000118739 001__ 118739
000118739 005__ 20240319081024.0
000118739 0247_ $$2doi$$a10.3390/antiox11061092
000118739 0248_ $$2sideral$$a129685
000118739 037__ $$aART-2022-129685
000118739 041__ $$aeng
000118739 100__ $$0(orcid)0000-0002-2231-7565$$aValero, M. S.$$uUniversidad de Zaragoza
000118739 245__ $$aThe Potential Role of Everlasting Flower (Helichrysum stoechas Moench) as an Antihypertensive Agent: Vasorelaxant Effects in the Rat Aorta
000118739 260__ $$c2022
000118739 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118739 5203_ $$aHelichrysum stoechas (L.) Moench (H. stoechas) is a medicinal plant traditionally used in the Iberian Peninsula to treat different disorders such as arterial hypertension. The aim of this study was to investigate the vascular effects of a polyphenolic methanolic extract of H. stoechas, which has high antioxidant activity, and its mechanism of action. Isometric myography studies were performed in an organ bath with rat aortic rings with intact endothelium. The H. stoechas extract produced vasorelaxation in the aortic rings that were precontracted by phenylephrine or KCl. L-NAME and Rp-8-Br-PET-cGMPS but not indomethacin or H-89; it also reduced the relaxant response evoked by H. stoechas extract on the phenylephrine-induced contractions. H. stoechas extract reduced the response to CaCl2 similar to verapamil and reduced the phenylephrine-induced contractions comparable with heparin. TRAM-34, apamin and glibenclamide reduced relaxation induced by the H. stoechas extract. The combination of L-NAME+TRAM-34+apamin almost completely inhibited the H. stoechas-induced effect. In conclusion, the relaxant effect of the H. stoechas extract is partially mediated by endothelium through the activation of the NO/PKG/cGMP pathway and the opening of Ca2+-activated K+ channels. Furthermore, the decrease in the cytosolic Ca2+ by the inhibition of Ca2+ influx through the L-type Ca2+ channels and by the reduction of Ca2+ release from the sarcoplasmic reticulum via the IP3 pathway is also involved. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
000118739 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B44-20D$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2018-BIO-09
000118739 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118739 590__ $$a7.0$$b2022
000118739 592__ $$a1.084$$b2022
000118739 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b46 / 285 = 0.161$$c2022$$dQ1$$eT1
000118739 593__ $$aBiochemistry$$c2022$$dQ1
000118739 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b13 / 142 = 0.092$$c2022$$dQ1$$eT1
000118739 593__ $$aClinical Biochemistry$$c2022$$dQ1
000118739 591__ $$aCHEMISTRY, MEDICINAL$$b6 / 60 = 0.1$$c2022$$dQ1$$eT1
000118739 593__ $$aFood Science$$c2022$$dQ1
000118739 593__ $$aPhysiology$$c2022$$dQ1
000118739 593__ $$aMolecular Biology$$c2022$$dQ2
000118739 593__ $$aCell Biology$$c2022$$dQ2
000118739 594__ $$a8.8$$b2022
000118739 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118739 700__ $$aNuñez, S.
000118739 700__ $$aLes, F.
000118739 700__ $$0(orcid)0000-0001-8584-3979$$aCastro, M.$$uUniversidad de Zaragoza
000118739 700__ $$aGómez-Rincón, C.
000118739 700__ $$0(orcid)0000-0002-2114-0577$$aArruebo, M. P.$$uUniversidad de Zaragoza
000118739 700__ $$0(orcid)0000-0002-7412-2073$$aPlaza, M. Á.$$uUniversidad de Zaragoza
000118739 700__ $$aKöhler, R.
000118739 700__ $$0(orcid)0000-0001-6969-1055$$aLópez, V.
000118739 7102_ $$11012$$2410$$aUniversidad de Zaragoza$$bDpto. Farmac.Fisiol.y Med.L.F.$$cÁrea Fisiología
000118739 773__ $$g11, 6 (2022), 1092 - [14 pp]$$pAntioxidants$$tAntioxidants$$x2076-3921
000118739 8564_ $$s2112284$$uhttps://zaguan.unizar.es/record/118739/files/texto_completo.pdf$$yVersión publicada
000118739 8564_ $$s2764701$$uhttps://zaguan.unizar.es/record/118739/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118739 909CO $$ooai:zaguan.unizar.es:118739$$particulos$$pdriver
000118739 951__ $$a2024-03-18-16:33:04
000118739 980__ $$aARTICLE