000118748 001__ 118748
000118748 005__ 20240319081025.0
000118748 0247_ $$2doi$$a10.1016/j.fuproc.2022.107313
000118748 0248_ $$2sideral$$a129701
000118748 037__ $$aART-2022-129701
000118748 041__ $$aeng
000118748 100__ $$0(orcid)0000-0002-9934-1707$$aZornoza, B.$$uUniversidad de Zaragoza
000118748 245__ $$aEvaluation of oxygen carriers based on manganese-iron mixed oxides prepared from natural ores or industrial waste products for chemical looping processes
000118748 260__ $$c2022
000118748 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118748 5203_ $$aManganese-iron mixed oxides have been identified as promising oxygen carrier materials in chemical looping processes. In this work, low-cost raw materials are considered for the production of this type of oxygen carrier. Four manganese based minerals from deposits of different locations – South Africa, Gabon(x2) and Brazil – and two iron based materials (Fe-ore from Spain and Redmud waste) were used to prepare suitable oxygen carriers through a new two-step production method: a mixing-grinding (about 5 µm) pre-treatment followed by pelletizing, crushing and sieving to produce particles of the desired size (100–300 µm). This method was required in order to form the MnFe mixed oxide and to provide permanent magnetic properties, which were not found when the oxygen carriers were prepared by the classical one-step method, i.e. crushing and sieving of raw materials to the desired particle size (100–300 µm). The oxygen uncoupling capability of the developed materials was extremely low and even completely lost after repeated redox cycles. However, they were reactive under chemical looping conditions with H2, CO and CH4. Reactivity varied with the raw materials used and with the redox cycles, being of crucial importance for its evolution the intensity of the chemical stress during hundreds of redox cycles. © 2022 The Authors
000118748 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000118748 590__ $$a7.5$$b2022
000118748 592__ $$a1.393$$b2022
000118748 591__ $$aCHEMISTRY, APPLIED$$b8 / 72 = 0.111$$c2022$$dQ1$$eT1
000118748 591__ $$aENGINEERING, CHEMICAL$$b18 / 141 = 0.128$$c2022$$dQ1$$eT1
000118748 591__ $$aENERGY & FUELS$$b30 / 119 = 0.252$$c2022$$dQ2$$eT1
000118748 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000118748 593__ $$aFuel Technology$$c2022$$dQ1
000118748 593__ $$aEnergy Engineering and Power Technology$$c2022$$dQ1
000118748 594__ $$a12.5$$b2022
000118748 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118748 700__ $$0(orcid)0000-0002-0042-4036$$aMendiara, T.
000118748 700__ $$aAbad, A.
000118748 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000118748 773__ $$g234, 107313  (2022), [13 pp]$$pFuel process. technol.$$tFuel Processing Technology$$x0378-3820
000118748 8564_ $$s3322136$$uhttps://zaguan.unizar.es/record/118748/files/texto_completo.pdf$$yVersión publicada
000118748 8564_ $$s2327278$$uhttps://zaguan.unizar.es/record/118748/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118748 909CO $$ooai:zaguan.unizar.es:118748$$particulos$$pdriver
000118748 951__ $$a2024-03-18-16:35:55
000118748 980__ $$aARTICLE