₂-NH-CO); 3.48 (m, 2H, CH₂-*CH*₂-NH-CO).

Figure 2.57. ¹H NMR spectrum of compound 69 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 172.2$ (s, 1C, *C*=Au); 157.8 (s, 1C, *CO*); 140.7 (s, 1C, *C_{ipso}Ph*-CH₂-NH); 136.6 (s, 1C, *C_{ipso}Ph*-CH₂-imidazole); 128.7-126.5 (m, 10C, CH₂-*Ph*);122.2 (s, 1C, *imidazole*); 121.6 (s, 1C, *imidazole*); 53.7 (s, 1C, Ph-*CH*₂-imidazole); 50.9 (s, 1C, NH-CH₂-*CH*₂); 42.9 (s, 1C, Ph-*CH*₂-NH-CO); 39.8 (s, 1C, NH-*CH*₂-CH₂).

Figure 2.58. ¹³ C APT spectrum of compound 69 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₂₀H₂₃AuBrN₄O] 611.2934. Found 633.0501 [C₂₀H₂₃AuBrN₄O + Na]⁺.

Figure 2.59. MS (ESI+ μ -TOF) compound 69.

ANEXOS Capítulo 3

Syntheses

Synthesis of compound 70

To a solution of 3,4-Dimethoxy-3-cyclobutene-1,2-dione (29 mg, 0.2 mmol) in methanol (5 ml) was added 3,5-Bis(trifluoromethyl)aniline (32 μ L, 0.2 mmol) and the solution stirred. 80 hours later, 2-(diphenylphosphino)ethylamine was added (46 μ L, 0.2 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 77 %.

Scheme 3.1. Synthesis of compound 70.

¹**H NMR** (**ppm**) (**400 MHz**, **DMSO**): $\delta = 10.04$ (s, 1H, *NH*-Ph); 7.96 (s, 2H, *H*_{ortho}Ph-CF₃); 7.79 (s, 1H, *NH*-CH₂); 7.60 (s, 1H, *H*_{para}Ph-CF₃); 7.41(m, 4H, *H*_{ortho}PPh₂); 7.31 (m, 6H, *H*_{meta}+*H*_{para}PPh₂); 3.72 (s br, 2H, PPh₂-CH₂-CH₂); 2.47 (s br, 2H, PPh₂-CH₂-CH₂).

Figure 3.1. ¹H NMR spectrum of compound 70 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (376 MHz, DMSO): $\delta = -61.8$ (s, 3F, *CF*₃).

Figure 3.2. ¹⁹F{¹H} NMR spectrum of compound **70** in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = -22.6$ (s, 1P, *PPh*₂).

Figure 3.3. ³¹P{¹H} NMR spectrum of compound **70** in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.7$ (s, 1C, *C=O*); 180.5 (s, 1C, *C=O*); 169.6 (s, 1C, Ph-C=*C*-*NH*-*CH*₂); 162.7 (s, 1C, *Ph*-*NH*-*C*=*C*-CH₂); 141.1 (s, 1C, *C_{ipso}*-Ph-CF₃); 137.5 (d, 2C, *C_{ipso}*-PPh₂, ¹*J_{CP}* = 12.8 Hz); 132.4 (d, 4C, *C_{ortho}*PPh₂, ²*J_{CP}* = 19.0 Hz); 131.3 (q, 1C, *C_{ipso}*-Ph-CF₃, ²*J_{CP}* = 32.2 Hz); 128.8 (s, 2C, *C_{para}*PPh₂); 128.6 (d, 4C, *C_{meta}*PPh₂, ²*J_{CP}* = 6.8 Hz); 123.2 (q, 2C, *CF*₃, ¹*J_{CF}* = 272.9 Hz); 118.0 (s, 2C, *C_{ortho}*Ph-CF₃); 114.4 (s, 1C, *C_{para}*Ph-CF₃); 41.4 (d, 1C, PPh₂-CH₂, ²*J_{CP}* = 22.6 Hz); 28.4 (d, 1C, PPh₂-*CH*₂, ²*J_{CP}* = 13.1 Hz).

Figure 3.4.¹³C APT spectrum of compound 70 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₂₆H₁₉F₆N₂O₂P] 536.1083. Found 559.0960 [C₂₆H₁₉F₆N₂O₂P + Na]⁺.

Figure 3.5. MS (ESI+ µ-TOF) compound 70.

Synthesis of compound 71

To a solution of 3,4-Dimethoxy-3-cyclobutene-1,2-dione (29 mg, 0.2 mmol) in methanol (5 ml) was added 4-(trifluoromethyl)aniline (25 μ L, 0.2 mmol) and the solution stirred. 64 hours later, 2-(diphenylphosphino)ethylamine was added (46 μ L, 0.2 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 98 %.

Scheme 3.2. Synthesis of compound 71.

¹**H NMR** (**ppm**) (**400 MHz**, **DMSO**): $\delta = 9.88$ (s, 1H, *NH*-Ph); 7.85 (s, 1H, *NH*-CH₂); 7.66 (s, 2H, *H*_{ortho}Ph-CF₃); 7.58 (s, 1H, *H*_{meta}Ph-CF₃); 7.45 (m, 4H, *H*_{ortho}PPh₂); 7.34 (m, 6H, *H*_{meta}+*H*_{para}PPh₂); 3.74 (m, 2H, PPh₂-CH₂-CH₂); 2.50 (m, 2H, PPh₂-CH₂-CH₂).

Figure 3.6. ¹H NMR spectrum of compound 71 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -60.2$ (s, 3F, *CF*₃).

Figure 3.7.: ¹⁹F{¹H} NMR spectrum of compound 71 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = -22.4$ (s, 1P, *PPh*₂).

Figure 3.8.: ³¹P{¹H} NMR spectrum of compound 71 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.6$ (s, 1C, *C*=*O*); 180.2 (s, 1C, *C*=*O*); 169.4 (s, 1C, Ph-C=*C*-*NH*-*CH*₂); 162.9 (s, 1C, *Ph*-*NH*-*C*=C-CH₂); 142.5 (s, 1C, *C_{ipso}*-Ph-CF₃); 137.5 (d, 2C, *C_{ipso}*-PPh₂, ¹*J_{CP}* = 12.8 Hz); 132.4 (d, 4C, *C_{ortho}*PPh₂, ²*J_{CP}* = 19.0 Hz); 128.8 (s, 2C, *C_{para}*PPh₂); 128.6 (d, 4C, *C_{meta}*PPh₂, ²*J_{CP}* = 6.8 Hz); 126.6 (s, 2C, *C_{ortho}*Ph-CF₃); 123.6 (m, 2C, *CF₃*); 122.3 (q, 1C, *C_{ipso}*-Ph-CF₃, ²*J_{CP}* = 32.0 Hz); 117.9 (s, 2C, *C_{meta}*Ph-CF₃); 41.3 (d, 1C, PPh₂-CH₂-*CH*₂, ²*J_{CP}* = 22.6 Hz); 29.3 (d, 1C, PPh₂-*CH*₂-CH₂, ²*J_{CP}* = 13.2 Hz).

Figure 3.9. ¹³C APT spectrum of compound 71 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₂₅H₂₀F₃N₂O₂P] 468.1209. Found 491.1090 [C₂₅H₂₀F₃N₂O₂P + Na]⁺.

Figure 3.10. MS (ESI+ µ-TOF) compound 71.

Synthesis 72

To a solution of 3,4-Dimethoxy-3-cyclobutene-1,2-dione (29 mg, 0.2 mmol) in methanol (5 ml) was added 3,5-Bis(trifluoromethyl)benzylamine (50 mg, 0.2 mmol) and the solution stirred. 21 hours later, 2-(diphenylphosphino)ethylamine was added (46 μ L, 0.2 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 95%.

Scheme 3.3. Synthesis of compound 72.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 8.06$ (m, 3H, H_{ortho} Ph-CF₃+ H_{para} Ph-CF₃); 7.33 (m, 10H, *PPh*₂); 4.86 (s, 2H, NH-*CH*₂-Ph-CF₃); 3.63(t, 2H, PPh₂-CH₂-*CH*₂, ³ $J_{H-H} = 7.3$ Hz); 2.42 (s, 2H, PPh₂-*CH*₂-CH₂).

Figure 3.11. ¹H NMR spectrum of compound 72 in DMSO solution.

¹**H NMR (ppm) (400 MHz, CD₃CN):** δ = 7.97 (s, 2H, *H*_{ortho}Ph-CF₃); 7.46-7.36 (m, 11H, *H*_{para}Ph-CF₃+*PPh*₂); 6.30 (s, 1H, *NH*); 6.12 (s, 1H, *NH*); 4.86 (d, 2H, NH-*CH*₂-Ph-CF₃, ³*J*_{*H*-*H*} = 6.0 Hz); 3.72 (m, 2H, PPh₂-CH₂-*CH*₂, ³*J*_{*H*-*H*} = 6.6 Hz); 2.45 (m, 2H, PPh₂-*CH*₂-CH₂).

Figure 3.12. ¹H NMR spectrum of compound 72 in CD₃CN solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -61.3$ (s, 6F, *CF*₃).

Figure 3.13. ${}^{19}F{}^{1}H$ NMR spectrum of compound 72 in DMSO solution.

³¹**P**{¹**H**} **NMR (ppm) (162 MHz, DMSO):** $\delta = -22.4$ (s br, 1P, *PPh*₂).

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 182.8$ (s, 1C, *C=O*); 182.5 (s, 1C, *C=O*); 167.9 (s, 1C, Ph-C=*C*-*CH*₂); 167.2 (s, 1C, *Ph*-*C*=*C*-CH₂); 142.6 (s, 1C, *C_{ipso}-Ph*); 137.6 (d, 2C, *C_{ipso}*PPh₂, ¹*J_{CP}* = 12.9 Hz); 132.3 (d, 4C, *C_{ortho}*PPh₂, ²*J_{CP}* = 18.9 Hz); 130.4 (q, 2C, *C_{ipso}C*-*CF*₃, ²*J_{CF}* = 32.7 Hz); 128.7 (s, 1C, *C_{para}*PPh₂); 128.5 (s br, 4C, *C_{meta}*PPh₂, ³*J_{CP}* = 6.7 Hz); 128.3 (s, 2C, *C_{ortho}*Ph-CF₃); 123.3 (q, 2C, *CF*₃, ¹*J_{CF}* = 272.9 Hz); 121.9 (s, 1C, *C_{para}*Ph-CF₃); 45.7 (s, 1C, NH-*CH*₂-Ph-CF₃); 40.9 (s, 1C, PPh₂-CH₂-*CH*₂, ²*J_{CP}* = 23.1 Hz); 29.47 (s, 1C, PPh₂-CH₂-CH₂, ¹*J_{CP}* = 13.2 Hz).

Figure 3.15: ¹³C APT spectrum of compound 72 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₂₇H₂₁F₆N₂O₂P] 550.1239. Found 573.1115 [C₂₇H₂₁F₆N₂O₂P + Na]⁺.

Figure 3.16. MS (ESI+ μ -TOF) compound 72.

Synthesis of compound 73

To a solution of compound **70** (53 mg, 0.1 mmol) in acetone (5 ml) was added [AgOTf] (12 mg, 0.05 mmol) and the solution stirred for 2 hours with exclusion of light. The solution was concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 40%.

Scheme 3.4. Synthesis of compound 73.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 10.20$ (s, 2H, *NH*-PPh₂); 7.98 (s, 4H, *H*_{ortho}Ph-CF₃); 7.72 (m, 10H, *H*_{ortho}PPh₂ + *NH*-CH₂); 7.50 (m, 14H, *H*_{para}Ph-CF₃ + *H*_{meta}+*H*_{para}PPh₂); 3.83(m, 4H, PPh₂-CH₂-CH₂); 2.93(m, 4H, PPh₂-CH₂-CH₂).

Figure 3.17. ¹H NMR spectrum of compound 73 in DMSO solution.

Figure 3.18. ¹⁹F{¹H} NMR spectrum of compound 73 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = -1.7$ (d, 2P, *PPh*₂, ¹*J*_{*Ag-P*} = 394.8Hz).

Figure 3.19. ³¹P{¹H} NMR spectrum of compound 73 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.8$ (s, 2C, C=O); 180.2 (s, 2C, C=O); 169.0 (s, 2C, Ph-C=*C*-*CH*₂); 162.8 (s, 2C, *Ph*-*C*=*C*-CH₂); 140.8 (s, 2C, *C_{ipso}*-*Ph*); 133.0 (s br, 8C, *C_{ortho}*PPh₂); 131.2 (d, 4C, *C_{ipso}*PPh₂, ¹*J_{CP}* = 33.2 Hz); 130.9 (s br, 2C, *C_{para}*PPh₂); 129.1 (s br, 8C, *C_{meta}*PPh₂); 123.1 (q, 4C, *CF*₃, ¹*J_{CF}* = 272.7 Hz); 117.8 (s, 4C, *C_{ortho}*Ph-CF₃); 114.7 (s, 2C, *C_{para}*Ph-CF₃); 40.0 (m, 2C, PPh₂-CH₂-*CH*₂); 29.6 (s, 2C, PPh₂-*CH*₂-CH₂).

Figure 3.20.: ¹³C APT spectrum of compound 73 in DMSO solution.

MS (ESI+ μ **-TOF): m/z (%)=** [M]⁺ Calcd for [C₅₂H₃₈AgF₁₂N₄O₄P₂] 1179.1222. Found 1179.1188.

Figure 3.21. MS (ESI+ µ-TOF) compound 73.

Synthesis of compound 74

To a solution of compound **71** (46 mg, 0.1 mmol) in acetone (5 ml) was added [AgOTf] (12 mg, 0.05 mmol) and the solution stirred for 2 hours with exclusion of light. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product. Yield: 46%.

Scheme 3.5. Synthesis of compound 74.

¹H NMR (ppm) (400 MHz, DMSO): $\delta = 9.90$ (s, 2H, *NH*-PPh₂); 7.70 (m, 10H, H_{ortho} PPh₂ + *NH*-CH₂); 7.57 (s, 4H, H_{ortho} Ph-CF₃); 7.48 (m, 16H, H_{meta} Ph-CF₃ + H_{meta} + H_{para} PPh₂); 3.84 (s br, 4H, PPh₂-CH₂-CH₂); 2.93 (s br, 4H, PPh₂-CH₂-CH₂).

Figure 3.22. ¹H NMR spectrum of compound 74 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): δ = -60.3 (s, 6F, *CF*₃); -77.7 (s, 3F, *OTf*).

Figure 3.23. ¹⁹F{¹H} NMR spectrum of compound 74 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = -1.1$ (s br, 2P, *PPh*₂).

Figure 3.24. ³¹P{¹H} NMR spectrum of compound 74 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.8$ (s, 2C, C=O); 179.9 (s, 2C, C=O); 168.8 (s, 2C, C=C); 163.4 (s, 2C, C=C); 142.82 (s, 2C, $C_{ipso}Ph$); 132.8 (d, 8C, $C_{ortho}PPh_2$, ${}^{2}J_{CP} = 13.8$ Hz); 131.6 (d, 4C, $C_{ipso}PPh_2$, ${}^{1}J_{CP} = 29.5$ Hz); 130.7 (s br, 2C, $C_{para}PPh_2$); 129.0 (s br, 8C, $C_{meta}PPh_2$, ${}^{3}J_{CP} = 5.1$ Hz); 126.5 (s, 4C, $C_{ortho}Ph-CF_3$); 122.6 (m, 2C, CF_3); 118.0 (s, 4C, $C_{meta}Ph-CF_3$); 41.1 (m, 2C, PPh₂-CH₂-CH₂); 27.8 (s, 2C, PPh₂-CH₂-CH₂).

Figure 3.25. ¹³C APT spectrum of compound 74 in DMSO solution.

MS (ESI+ \mu-TOF): m/z (%)= [M]⁺ Calcd for [C₅₀H₄₀AgF₆N₄O₄P₂] 1043.1474. Found 1043.1491.

Figure 3.26. MS (ESI+ μ -TOF) compound 74.

Synthesis of compound 75

To a solution of compound **72** (56 mg, 0.1 mmol) in acetone (5 ml) was added [AgOTf] (12 mg, 0.05 mmol) and the solution stirred for 2 hours with exclusion of light. The solution was concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product. Yield: 38%.

Scheme 3.6. Synthesis of compound 75.

¹H NMR (ppm) (400 MHz, DMSO): $\delta = 8.06$ (s, 2H, H_{para} Ph-CF₃); 8.04 (s, 4H, H_{ortho} Ph-CF₃); 7.66 (s, 8H, H_{ortho} PPh₂); 7.43 (s, 12H, H_{meta} + H_{para} PPh₂); 4.81 (s, 4H, NH-CH₂-Ph-CF₃); 3.78 (s, 4H, PPh₂-CH₂-CH₂); 2.82(s, 4H, PPh₂-CH₂-CH₂).

Figure 3.27. ¹H NMR spectrum of compound 75 in DMSO solution.

¹⁹**F**{¹**H**} **NMR (ppm) (376 MHz, DMSO):** δ = -61.3 (s, 12F, *CF*₃); -77.7 (s, 3F, *OTf*).

Figure 3.28. ${}^{19}F{}^{1}H$ NMR spectrum of compound 75 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = -0.2$ (s br, 2P, *PPh*₂).

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 183.0$ (s, 2C, *C*=*O*); 182.1 (s, 2C, *C*=*O*); 167.7 (s, 2C, *C*=*C*); 167.3 (s, 2C, *C*=*C*); 142.3 (s, 2C, *C_{ipso}Ph*); 132.9 (d, 8C, *C_{ortho}PPh₂*, ²*J_{CP}* = 9.2 Hz); 131.7 (d, 4C, *C_{ipso}PPh₂*, ¹*J_{CP}* = 28.1 Hz); 130.7 (s br, 2C, *C_{para}PPh₂*); 130.4 (q, 4C, *C_{ipso}C-CF₃*, ²*J_{CF}* = 33.0 Hz); 129.0 (s br, 8C, *C_{meta}PPh₂*); 128.6 (s, 4C, *C_{ortho}Ph-CF₃*); 123.3 (q, 4C, *CF₃*, ¹*J_{CF}* = 272.7 Hz); 121.2 (s, 2C, *C_{para}Ph-CF₃*); 45.8 (s, 2C, NH-*CH₂*-Ph-CF₃); 40.9 (s, 2C, PPh₂-CH₂-CH₂); 28.3(s, 2C, PPh₂-CH₂-CH₂).

Figure 3.30. ¹³C APT spectrum of compound 75 in DMSO solution.

MS (ESI+ \mu-TOF): m/z (%)= [M]⁺ Calcd for [C₅₄H₄₂AgF₁₂N₄O₄P₂] 1207.1535 Found 1207.1570.

Figure 3.31. MS (ESI+ µ-TOF) compound 75.

Synthesis of compound 76

To a solution of compound **70** (53 mg, 0.2 mmol) in acetonitrile (50 ml) was added $[Cu(NCMe)_4]PF_6$ (18.6 mg, 0.05 mmol) and the solution stirred for 2 hours. The solution was concentrated under reduced pressure to approximately 1 ml and pentane (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 38%.

Scheme 3.7. Synthesis of compound 76.

¹H NMR (ppm) (400 MHz, DMSO): $\delta = 10.17$ (s, 2H, *NH*-PPh₂); 7.87 (s, 4H, *H*_{ortho}Ph-CF₃); 7.73 (s, 2H, *NH*-CH₂); 7.57 (m, 8H, *H*_{ortho}PPh₂); 7.52 (s, 2H, *H*_{para}Ph-CF₃); 7.43 (m, 12H, *H*_{meta}+*H*_{para}PPh₂); 3.71 (m, 4H, PPh₂-CH₂-CH₂); 2.76 (m, 4H, PPh₂-CH₂-CH₂).

Figure 3.32. ¹H NMR spectrum of compound 76 in DMSO solution.
¹⁹**F**{¹**H**} **NMR (ppm) (376 MHz, DMSO):** $\delta = -61.9$ (s, 12F, *CF*₃); -69.2, -71.1 (s, 6F, *PF*₆).

Figure 3.33. ¹⁹F{¹H} NMR spectrum of compound **76** in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = -15.8$ (s, 2P, *PPh*₂).

Figure 3.34. ³¹P{¹H} NMR spectrum of compound 76 in DMSO solution.

¹³C APT (100 MHz, DMSO): $\delta = 184.7$ (s, 2C, C=O); 180.2 (s, 2C, C=O); 169.0 (s, 2C, Ph-C=C-CH₂); 162.7 (s, 2C, Ph-C=C-CH₂); 140.8 (s, 2C, $C_{ipso}Ph$); 132.5 (s br, 8C, $C_{ortho}PPh_2$); 131.2 (d, 4C, $C_{ipso}PPh_2$, ${}^{1}J_{CP} = 33.1$ Hz); 130.2 (s br, 2C, $C_{para}PPh_2$); 128.8 (s br, 8C, $C_{meta}PPh_2$); 123.0 (q, 4C, CF_3 , ${}^{1}J_{CF} = 272.7$ Hz); 117.8 (s, 4C, $C_{ortho}Ph$ -CF₃); 114.7 (s, 2C, $C_{para}Ph$ -CF₃); 40.1 (s, 2C, PPh₂-CH₂-CH₂); 27.5 (m, 2C, PPh₂-CH₂-CH₂).

Figure 3.35. ¹³C APT spectrum of compound 76 in DMSO solution.

MS (ESI+ μ **-TOF): m/z (%)=** [M]⁺ Calcd for [C₅₂H₃₈CuF₁₂N₄O₄P₂] 1135.1467. Found 1135.1499.

Figure 3.36. MS (ESI+ μ -TOF) compound 76.

Synthesis of compound 77

To a solution of compound **71** (46 mg, 0.2 mmol) in acetonitrile (50 ml) was added $[Cu(NCMe)_4]PF_6$ (18.6 mg, 0.05 mmol) and the solution stirred for 2 hours. The solution was concentrated under reduced pressure to approximately 1 ml and pentane (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 30%.

Scheme 3.8. Synthesis of compound 77.

¹**H** NMR (ppm) (400 MHz, DMSO): $\delta = 9.91$ (s, 2H, *NH*-Ph-CF₃); 7.72-7.56 (m, 30H, *H*_{ortho}Ph-CF₃ + *H*_{meta}Ph-CF₃ + *H*_{ortho}PPh₂ + *H*_{meta}PPh₂ + *H*_{para}PPh₂ + *NH*-CH₂); 3.72 (m, 4H, PPh₂-CH₂-CH₂); 2.73(m, 4H, PPh₂-CH₂-CH₂).

Figure 3.37. ¹H NMR spectrum of compound **77** in DMSO solution.

¹⁹**F**{¹**H**} **NMR (ppm) (376 MHz, DMSO):** $\delta = -60.3$ (s, 12F, *CF*₃); -69.2, -71.1 (s, 6F, *PF*₆).

Figure 3.38. ¹⁹F{¹H} NMR spectrum of compound 77 in DMSO solution.

³¹P{¹H} NMR (ppm) (400MHz, DMSO): $\delta = -15.4$ (s, 2P, *PPh*₂).

Figure 3.39. ³¹P{¹H} NMR spectrum of compound 77 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.7$ (s, 2C, C=O); 179.9 (s, 2C, C=O); 168.9 (s, 2C, C=C); 163.3 (s, 2C, C=C); 142.3 (s, 2C, $C_{ipso}-Ph$); 132.5 (s br, 8C, $C_{ortho}PPh_2$); 130.2 (s br, 2C, $C_{para}PPh_2$); 128.8 (s br, 8C, $C_{meta}PPh_2$); 126.5 (s, 4C, $C_{para}Ph-CF_3$); 123.0 (m, 4C, CF_3); 118.0 (s, 4C, $C_{ortho}Ph-CF_3$); 40.7(s, 2C, $PPh_2-CH_2-CH_2$); 27.8 (s, 2C, $PPh_2-CH_2-CH_2$).

Figure 3.40. ¹³C APT spectrum of compound 77 in DMSO solution.

MS (ESI+ \mu-TOF): m/z (%)= [M]⁺ Calcd for [C₅₀H₄₀CuF₆N₄O₄P₂] 999.1719. Found 999.1731.

Figure 3.41. MS (ESI+ µ-TOF) compound 77.

Synthesis of compound 78

To a solution of compound **72** (55 mg, 0.1 mmol) in acetonitrile (50 ml) was added $[Cu(NCMe)_4]PF_6$ (18.6 mg, 0.05 mmol) and the solution stirred for 2 hours. The solution was concentrated under reduced pressure to approximately 1 ml and pentane (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 35%.

Scheme 3.9. Synthesis of compound 78.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 8.05$ (m, 6H, H_{ortho} Ph-CF₃ + H_{para} Ph-CF₃); 7.50 (s, 8H, H_{ortho} PPh₂); 7.37 (s, 2H, H_{para} Ph-CF₃); 4.82 (s, 4H, NH-*CH*₂-Ph-CF₃); 3.64(s, 4H, PPh₂-CH₂-CH₂); 2.59(s, 4H, PPh₂-CH₂-CH₂).

Figure 3.42. ¹H NMR spectrum of compound 78 in DMSO solution.

¹⁹**F**{¹**H**} **NMR (ppm) (376 MHz, DMSO):** $\delta = -61.9$ (s, 12F, *CF*₃); -69.2, -71.1 (s, 6F, *PF*₆).

Figure 3.43. ¹⁹F{¹H} NMR spectrum of compound 78 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = -14.8$ (s, 2P, *PPh*₂).

Figure 3.44. ³¹P{¹H} NMR spectrum of compound 78 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 183.1(s, 2C, C=O)$; 142.3 (s, 2C, *C_{ipso}Ph*); 132.4 (s br, 8C, *C_{ortho}PPh₂*); 130.6 (m, 4C, *C_{ipso}C-CF₃*); 130.1 (s, 2C, *C_{para}PPh₂*); 128.7 (s br, 8C, *C_{meta}PPh₂*); 128.6 (s, 4C, *C_{ortho}Ph-CF₃*); 123.3 (q, 4C, *CF₃*, ¹*J_{CF}* = 273.0 Hz); 121.3 (s, 2C, *C_{para}Ph-CF₃*); 45.8 (s, 2C, NH-*CH₂*-Ph-CF₃); 40.3(s, 2C, PPh₂-CH₂-CH₂); 28.2 (m, 2C, PPh₂-*CH₂*-CH₂).

Figure 3.45. ¹³C APT spectrum of compound 78 in DMSO solution.

MS (ESI+ μ **-TOF): m/z (%)=** [M]⁺ Calcd for [C₅₄H₄₂CuF₁₂N₄O₄P₂] 1163.1780. Found 1163.1799.

Figure 3.46. MS (ESI+ μ -TOF) compound 78.

Synthesis of compound 79

To a solution of compound **70** (53 mg, 0.1 mmol) in acetone (20 ml) was added [AuCl(tht)] (32 mg, 0.1 mmol) and the solution stirred for 2 hours. The solution was concentrated under reduced pressure to approximately 1 ml and pentane (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 27%.

Scheme 3.10. Synthesis of compound 79.

¹H NMR (ppm) (400 MHz, DMSO): $\delta = 10.14$ (s, 1H, *NH*-Ph-CF₃); 7.98 (s, 2H, *H*_{ortho}Ph-CF₃); 7.81 (m, 5H, *H*_{ortho}PPh₂ + *NH*-CH₂); 7.68 (s, 1H, *H*_{para}Ph-CF₃); 7.56 (s, 6H, *H*_{meta}+*H*_{para}PPh₂); 3.18 (m, 2H, PPh₂-CH₂-CH₂); 3.94 (m, 2H, PPh₂-CH₂-CH₂).

Figure 3.47. ¹H NMR spectrum of compound 79 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -63.6$ (s, 3F, *CF*₃).

Figure 3.48. ¹⁹F{¹H} NMR spectrum of compound 79 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 24.2$ (s, 1P, *PPh*₂).

Figure 3.49. ³¹P{¹H} NMR spectrum of compound 79 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.5$ (s, 1C, C=O); 180.7 (s, 1C, C=O); 169.5 (s, 1C, Ph-C=*C*-*CH*₂); 162.7 (s, 1C, *Ph*-*C*=*C*-CH₂); 140.9 (s, 1C, *C_{ipso}-Ph*); 133.2 (d, 4C, *C_{ortho}*PPh₂, ²*J_{CP}* = 13.5 Hz); 132.1 (d, 2C, *C_{para}*PPh₂, ²*J_{CP}* = 2.2 Hz); 131.3 (q, 1C, *C_{ipso}-Ph*-*CF*₃); 129.4 (d, 4C, *C_{meta}*PPh₂, ²*J_{CP}* = 11.6 Hz); 129.0 (d, 2C, *C_{ipso}*PPh₂, ²*J_{CP}* = 60.8 Hz); 123.2 (q, 2C, *CF*₃, ¹*J_{CF}* = 272.8 Hz); 118.3 (s, 2C, *C_{ortho}*Ph-CF₃); 114.9 (s, 1C, *C_{para}*Ph-CF₃); 39.8 (m, 1C, PPh₂-CH₂-*CH*₂); 28.4 (d, 1C, PPh₂-*CH*₂-*CH*₂, ²*J_{CP}* = 37.7Hz).

Figure 3.50. ¹³C APT spectrum of compound 79 in DMSO solution.

MS (ESI+ \mu-TOF): m/z (%)= [M]⁺ Calcd for [C₂₆H₁₉AuClF₆N₂O₂P] 768.0137. Found 791.0318 [C₂₆H₁₉AuClF₆N₂O₂P + Na]⁺.

Figure 3.51. MS (ESI+ µ-TOF) compound 79.

Synthesis of compound 80

To a solution of compound **71** (46 mg, 0.1 mmol) in acetone (20 ml) was added [AuCl(tht)] (32 mg, 0.1 mmol) and the solution stirred for 2 hours. The solution was concentrated under reduced pressure to approximately 1 ml and pentane (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 32%.

Scheme 3.11. Synthesis of compound 80.

¹**H** NMR (ppm) (400 MHz, DMSO): $\delta = 9.87$ (s, 1H, *NH*-Ph-CF₃); 7.89 (s, 1H, *NH*-CH₂); 7.78 (m, 4H, *H*_{ortho}Ph-CF₃); 7.67-7.54 (m, 10H, *H*_{meta}+*H*_{para}PPh₂+ *H*_{ortho}Ph-CF₃+ *H*_{meta}Ph-CF₃); 3.96 (m, 2H, PPh₂-CH₂-CH₂), 3.18 (m, 2H, PPh₂-CH₂-CH₂).

Figure 3.52. ¹H NMR spectrum of compound 80 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -57.3$ (s, 3F, *CF*₃).

Figure 3.53. ¹⁹F{¹H} NMR spectrum of compound 80 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 27.5$ (s, 1P, *PPh*₂).

Figure 3.54. ³¹P{¹H} NMR spectrum of compound 80 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.4$ (s, 1C, C=O); 180.4 (s, 1C, C=O); 169.3 (s, 1C, C=C); 163.3 (s, 1C, C=C); 142.4 (s, 1C, C_{ipso} -*Ph*); 133.2 (d, 4C, C_{ortho} PPh₂, ² $J_{CP} = 13.5$ Hz); 132.0 (d, 2C, C_{para} PPh₂, ² $J_{CP} = 2.7$ Hz); 131.3 (d, 1C, C_{ipso} PPh₂, ¹ $J_{CP} = 34.3$ Hz); 129.4 (d, 4C, C_{meta} PPh₂, ² $J_{CP} = 11.7$ Hz); 128.7 (s, 2C, C_{ipso} -*Ph*-*CF*₃); 126.6 (s, 2C, C_{ortho} Ph-CF₃); 122.5 (m, 1C, *CF*₃); 118.1 (s, 2C, C_{meta} Ph-CF₃); 39.8 (m, 1C, PPh₂-CH₂-CH₂); 28.7 (d, 1C, PPh₂-CH₂-CH₂, ² $J_{CP} = 32.2$ Hz).

Figure 3.55. ¹³C APT spectrum of compound 80 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₂₅H₂₀AuClF₃N₂O₂P] 700.0584. Found 723.0442 [C₂₅H₂₀AuClF₃N₂O₂P + Na]⁺.

Figure 3.56. MS (ESI+ µ-TOF) compound 80.

Synthesis of compound 81

To a solution of compound **72** (55 mg, 0.1 mmol) in acetone (20 ml) was added [AuCl(tht)] (32 mg, 0.1 mmol) and the solution stirred for 2 hours. The solution was concentrated under reduced pressure to approximately 1 ml and pentane (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 38%.

Scheme 3.12 Synthesis of compound 81.

¹**H** NMR (**ppm**) (400 MHz, CD₃CN): $\delta = 7.95$ (m, 3H, *Ph-CF₃*); 7.73 (m, 4H, *ortho PPh*₂); 7.49 (m, 6H, *meta, para PPh*₂); 6.69 (s br, 1H, *NH*-CH₂-Ph-CF₃); 6.53 (s br, 1H, *NH*-CH₂-CH₂); 4.83 (d, 2H, NH-*CH*₂-PH-CF₃, ³*J*_{*HH*}= 6.3 Hz); 3.90 (m, 2H, NH-*CH*₂-CH₂); 3.01 (m, 2H, PPh₂-*CH*₂-CH₂).

Figure 3.57. ¹H NMR spectrum of compound 81 in CD₃CN solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -63.2$ (s, 1P, *CF*₃).

Figure 3.58. ¹⁹F{¹H} NMR spectrum of compound 81 in CD₃CN solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 24.6$ (s, 1P, *PPh*₂).

Figure 3.59. ³¹P{¹H} NMR spectrum of compound 81 in CD₃CN solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.2$ (s, 1C, C=O); 168.7 (s, 1C, C=C); 142.9 (s, 1C, $C_{ipso}-Ph$); 134.3 (d, 4C, $C_{ortho}PPh_2$, ${}^{2}J_{CP}=13.5$ Hz); 133.0 (d, 2C, $C_{para}PPh_2$, ${}^{4}J_{CP}=2.6$ Hz); 132.2 (d, $C_{ipso}PPh_2$); 130.3 (d, 4C, $C_{meta}PPh_2$, ${}^{3}J_{CP}=11.7$ H); 129.9 (m, 2C, CF_3); 129.5 (s, 2C, $C_{ortho}Ph-CF_3$); 122.5 (s, 1C, $C_{para}Ph-CF_3$); 47.4 (s, 1C, NH- CH_2 -Ph-CF₃); 43.4 (s, 1C, PPh₂-CH₂-CH₂); 30.7 (s, 1C, PPh₂-CH₂-CH₂).

Figure 3.60. ¹³C APT spectrum of compound 81 in CD₃CN solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₂₇H₂₁AuClF₆N₂O₂P] 782.0593. Found 805.0477 [C₂₇H₂₁AuClF₆N₂O₂P + Na]⁺.

Figure 3.61. MS (ESI+ μ -TOF) compound 81.

Synthesis of compound 82

To a solution of compound **70** (53 mg, 0.1 mmol) in acetone (20 ml) was added [AuCl(tht)] (32 mg, 0.1 mmol) and the solution stirred. 2 hours later, 2-mercaptopyridine

was added (11 mg, 0.1 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite, the filtrate concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 40%.

Scheme 3.13. Synthesis of compound 82.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 8.22$ (d, 1H, 1, ¹*J*_{*HH*} = 4.2 Hz); 7.91 (m, 4H, *H*_{ortho}PPh₂); 7.56 (m, 8H, *H*_{meta}+*H*_{para}PPh₂+ *H*_{ortho}Ph-CF₃); 7.33 (m, 3H, 3+4+ *H*_{para}Ph-CF₃); 6.89 (t, 1H, 2, ¹*J*_{*HH*} = 6.4 Hz); 3.71 (m, 2H, PPh₂-CH₂-CH₂); 3.17 (m, 2H, PPh₂-CH₂-CH₂).

Figure 3.62. ¹H NMR spectrum of compound 82 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -61.5$ (s, 1F, *CF*₃).

Figure 3.63. ¹⁹F{¹H} NMR spectrum of compound 82 in DMSO solution.

³¹P{¹H} NMR (ppm) (400 MHz, DMSO): $\delta = 29.3$ (s, 1P, *PPh*₂).

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 148.4$ (s, 1C, *1*); 136.6;125.8 (s, 2C, *3*,*4*); 133.3 (d, 4C, *C*_{ortho}PPh₂, ²*J*_{CP} = 33.1 Hz); 131.7 (s, 2C, *C*_{para}PPh₂); 130.0 (m, 2C, *CF*₃); 129.4 (d, 4C, *C*_{meta}PPh₂, ³*J*_{CP} = 11.3 Hz); 118.0 (s, 1C, 2); 39.6 (s, 1C, PPh₂-CH₂-CH₂); 29.6 (m, 1C, PPh₂-CH₂-CH₂).

Figure 3.65. ¹³C APT spectrum of compound 82 in DMSO solution.

MS (ESI+ \mu-TOF): m/z (%)= [M]⁺ Calcd for [C₃₁H₂₄AuF₆N₃O₂PS] 844.0891. Found 844.0856.

Figure 3.66. MS (ESI+ μ -TOF) compound 82.

Synthesis of compound 83

To a solution of compound **71** (46 mg, 0.1 mmol) in acetone (20 ml) was added [AuCl(tht)] (32 mg, 0.1 mmol) and the solution stirred. 2 hours later, 2-mercaptopyridine was added (11 mg, 0.1 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite and concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 52%.

Scheme 3.14. Synthesis of compound 83.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 8.21 \text{ (m, 1H, 1)}$; 7.94 (m, 4H, $H_{ortho}PPh_2$); 7.55 (m, 8H, $H_{meta}PPh_2 + H_{ortho}Ph-CF_3 + H_{meta}Ph-CF_3$); 7.31 (m, 2H, 3+4); 6.88 (m, 1H, 2); 3.94 (m, 2H, PPh₂-CH₂-CH₂); 3.19 (m, 2H, PPh₂-CH₂-CH₂).

Figure 3.67. ¹H NMR spectrum of compound 83 in DMSO solution.

Figure 3.68. ¹⁹F{¹H} NMR spectrum of compound 83 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 29.4$ (s, 1P, *PPh*₂).

Figure 3.69. ³¹P{¹H} NMR spectrum of compound 83 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 148.3$ (s, 1C, 1); 136.6;125.8 (s, 2C, 3,4); 133.4 (d, 4C, *C*_{ortho}PPh₂, ²*J*_{CP} = 13.7 Hz); 131.8 (s, 2C, *C*_{para}PPh₂); 130.3 (s, 2C, *C*_{ortho}Ph-CF₃); 129.8 (s, 1C, *C*_{ipso}PPh₂); 129.3 (d, 4C, *C*_{meta}PPh₂, ³*J*_{CP} = 11.3 Hz); 128.6 (s, 2C, *C*_{meta}Ph-CF₃); 118.0 (s, 1C, 2); 41.1 (s, 1C, PPh₂-CH₂-CH₂); 28.6 (m, 1C, PPh₂-CH₂-CH₂).

Figure 3.70. ¹³C APT spectrum of compound 83 in DMSO solution.

MS (ESI+ \mu-TOF): m/z (%)= [M]⁺ Calcd for [C₃₀H₂₄AuF₃N₃O₂PS] 775.0939. Found 798.0804 [C₃₀H₂₄AuF₂N₃O₂PS + Na]⁺.

Figure 3.71. MS (ESI+ μ -TOF) compound 83.

Synthesis of compound 84

To a solution of compound **72** (55 mg, 0.1 mmol) in acetone (20 ml) was added [AuCl(tht)] (32 mg, 0.1 mmol) and the solution stirred. 2 hours later, 2-mercaptopyridine was added (11 mg, 0.1 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite and concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 39%.

Scheme 3.15. Synthesis of compound 84.

¹**H NMR** (**ppm**) (**400 MHz**, **DMSO**): $\delta = 8.20$ (s, 1H, 1); 8.04 (m, 3H, H_{ortho} Ph-CF₃+ H_{para} Ph-CF₃); 7.90 (m, 4H, H_{ortho} PPh₂); 7.54 (m, 6H, H_{meta} + H_{para} PPh₂); 7.33 (m, 2H, 3+4); 6.90 (s, 1H, 2); 4.81 (s, 2H, NH-CH₂-Ph-CF₃); 3.89 (m, 2H, PPh₂-CH₂-CH₂); 3.12 (m, 2H, PPh₂-CH₂-CH₂).

Figure 3.72. ¹H NMR spectrum of compound 84 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (376 MHz, DMSO): $\delta = -61.2$ (s, 1F, *CF*₃).

Figure 3.73. ¹⁹F{¹H} NMR spectrum of compound 84 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 29.7$ (s, 1P, *PPh*₂).

Figure 3.74. ³¹P{¹H} NMR spectrum of compound 84 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 182.6$ (s, 1C, C=O); 148.3 (s, 1C, 1); 142.4 (s, 1C, $C_{ipso}-Ph$); 136.6; 125.8 (s, 2C, 3,4); 133.3 (d, 4C, $C_{ortho}PPh_2$, ${}^2J_{CP} = 13.7$ Hz); 131.7(s, 2C, $C_{para}PPh_2$); 130.4 (m, 2C, $C_{ipso}C-CF_3$); 129.3 (d, 4C, $C_{meta}PPh_2$, ${}^3J_{CP} = 11.2$ Hz); 128.6 (s, 2C, $C_{ortho}Ph-CF_3$); 124.6 (m, 2C, CF_3); 121.3 (s, 1C, $C_{para}Ph-CF_3$); 118.1 (s, 1C, 2); 45.8 (s, 2H, NH- CH_2 -Ph- CF_3); 40.1 (s, 1C, PPh₂- CH_2 - CH_2); 28.7 (s, 1C, PPh₂- CH_2 - CH_2).

Figure 3.75. ¹³C APT spectrum of compound 84 in DMSO solution.

MS (ESI+ \mu-TOF): m/z (%)= [M]⁺ Calcd for [C₃₂H₂₆AuF₆N₃O₂PS] 858.1048. Found 858.1013.

Figure 3.76. MS (ESI+ µ-TOF) compound 84.

Synthesis of compound 85

To a solution of compound **70** (53 mg, 0.1 mmol) in acetone (20 ml) was added [AuCl(tht)] (32 mg, 0.1 mmol) and the solution stirred. 2 hours later, thioglucose was added (36 mg, 0.1 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite, the filtrate concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 52%.

Scheme 3.16. Synthesis of compound 85.

¹**H NMR** (**ppm**) (**400 MHz, DMSO**): $\delta = 7.88$ (m, 4H, H_{ortho} PPh); 7.83 (s br, 2H, H_{ortho} Ph-CF₃); 7.55 (s br, 6H, $H_{meta}+H_{para}$ PPh₂); 7.22 (s br, 1H, H_{para} Ph-CF₃); 5.30 (d, 1H, 6, ${}^{3}J_{H-H} = 9.2$ Hz); 5.15 (t, 1H, 4, ${}^{3}J_{H-H} = 9.5$ Hz); 4.90 (t, 1H, 3, ${}^{3}J_{H-H} = 9.7$ Hz); 4.83 (t, 1H, 5, ${}^{3}J_{H-H} = 9.5$ Hz); 4.09 (dt, 1H, 2, ${}^{3}J_{H-H} = 9.1$, 12.5 Hz); 3.98 (d, 2H, 1, ${}^{3}J_{H-H} = 11.2$ Hz); 3.85 (s br, 2H, PPh₂-CH₂-CH₂); 3.12 (m, 2H, PPh₂-CH₂-CH₂), 1.97-1.83 (m, 12H, *CH*₃).

Figure 3.77. ¹H NMR spectrum of compound 85 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -61.5$ (s, 1F, *CF*₃).

Figure 3.78. ¹⁹F{¹H} NMR spectrum of compound 85 in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 29.8$ (s, 1P, *PPh*₂).

Figure 3.79. ³¹P{¹H} NMR spectrum of compound 85 in DMSO solution.

¹³C APT (ppm) (400 MHz, DMSO): $\delta = 170.0-169.0$ (s, 4C, OC=O); 133.4 (m, 4C, $C_{ortho}PPh_2$); 131.7 (s, 2C, $C_{para}PPh_2$); 130.2 (m, 1C, $C_{ipso}PPh_2$); 129.2 (d, 4C, $C_{meta}PPh_2$, ${}^2J_{CP} = 11.2$ z); 125.3 (m, 2C, CF_3); 81.7 (s, 1C, 6); 77.1 (s, 1C, 5); 74.3 (s, 1C, 2); 73.3 (s, 1C, 4); 68.6 (s, 1C, 3); 62.3 (s, 1C, 1); 39.8 (m, 1C, PPh_2-CH_2-CH_2); 31.1 (d, 1C, PPh_2-CH_2-CH_2, {}^2J_{CP} = 43.5 Hz); 20.7-20.3 (s, 4C, CH_3).

Figure 3.80. ¹³C APT spectrum of compound 85 in DMSO solution.

MS (ESI+ \mu-TOF): m/z (%)= [M]⁺ Calcd for [C₄₀H₃₈AuF₆N₂O₁₁PS] 775.0939. Found 1096.1498 [C₄₀H₃₈AuF₆N₂O₁₁PS + Na]⁺.

Figure 3.81. MS (ESI+ µ-TOF) compound 85.

Synthesis of compound 86

To a solution of compound **71** (46 mg, 0.1 mmol) in acetone (20 ml) was added [AuCl(tht)] (32 mg, 0.1 mmol) and the solution stirred. 2 hours later, thioglucose was added (36 mg, 0.1 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite and concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 56%.

Scheme 3.17. Synthesis of compound 86.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 7.87-7.55$ (m, 14H, *PPh*₂ + *Ph*-*CF*₃); 5.32 (d, 1H, 6, ${}^{3}J_{H-H} = 9.3$ Hz); 5.16 (t, 1H, 4, ${}^{3}J_{H-H} = 9.5$ Hz); 4.90 (m, 2H, 5 + 3); 4.10 (m, 1H, 2); 4.00 (m, 2H, 1); 3.90 (m, 2H, PPh_2-CH_2-CH_2); 3.16 (s br, 2H, PPh_2-CH_2-CH_2); 1.97-1.83 (m, 12H, *CH*₃).

Figure 3.82. ¹H NMR spectrum of compound 86 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (376 MHz, DMSO): $\delta = -60.1$ (s, 1F, *CF*₃).

Figure 3.83. ¹⁹F{¹H} NMR spectrum of compound **86** in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 29.9$ (s, 1P, *PPh*₂).

Figure 3.84. ³¹P{¹H} NMR spectrum of compound 86 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.4$ (s, 1C, *C*=*O*); 180.4 (s, 1C, *C*=*O*); 169.5 (s, 4C, *OC*=*O*); 163.5 (s, 1C, *C*=*C*); 142.6 (s, 1C, *C_{ipso}Ph*); 133.3 (m, 4C, *C_{ortho}PPh₂*, ²*J_{CP}* = 24.9 Hz); 131.8 (s, 2C, *C_{para}PPh₂*); 130.3 (m, 1C, *C_{ipso}PPh₂*); 129.2 (d, 4C, *C_{meta}PPh₂*, ³*J_{CP}* = 11.2 Hz); 126.6 (s, 2C, *C_{ortho}Ph*-CF₃); 125.8 (m, 1C, *CF₃*); 118.2 (s, 2C, *C_{meta}Ph*-CF₃); 81.7 (s, 1C, 6); 77.1 (s, 1C, 5); 74.3 (s, 1C, 2); 73.3 (s, 1C, 4); 68.6 (s, 1C, 3); 62.4 (s, 1C, *I*); 40.1 (m, 1C, PPh₂-CH₂-*CH*₂); 28.4 (d, 1C, PPh₂-CH₂, ²*J_{CP}* = 33.9 Hz); 20.4 (s, 4C, *CH₃*).

Figure 3.85. ¹³C APT spectrum of compound 86 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₃₉H₃₉AuF₃N₂O₁₁PS] 1028.1624. Found 1051.1557 [C₃₉H₃₉AuF₃N₂O₁₁PS + Na]⁺.

Figure 3.86. MS (ESI+ µ-TOF) compound 86.

Synthesis of compound 87

To a solution of compound **72** (55 mg, 0.1 mmol) in acetone (20 ml) was added [AuCl(tht)] (32 mg, 0.1 mmol) and the solution stirred. 2 hours later, thioglucose was added (36 mg, 0.1 mmol) with an excess of K_2CO_3 and the solution stirred overnight. The solution was filtered through celite and concentrated under reduced pressure to

approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 53%.

Scheme 3.18. Synthesis of compound 87.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 8.05$ (s, 3H, H_{ortho} Ph-CF₃+ H_{para} Ph-CF₃); 7.84 (m, 4H, H_{ortho} PPh); 7.54 (s, 6H, H_{meta} + H_{para} PPh₂); 5.33 (m, 1H, 6); 5.17 (t, 1H, 4, ${}^{3}J_{H-H} = 9.5$ Hz); 4.90 (m, 4H, 3+5+ NH-CH₂-Ph-CF₃); 4.10 (m, 1H, 2,); 3.99 (d, 2H, 1, ${}^{3}J_{H-H} = 10.5$ Hz); 3.84(s br, 2H, PPh₂-CH₂-CH₂); 3.11 (m, 2H, PPh₂-CH₂-CH₂), 1.98 (m, 12H, CH₃).

Figure 3.87. ¹H NMR spectrum of compound 87 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (376 MHz, DMSO): $\delta = -61.2$ (s, 1F, *CF*₃).

Figure 3.88.¹⁹F{¹H} NMR spectrum of compound **87** in DMSO solution.

³¹P{¹H} NMR (ppm) (162 MHz, DMSO): $\delta = 30.2$ (s, 1P, *PPh*₂).

Figure 3.89. ³¹P{¹H} NMR spectrum of compound 87 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 182.6$ (s, 1C, *C=O*); 170.0 (s, 4C, *OC=O*); 142.4 (s, 1C, *C_{ipso}-Ph*); 133.2 (m, 4C, *C_{ortho}*PPh₂, ²*J_{CP}* = 24.7 Hz); 131.7 (s, 2C, *C_{para}*PPh₂); 130.2 (m, 3C, *C_{ipso}*PPh₂+ *C_{ipso}C-CF₃*); 129.2 (d, 4C, *C_{meta}*PPh₂, ²*J_{CP}* = 11.2 z); 128.6 (s, *C_{ortho}*Ph-CF₃); 123.3 (q, 2C, *CF₃*, ¹*J_{CF}* = 272.9 Hz); 121.3 (s, 1C, *C_{para}*Ph-CF₃); 81.7 (s, 1C, 6); 77.2 (s, 1C, 5); 74.3 (s, 1C, 2); 73.3 (s, 1C, 4); 68.6 (s, 1C, 3); 62.3 (s, 1C, *I*); 45.7 (s, 2H, NH-*CH*₂-Ph-CF₃); 38.9 (m, 1C, PPh₂-CH₂-*CH*₂); 31.1 (d, 1C, PPh₂-*CH*₂-CH₂, ²*J_{CP}* = 38.7 Hz); 20.4(s, 4C, *CH*₃).

Figure 3.90. ¹³C APT spectrum of compound 87 in DMSO solution.

MS (**ESI**+ μ -**TOF**): **m**/**z** (%)= [M]⁺ Calcd for [C₄₁H₄₀AuF₆N₂O₁₁PS] 1110.1651. Found 1133.1549 [C₄₁H₄₀AuF₆N₂O₁₁PS + Na]⁺.

Figure 3.91. MS (ESI+ µ-TOF) compound 87.

Synthesis of compound 88

To a solution of 3,4-Dimethoxy-3-cyclobutene-1,2-dione (29 mg, 0.2 mmol) in methanol (5 ml) was added 4-(trifluoromethyl)aniline (25 μ L, 0.2 mmol) and the solution stirred. 21 hours later, 2-aminoethanol was added (12 μ L, 0.2 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 70%.

Scheme 3.19. Synthesis of compound 88.

¹**H NMR (ppm) (400 MHz, DMSO):** $\delta = 10.01$ (s, 1H, *NH*-Ph); 7.91 (s, 1H, *NH*-CH₂); 7.67-7.61 (m, 4H, *Ph*); 5.03 (s, 1H, *OH*); 3.67 (m, 2H, OH-CH₂-CH₂-NH); 3.58 (m, 2H, OH-*CH*₂-CH₂-NH).

Figure 3.92. ¹H NMR spectrum of compound 88 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -60.1$ (s, 3F, *CF*₃).

Figure 3.93. ¹⁹F{¹H} NMR spectrum of compound 88 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.8$ (s, 1C, *C=O*); 180.1 (s, 1C, *C=O*); 169.8 (s, 1C, Ph-C=*C*-*CH*₂); 162.9 (s, 1C, *Ph*-*C*=*C*-CH₂); 142.7 (s, 1C, *C_{ipso}-Ph*); 126.6 (s, 2C, *C_{ortho}*Ph-CF₃); 124.5 (q, 2C, *CF*₃, ¹*J_{CF}* = 271.2 Hz); 122.2 (q, 1C, *C_{ipso}-Ph*-*CF*₃, ²*J_{CP}* = 32.1 Hz); 117.8 (s, 2C, *C_{meta}*Ph-CF₃); 60.5 (s, 2H, OH-*CH*₂-CH₂-NH); 46.3 (s, 2H, OH-CH₂-*CH*₂-NH).

Figure 3.94. ¹³C APT spectrum of compound 88 in DMSO solution.

Synthesis of compound 89

To a solution of 3,4-Dimethoxy-3-cyclobutene-1,2-dione (29 mg, 0.2 mmol) in methanol (5 ml) was added 4-(trifluoromethyl)aniline (25 μ L, 0.2 mmol) and the solution stirred. 21 hours later, 2-methoxyethylamine was added (17 μ L, 0.2 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 65%.

Scheme 3.20. Synthesis of compound 89.

¹**H NMR (ppm) (400 MHz, DMSO):** δ = 9.99 (s, 1H, *NH*-Ph); 7.88 (s, 1H, *NH*-CH₂); 7.67-7.62 (m, 4H, *Ph*); 3.78 (s, 2H, MeO-CH₂-CH₂-NH); 3.52 (t, 2H, MeO-CH₂-CH₂-NH, ³*J*_{CP} = 5.0 Hz); 3.32 (s, 3H, *OMe*).

Figure 3.95. ¹H NMR spectrum of compound 89 in DMSO solution.

¹⁹**F** ¹**H**} **NMR (ppm) (376 MHz, DMSO):** $\delta = -60.1$ (s, 3F, *CF*₃).

Figure 3.96. ¹⁹F{¹H} NMR spectrum of compound 89 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.7$ (s, 1C, C=O); 180.2 (s, 1C, C=O); 169.7 (s, 1C, Ph-C=*C*-*CH*₂); 162.9 (s, 1C, *Ph*-*C*=*C*-CH₂); 142.7 (s, 1C, *C_{ipso}Ph*); 126.7 (s, 2C, *C_{ortho}*Ph-CF₃); 124.5 (q, 2C, *CF*₃, ¹*J_{CF}* = 271.2 Hz); 122.3 (q, 1C, *C_{ipso}Ph*-*CF*₃, ²*J_{CP}* = 31.9 Hz); 117.9 (s, 2C, *C_{meta}*Ph-CF₃); 71.3 (s, 2H, OMe-*CH*₂-CH₂-NH); 58.0 (s, 1C, *OMe*); 43.5 (s, 2H, OMe-CH₂-*CH*₂-NH).

Figure 3.97. ¹³C APT spectrum of compound 89 in DMSO solution.

Synthesis of compound 90

To a solution of 3,4-Dimethoxy-3-cyclobutene-1,2-dione (29 mg, 0.2 mmol) in methanol (5 ml) was added 4-(trifluoromethyl)aniline (25 μ L, 0.2 mmol) and the solution stirred. 21 hours later, 1-pentamine was added (23 μ L, 0.2 mmol) and the solution stirred for 24 h. The solution was concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid was collected and vacuum dried to give the product.

Yield: 84%.

Scheme 3.21. Synthesis of compound 90.

¹**H** NMR (ppm) (400 MHz, DMSO): $\delta = 9.88$ (s, 1H, *NH*-Ph); 7.72 (s, 1H, *NH*-CH₂); 7.66-7.61 (m, 4H, *Ph*); 3.59 (m, 2H, CH₃-CH₂-CH₂-CH₂-NH); 1.57 (m, 2H, CH₃-

CH₂-CH₂-CH₂-CH₂-NH); 1.31 (m, 4H, CH₃-CH₂-CH₂-CH₂-CH₂-NH); 0.88 (t, 3H, CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-NH, ${}^{3}J_{HH} = 6.5$ Hz).

Figure 3.98. ¹H NMR spectrum of compound 90 in DMSO solution.

¹⁹F{¹H} NMR (ppm) (**376** MHz, DMSO): $\delta = -60.1$ (s, 3F, *CF*₃).

Figure 3.99. ¹⁹F {¹H} NMR spectrum of compound 90 in DMSO solution.

¹³C APT (ppm) (100 MHz, DMSO): $\delta = 184.7$ (s, 1C, C=O); 180.0 (s, 1C, C=O); 169.7 (s, 1C, Ph-C=*C*-*CH*₂); 162.8 (s, 1C, *Ph*-*C*=*C*-CH₂); 142.6 (s, 1C, *C_{ipso}-Ph*); 126.6 (s, 2C, *C_{ortho}*Ph-CF₃); 124.5 (q, 2C, *CF*₃, ¹*J_{CF}* = 271.1 Hz); 122.3 (q, 1C, *C_{ipso}-Ph*-*CF*₃, ²*J_{CP}* = 32.1 Hz); 117.9 (s, 2C, *C_{meta}*Ph-CF₃); 43.7 (s, 1C, CH₃-CH₂-CH₂-CH₂-NH); 30.2 (s, 1C, CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-NH); 28.0, 21.7 (s, 2C, CH₃-*CH*₂-CH₂-CH₂-CH₂-NH); 13.8 (s, 1C, *CH*₃-CH₂-CH₂-CH₂-CH₂-CH₂-NH).

Figure 3.100.: ¹³C APT spectrum of compound 90 in DMSO solution.