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Abstract

This dissertation focuses on the study of the Autonomic Nervous System (ANS) re-

sponse in hyperbaric environments. Hyperbaric environments are those scenarios in

which atmospheric pressure increases and this increase in pressure produces changes

in the cardio-respiratory system of the subject to maintain the homeostasis. These

changes are reflected in the ANS, whose response can be measured in a non-invasive

way with the Heart Rate Variability (HRV), extracted from the electrocardiogram

(ECG) or with the Pulse Rate Variability (PRV), extracted from the photoplethys-

mogram (PPG). The description of the hyperbaric environments, the ANS activity,

the relationship between them and how the ANS response can be measured through

ECG and PPG signals can be found in Chapter 1.

In Chapter 2, to corroborate if PPG signal provides the same information in

terms of ANS response than ECG signal, both signals were recorded for subjects

inside a hyperbaric chamber when the atmospheric pressure varied from 1 atm to

3 atm and 5 atm and the coming back to 3 and 1 atm. The correlation and statistical

analysis between time and frequency domain parameters extracted from both signals

demonstrates that PRV can be considered as a surrogate measurement of HRV inside

a hyperbaric chamber. This makes PPG a signal to be considered in hyperbaric

environments, since its sensor is cheaper and easier to place than ECG electrodes

(especially under the water), and PPG can estimate some parameters, as the oxygen

saturation, than ECG cannot. Also a characterization of how the ANS reacts to

pressure changes and the time spent in the hyperbaric environment is done with

ECG and PPG parameters, increasing those related with the parasympathetic system

when the pressure is high and decreasing the heart rate and the parameters related

with the sympathetic system when more time is spent inside the chamber.
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Respiration plays an important role in hyperbaric environments, so it is important

to include respiratory information in the HRV/PRV analysis, since it has been shown

that changes in the respiratory pattern could alter the interpretation of the ANS

response. Therefore, once that PPG signal has been proved as an interesting signal

to consider in hyperbaric environments, in Chapter 3 a study about the respiratory

rate estimation from different locations of the PPG sensor is performed. To do

that, the respiratory signal together with finger and forehead PPG were recorded

from 35 subjects while breathing spontaneously, and during controlled respiration

experiments at a constant rate from 0.1 Hz to 0.6 Hz, in 0.1 Hz steps. Four PPG

derived respiratory (PDR) signals were extracted from each one of the recorded

PPG signals: pulse rate variability (PRV), pulse width variability (PWV), pulse

amplitude variability (PAV) and the respiratory-induced intensity variability (RIIV).

Respiratory rate was estimated from each one of the 4 PDR signals for both PPG

sensor locations. Results suggest that: i) respiratory rate estimation is better at

lower rates (0.4 Hz and below); ii) the signals recorded at the finger are better than

those at the forehead to estimate respiratory rate; iii) it is better not to include RIIV

signal to estimate the respiratory rate.

Following with the PPG signal, not only PRV contains information about the

ANS response. Also, PPG morphology can provide a great amount of information

about vascular assessment or arterial compliance, since pulse pressure propagation

in arteries causes alterations in blood volume and therefore changes in the PPG

pulse shape. That is the reason why, in Chapter 4, a new algorithm to decompose

the PPG pulse into two waves related with the systolic and the diastolic peaks is

presented. The first wave is obtained concatenating the up-slope from the beginning

to the first maximum with itself flipped horizontally. The second wave is modelled

by a lognormal curve, adjusting its maximum to the diastolic peak. From these

two waves, the amplitude, the time instant, the width, the area and some ratios

are extracted. This method is applied in a hyperbaric chamber dataset to identify

alterations in the morphology of the PPG pulse due to the exposure of the subjects

to different pressures. Results of the time and width of the wave related with the

systolic peak point out to a vasoconstriction when the pressure increases, probably

due to an activation of the sympathetic system on the blood vessels. Results of the
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time and width of the wave related with the diastolic peak reflect the vasoconstriction

but also a dependency with the pulse-to-pulse interval. Therefore this methodology

allows to extract a great set of parameters related with the PPG morphology that

are affected by the change of pressure in hyperbaric environments.

In Chapters 2 and 4, the ANS response is studied inside a hyperbaric chamber,

where the pressure varies. However, there are many variables that could affect the

body’s cardiovascular response during diving, such as diver body position, physical

activity, water temperature, breathing with a scuba mouthpieces and more. This is

the reason why in Chapter 5 the ANS response is studied in three different hyperbaric

environments: inside a hyperbaric chamber, where only the pressure varied; during

a controlled dive in the sea, where the pressure changed but the effects of other

factors were minimized; and during an uncontrolled dive in a reservoir, where more

factors differed from baseline to immersion stage. A comparison of the HRV features

between the two stages (baseline and immersion) in each dataset is carried out to

study how these factors related to scuba diving activity affect the ANS response. To

do this comparison, instead of the classic frequency methods, the Principal Dynamic

Mode (PDM) and the Orthogonal Subspace Projection (OSP) methods are used

to account for linear and non-linear interactions and to deal with the respiratory

component that could affect the ANS response, respectively. OSP results indicate

that most of the variation in the heart rate variability cannot be described by changes

in the respiration, so changes in ANS response can be assigned to other factors.

Time domain parameters reflect vagal activation in the hyperbaric chamber and

in the controlled dive because of the effect of pressure. In the uncontrolled dive,

sympathetic activity seems to be dominant, due to the effects of other factors such

as physical activity, the challenging environment, and the influence of breathing

through the scuba mask during immersion. In summary, a careful description of

the changes in all the possible factors that could affect the ANS response between

baseline and immersion stages in hyperbaric environments is performed for better

explanation of the results.





Resumen y conclusiones

Esta tesis se centra en el estudio de la respuesta del Sistema Nervioso Autónomo

(ANS) en entornos hiperbáricos. Los entornos hiperbáricos son aquellos escenarios

en los cuales la presión atmosférica aumenta y ese aumento en la presión produce

cambios en el sistema cardio-respiratorio del sujeto para mantener la homeostasis.

Estos cambios se ven reflejados en el ANS, cuya respuesta puede ser medida de

manera no invasiva a través de la Variabilidad del Ritmo Cardiaco (HRV), extráıda

del electrocardiograma (ECG), o a través de la Variabilidad del Ritmo del Pulso

(PRV), extráıda de la señal de pulso pletismográfico (PPG). La descripción de los

entornos hiperbáricos, de la actividad del ANS, de la relación entre ellos y de cómo

la respuesta del ANS puede ser medida a través de las señales ECG y PPG, puede

encontrarse en el Caṕıtulo 1.

En el Caṕıtulo 2, para corroborar si la señal PPG proporciona la misma infor-

mación en términos de respuesta del ANS que la señal ECG, ambas señales fueron

registradas en sujetos en el interior de una cámara hiperbárica, con la presión at-

mosférica aumentando desde 1 atm a 3 y 5 atm y luego volviendo a 3 y 1 atm. La

correlación y el análisis estad́ıstico entre los parámetros en el dominio temporal y

frecuencial extráıdos de ambas señales demuestran que la PRV puede ser consider-

ada una medida sustituta de la HRV para los sujetos en el interior de la cámara

hiperbárica. Esto hace de la PPG una señal a ser considerada en los entornos

hiperbáricos, dado que su sensor es más barato y fácil de colocar que los electro-

dos del ECG (especialmente debajo del agua), y además la PPG puede estimar

otros parámetros, como la saturación de ox́ıgeno, que no se pueden estimar con el

ECG. También se ha realizado una caracterización de cómo el ANS reacciona ante

los cambios de presión y ante el tiempo pasado en el entorno hiperbárico mediante
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los parámetros extráıdos del ECG y la PPG, aumentando aquellos relacionados con

el sistema parasimpático cuando la presión es alta y disminuyendo los parámetros

relacionados con el sistema simpático conforme más tiempo se pasa dentro de la

cámara.

La respiración juega un papel importante en los entornos hiperbáricos por lo

que se debe incluir la información respiratoria en el análisis del HRV/PRV, dado

que se ha demostrado que los cambios en el patrón respiratorio pueden alterar la

interpretación de la respuesta del ANS. Por lo tanto, una vez que se ha probado que

la señal PPG debe ser tenida en cuenta en los entornos hiperbáricos, en el Caṕıtulo 3

se ha realizado un estudio sobre la estimación de la frecuencia respiratoria colocando

el sensor de la PPG en distintas localizaciones. Para hacer esto, se ha registrado

la señal respiratoria junto con la señal PPG en el dedo y en la frente en 35 sujetos

mientras respiraban espontáneamente y de forma controlada a un ritmo constante,

desde 0,1 Hz a 0,6 Hz en pasos de 0,1 Hz. Cuatro señales respiratorias derivadas de

la PPG (PDR) fueron extráıdas de cada una de las señales PPG registradas. Éstas

son: la variabilidad del ritmo del pulso (PRV), la variabilidad de la anchura del

pulso (PWV), la variabilidad de la amplitud del pulso (PAV) y la variabilidad de la

intensidad inducida de la respiración (RIIV). La frecuencia respiratoria fue estimada

para cada una de las 4 señales PDR en ambas localizaciones del sensor PPG. Los

resultados sugieren que: i) la estimación de la frecuencia respiratoria es mejor en

frecuencias bajas (por debajo de 0,4 Hz); ii) las señales registradas en el dedo son

mejores para la estimación que las registradas en la frente; iii) es mejor no incluir la

señal RIIV para estimar la frecuencia respiratoria.

Siguiendo con la señal PPG, no sólo la PRV contiene información sobre la re-

spuesta del ANS. También la morfoloǵıa de la PPG puede proporcionar una gran

cantidad de información sobre el estado vascular o sobre la distensibilidad arterial,

dado que la propagación de la presión del pulso en las arterias causa alteraciones

en el volumen de la sangre y por lo tanto cambios en la forma de onda de la PPG.

Esta es la razón por la que, en el Caṕıtulo 4, se presenta un nuevo algoritmo para

descomponer el pulso de la PPG en dos ondas relacionadas con los picos sistólico

y diastólico. La primera onda es obtenida concatenando la pendiente de subida

del pulso, desde el principio hasta el primer máximo, con ella misma girada hori-
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zontalmente. La segunda onda se modela como una curva lognormal, ajustando su

máximo al pico diastólico. De estas dos ondas, se extraen la amplitud, el instante

temporal, la anchura, el área y algunos ratios. Este método se aplica en el conjunto

de datos de la cámara hiperbárica para identificar alteraciones en la morfoloǵıa del

pulso PPG debido a la exposición de los sujetos a diferentes presiones atmosféricas.

Los resultados del instante temporal y la anchura de la onda relacionada con el pico

sistólico apuntan a una vasoconstricción cuando aumenta la presión, probablemente

debida a una activación del sistema simpático sobre los vasos sangúıneos. Los re-

sultados del instante temporal y de la anchura de la onda relacionada con el pico

diastólico reflejan esta vasoconstricción y también una dependencia con el intervalo

entre los pulsos. Por lo tanto, esta metodoloǵıa permite extraer una gran cantidad

de parámetros relacionados con la morfoloǵıa de la PPG que se ven afectados por

los cambios de presión en los entornos hiperbáricos.

En los Caṕıtulos 2 y 4, la respuesta del ANS se ha estudiado dentro de una

cámara hiperbárica, donde la presión vaŕıa. Sin embargo, hay muchas variables que

pueden afectar la respuesta cardiovascular del cuerpo durante el buceo, como son

la posición del cuerpo del buceador, la actividad f́ısica, la temperatura del agua,

respirar por el regulador de presión, y algunas más. Por esta razón, en el Caṕıtulo 5

se estudia la respuesta del ANS en tres entornos hiperbáricos distintos: dentro de

la cámara hiperbárica, donde sólo la presión varió; durante una actividad de buceo

controlado en el mar, donde la presión cambió, pero los efectos de otras variables

se minimizaron lo máximo posible; y durante una actividad de buceo no controlado

en un pantano, donde más factores cambiaron entre las etapas basal y de inmersión.

Se realiza una comparación de los parámetros extráıdos de la HRV entre dos etapas

(basal e inmersión) en cada conjunto de datos para estudiar como estos factores

relacionados con la actividad de buceo afectan a la respuesta del ANS. Para hacer

esta comparación, en lugar de los parámetros frecuenciales clásicos, los métodos

Principal Dynamic Mode (PDM) y Orthogonal Subspace Projection (OSP) se usan

para tener en cuenta las interacciones lineales y no lineales y para tratar con la

componente respiratoria que puede afectar a la respuesta del ANS, respectivamente.

Los resultados del método OSP indican que la mayoŕıa de la variación de la HRV

no puede ser descrita por los cambios en la respiración, por lo que los cambios en la
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respuesta del ANS pueden aparecer por otros factores. Los parámetros temporales

reflejan la activación vagal en la cámara hiperbárica y en el buceo controlado debido

al efecto de la presión. En el buceo no controlado, sin embargo, la actividad simpática

parece ser la dominante, debido a los efectos de otros factores como la actividad

f́ısica, el entorno estimulante y el hecho de respirar a través del regulador durante la

inmersión. Como resumen, se ha realizado una descripción detallada de los cambios

en todos los posibles factores que pueden afectar a la respuesta del ANS entre las

etapas basal y de inmersión en los distintos entornos hiperbáricos para una mejor

explicación de los resultados.
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Chapter 1

Introduction

1.1 Motivation

It is called hyperbaric environment that scenario in which atmospheric pressure is

increased, so the pressure is greater than 1 atmosphere (atm). The most common

exposure to hyperbaric pressures is during underwater diving, which became practical

with the development of the self-contained underwater breathing apparatus (scuba).

However, as the human body is not adapted to these environments, their biological

and physiological effects must be studied. During a dive, a descent of 10 meters

implies a pressure increase of 1 atm (meaning the ambient pressure is 2 atm), because

water is almost 800 times denser than air. Therefore, the maximum descent for

recreational diving is fixed at 40 meters (5 atm), although some professionals, such

as scientists or the military, go deeper.

These pressure changes have profound effects on the behaviour of diver’s body.

During immersion, the increase of the hydrostatic pressure of the surrounding water

balances the systemic circulation, and shifts the blood from the lower part of the

body to the central circulation, thereby contributing to bradycardia. Breathing air

under increased pressure supposes an increase of the partial pressure of oxygen, that

originates an increase in peripheral arteriolar vasoconstriction. To compensate this

increment, the body response consists of an increase in the parasympathetic activity

over the heart, consequently reducing the heart rate and the cardiac output [1]. The

increase of the partial pressure of the gases also supposes a great amount of gases

1
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being dissolved in body’s tissues, which could lead to biochemical intoxication, as

narcosis (increase of the partial pressure of carbon dioxide, CO2, or nitrogen ,N2)

or hyperoxia (increase of the partial pressure of oxygen, O2). These gases can form

bubbles in the tissues or blood vessels during the ascent too, since gas spaces will

expand when the pressure decreases [2].

To avoid all these possible complications and to deal with the increase of pressure,

the diver’s body must produce a response to maintain intern homeostasis. This

response is reflected in the Autonomic Nervous System (ANS) through the balance

between its two branches (sympathetic and parasympathetic or vagal), which reflects

the efforts of the body to adapt to new environments. Hence, monitoring ANS

response may lead to a better understanding of diving physiology and could become

a potential diagnostic marker of hazards associated with diving.

Non-invasive techniques can be used to measure ANS activity, being the most

common the Heart Rate Variability (HRV) signal, which is extracted from the

electrocardiogram (ECG). ECG provides a robust signal that allows us to study

the electrical activity of the heart, being ANS the primary regulator of cardiac ac-

tivity [3]. However, as this technique requires electrodes to be placed at several

locations on the subject’s chest, maybe it is not the most appropriate method in

hyperbaric environments in terms of subject’s comfort or signal quality.

Another non-invasive way to measure ANS activity is the Pulse Rate Variabil-

ity (PRV) signal, which is extracted from the pulse-photoplethysmography (PPG).

Numerous studies carried out at 1 atm suggest that HRV and PRV signals give the

same information about the ANS response [4, 5, 6, 7], although some controversy still

exists [8]. Among PPG advantages, PPG measurement requires only one low-cost

device that is widely used in routine clinical practice and can be located on several

parts of the body. The PPG signal also allows the measurement of oxygen saturation

in the subject. Besides, PPG morphology could be used as another marker of ANS

activity since distortions in the morphology of the pulse waveform have been related

to physiological changes in the subjects [9]. On the other hand, PPG signal is more

affected by noise and signal artifacts than ECG, resulting in a higher (potential) loss

of information.
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There are only a few studies analyzing the ANS response during a dive, either

inside a pool [10, 11] or in open waters [12, 13, 14]. It is easier to study the ANS

response inside a hyperbaric chamber, simulating the atmospheric pressure condi-

tions but without the needing to go under water [1, 15, 16, 17, 18]. All the cited

studies inside a hyperbaric chamber are characterised by: the use of only the HRV

to characterise the ANS behaviour; a low number of subjects (between 8 and 12);

and the measurement of only one hyperbaric stage between 2.5 and 3 atm. That is

the reason why, in Chapter 2, a demonstration that PRV and HRV signals provide

similar information inside a hyperbaric chamber is presented. In this Chapter, also

a characterization of the ANS response with more subjects than in the rest of the

bibliography and more than one stage of pressure is performed. Then, in Chapter 3,

since respiration is a physiological parameter of great interest in hyperbaric environ-

ments and respiratory information affects the ANS response, an evaluation of the

location of the PPG sensor for respiratory rate estimation is also proposed. Later, in

Chapter 4, a new algorithm to decompose the PPG pulse into two waves is presented,

to identify alterations in the morphology of the PPG pulse due to the exposure of

the subjects to the hyperbaric environment. Finally, an evaluation of the ANS re-

sponse in three different hyperbaric environments is carried out, including two real

dives and taking into account how different factors as the pressure, the cold water

or the activity during the dive affects the ANS response. To do that, the Principal

Dynamic Mode (PDM) method to account for linear and non-linear interactions and

the Orthogonal Subspace Projection (OSP) method to extract the respiratory com-

ponent, are used. Therefore, monitoring subjects in these environments may lead to

a better understanding of physiology when the pressure is high and could increase

the safety of the subject by detecting abnormal ANS responses.

1.2 Hyperbaric environments

The hyperbaric environments are those scenarios where the atmospheric pressure

increases. In this thesis, two main hyperbaric environments are considered: a hyper-

baric chamber, that allows us to simulate atmospheric pressure conditions, without

needing to go under water or affecting other conditions; and an underwater div-
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ing, that supposes a real immersion, with more variables affecting the diver status.

Figure 1.1 shows an example of a hyperbaric chamber and a real dive.

Figure 1.1: An example of a hyperbaric chamber (left) and a real dive (right).

There are several factors that affect subjects in the hyperbaric environment [15].

One is the increased ambient pressure, since during immersion, the hydrostatic pres-

sure of the surrounding water balances the systemic circulation, and shifts the blood

from the lower part of the body to the central circulation. This contributes to

bradycardia, increased stroke volume and cardiac output, reduced muscle sympa-

thetic nerve activity and unaltered blood pressure [19].

Another factor is temperature changes. Water immersion at neutral temperatures

would stimulate mainly baroreceptors, but immersion in cold water would stimulate

also thermoreceptors, activating different regulatory systems. It has been proved

than neutral water immersion decreases heart rate and blood pressure, while cold

stimuli increase both of them [20].

Other factor is the presence of gases inside the body. According to Dalton’s law,

the partial pressures of the gases that divers are breathing increase proportionally

with the ambient pressure, and this exposure to supranormal pressures of gases re-

sults in a big quantifies of gases being dissolved in the body’s tissues (Henry’s law).

This could lead to biochemical intoxication, as narcosis (increase of CO2, N2 partial

pressure) or hyperoxia (increase of O2), being one of their symptoms a dysfunction

of the central nervous system. The increased density of the breathing gas results in

a reduced heart rate, reduced pulmonary compliance, increased airways resistance

and an increase in the work of breathing. These factors limit the maximum of recre-
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ational diving depth to 40 meters [1, 2]. Still with the gases, as pressure and volume

are inversely related (Boyle’s law), gases inside the body will expand during the as-

cent and they could form bubbles in the tissues and blood vessels, which is known

as decompression sickness (DCS). Its symptoms are variable, ranging from minor

skin alterations to neurological and cardiopulmonary disorders. They can occur im-

mediately or be delayed up to 48 hours, and they can remit or be permanent [2].

Epidemiological studies have shown an increase in DCS manifestation in the inner

ear over the past two decades [21]. Most cases were developed after multiple deep

dives or after dives in which an inadequate decompression occurs [22]. To prevent

this type of accidents, there are dive tables that inform about the maximum time

the diver can spend inside the water, about the maximum depth the diver can reach

and about the decompression stops the diver must complete at a specified depth

for a specified time during ascent before continuing to the surface (see Figure 1.2).

Another possible option to increase the security of the divers lies in the study of the

ANS response in hyperbaric environments for a better understanding of the physiol-

ogy under the water, that together with the monitoring of the divers,could prevent

possible accidents.

Figure 1.2: Dive tables that inform about the maximum time the diver can spent inside the water,
the maximum depth the diver can reach and the decompression stops the diver must complete at a
specified depth for a specified time during ascent, provided by National Association of Underwater
Instructors (NAUI).
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1.3 Autonomic Nervous System

All these factors linked to hyperbaric environments presented in the previous Section

produce a response in the diver’s body to maintain homeostasis that is reflected in

the ANS. This is a control system that regulates bodily functions, such as heart rate,

digestion, respiratory rate or urination in order to supply the body’s needs [23]. To

do that, subconscious sensory signals from an organ are transmitted to homeostatic

control centers, the brainstem and hypothalamus, where they are processed and

integrated. Then, these brain structures exert their control and subconscious reflex

responses are returned directly back to the visceral organ to regulate its activities [23,

24].

The efferent autonomic signals are transmitted through two major subdivisions

called the sympathetic nervous system and the parasympathetic (or vagal) nervous

system. The sympathetic nervous system is considered the “fight or flight” system.

Its main function is to prepare the body for dealing with a threat or for actions re-

quiring quick responses. Some of the effects of a sympathetic activation are, among

others, an increase in the heart rate and in the respiratory rate, vasoconstriction

and bronchodilation. On the other hand, the parasympathetic nervous system is

considered the “rest and digest” system. Its main function is to relax the body, with

actions that do not require immediate reaction. Some of the effects of a parasympa-

thetic activation are a decrease in the heart rate and respiratory rate, vasodilation

and bronchoconstriction. As it can be shown with those examples, in many cases,

both of these systems have opposite actions over the same tissue or organ, where

one system activates a physiological response and the other inhibits it. The result

is a rapid and precise control of a tissue’s function. Other tissues, however, are only

innervated by one system, for example, arteries constriction is controlled by only the

sympathetic branch. Figure 1.3 shows both systems and the tissues and organs re-

lated to each of them. Therefore, the overall status of the organism depends on which

ANS branch is predominating and how big this predominance is at each moment.

This sympathetic-parasympathetic balance is commonly referred to sympathovagal

balance.
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Figure 1.3: Effects of sympathetic nervous system (left) and parasympathetic nervous system (right)
over the different organs of the body, from [23].

In this thesis, we focus our attention on the regulation of ANS on the cardiovas-

cular and respiratory system. Sympathetic and parasympathetic systems could alter

the heart rate at the same time. In absence of ANS influence, the intrinsic heart

rate is about 100 to 120 beats per minute [25]. Therefore, parasympathetic tone is

more predominant at rest, lowering the heart rate. This leads to a lower cardiac

output, that is the volume of blood the heart pumps per minute. Cardiac output is

calculated by multiplying the stroke volume by the heart rate. The decrease of the

cardiac output originated by the increase in the vagal tone leads to a decrease in

the blood pressure. However, there is no effect of parasympathetic activity on blood

vessels. On the other hand, when the sympathetic activity is the one that domi-

nates, there is an increase in the heart rate due to an innervation of the sinoatrial

node of the heart. Additionally, sympathetic innervation causes vasoconstriction on

blood vessels, leading to a higher stroke volume. Therefore, with the increase in the

heart rate and the increase in the stroke volume, there is an increase in the cardiac
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output, that originates an increase in blood pressure. Effect of ANS system can

also be seen in the respiratory system. Sympathetic activity results on an increase

in the respiratory rate and bronchial tubes dilatation and parasympathetic activity

has the opposite results, with a decrease in the respiratory rate and bronchial tubes

constriction.

The ANS regulation when a subject is exposed to a hyperbaric environment is

manifested through an activation of the parasympathetic system and consequently

a reduction in the heart rate. This phenomena occurs because breathing air un-

der increased pressure supposes an increase of the partial pressure of oxygen, that

originates an increase in peripheral arteriolar vasoconstriction, that has to be com-

pensated with a reduction in the heart rate to maintain the homeostasis inside the

body [1]. Even more, during immersion, the increase of the hydrostatic pressure of

the surrounding water balances the systemic circulation, and shifts the blood from

the lower part of the body to the central circulation, thereby contributing to the

heart rate decrease.

1.4 Biological signals

Changes in the ANS response can be assessed in a non-invasive way through biological

signals that vary with these changes. In this dissertation, electrocardiogram and

photoplethysmography signals are selected since they allow to measure changes in

the cardiovascular system due to the ANS response, together with the respiratory

signal that reflects changes in the thoracic cavity and it also contains information

about the ANS response, complementing the other two biological signals.

1.4.1 Electrocardiogram

The ECG signal describes the electrical activity of the heart and provides, in a non-

invasive way, information about the cardiac muscle activity. ECG is composed of the

spatio-temporal sum of the action potentials generated by all the cells in the cardiac

tissue. The cardiac cycle of a normal beat starts with the spontaneous excitation

of the electrical cells (depolarization stage) in the sinoatrial node, located in the

upper part of the right atrium. This electrical impulse is propagated through both
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atria, producing a mechanical contraction of the heart. This depolarization of the

atrial cells is reflected in the ECG by the P wave. Then, the electrical impulse is

transmitted to the ventricles through the atrioventricular node allowing the blood

to get into ventricles before their contraction. The atrioventricular node transmits

the electrical impulse to the bundle of His, which in conjunction with the Purkinje

fibers rapidly gets the electrical impulse to all parts of the ventricles, leading to their

depolarization associated to their contraction. When ventricles are contracted, the

heart pumps out the blood. The depolarization of the ventricles is reflected in the

ECG as the QRS complex, composed by a negative deflection (Q wave), followed by a

positive deflection (R wave) and another negative one (S wave). To finish the cardiac

cycle, the T wave appears in the ECG, and it reflects the ventricular repolarization

which occurs during the ventricular relaxation, preparing the ventricles for the next

beat [26]. Figure 1.4 shows all this process, the depolarization and repolarization of

the different cells of the heart and how this create a sum of action potentials that

construct a normal beat in the ECG.

There are also some important time intervals in the ECG. The PQ interval

represents the time required for the transmission of the electrical impulse from the

sinoatrial node to the ventricles. The QT interval represents the time that passes

from the beginning of ventricular depolarization until the end of ventricular repolar-

ization. The ST segment reflects the time that the ventricles remain in a depolarized

state. Finally, the distance between two consecutive beats is usually measured as

the distance between two consecutive R waves, hence called RR interval. Figure 1.5

represents a normal ECG with the P, Q, R, S and T waves and all the time intervals.

The ECG is usually measured using several electrodes over the skin. There is

called lead the voltage difference between two electrodes (bipolar lead) or between

a single electrode and a reference electrode (unipolar lead). The most employed

recording configuration in the clinical routine is the standard 12 lead ECG, which

is composed of 3 bipolar leads and 9 unipolar leads. This configuration accounts for

the electrical activity in the frontal plane, through the standard bipolar limb leads

(I, II and III) and the augmented unipolar limb leads (aVF,aVL and aVR), and in

the horizontal plane, through the six unipolar precordial leads (V1 to V6), as shown

in Figure 1.6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.4: ECG recorded during the different cardiac phases: (a) All cardiac cells at rest; (b)
Atrial depolarization; (c) the electrical impulse passing through the atrioventricular node; (d)-
(g) ventricular depolarization; (h) ventricular repolarization and (i) all cardiac cells at rest again.
Figure obtained from [26].

Autonomic information in the ECG

Figure 1.7 shows the effects of ANS activity on the sinus node cells, increasing or

decreasing the heart rate. Heart rate varies along the time but also varies beat-to-

beat with small variations around the mean. These short-term variations in heart

rate are known as HRV, which remains as the most extended tool for ECG-based ANS

assessment [27]. The use of RR intervals is generally accepted to measure this slightly

variation, since QRS complex has large energy and its detection is reliable [26].
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Figure 1.5: ECG waves definitions and time intervals, from [26].

However, sometimes a mass of heart cells not located in the sinus node may generate

an electrical impulse. This phenomenon is known as ectopic beat, and since it does

not reflect the activity of the sinus node, all of them must be excluded in HRV

analysis, creating a new interval series denoted normal-to-normal (NN) intervals.

There are several heart rhythm representations. The simplest one is the in-

terval tachogram, which is a signal composed of successive NN intervals. From

this, the inverse interval tachogram can be obtained, which is the inverse of interval

tachogram and gives information about the heart rate. However, heart beats occur

non-uniformly in time, so it is more common to use functions which represents the

same information plus the time instant when each heartbeat occurs. These func-

tions are known as interval function and inverse interval function and both of them

consist in a train of pulses occurring at the time when a beat takes place and scaled

by the length of the preceding NN interval (interval function) or by the preceding

rate (inverse interval function). An example of these four different representations

is shown in Figure 1.8.

Another plausible model for HRV is the integral pulse frequency modulation

(IPFM) model. This model assumes the existence of a modulating signal that carries

information about the ANS activity, and the beat trigger impulse is generated when
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(a)

(b)

(c)

Figure 1.6: Electrode positions for recording (a) the standard bipolar limb leads (I, II and III); (b)
the augmented unipolar limb leads (aVF,aVL and aVR); and (c) the six unipolar precordial leads
(V1 to V6), from [26].

the integral of this function reaches a threshold [28, 29]. In situations where the mean

heart period is not constant, such as in exercise stress testing, IPFM model with a

constant threshold is not appropriate, so an evolution of this model was done taking

into account the time varying mean heart rate, called the time-varying integral pulse

frequency modulation (TVIPFM) model [30]. This last model will be used in this

dissertation and will be more explained in Section 2.3.1.
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Figure 1.7: Effects of ANS activity on the sinus node cells, from [23].

The most extended approaches for HRV measurements are those based on time

and frequency domains, as well as non-linear analysis. All of them have their own

particularities, and result more appropriate for certain scenarios. A brief description

of these parameters is provided below.

Time domain parameters are focused on statistical or geometric properties

of the NN interval series. They are computationally simple, and the most employed

parameters are: the mean and the standard deviation of the NN interval series (NN

and SDNN), the standard deviation and the root mean square of the difference

between adjacent NN intervals (SDSD and RMSSD), and the percentage of suc-

cessive differences of NN intervals differing by more than 50 ms (pNN50). About the
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Figure 1.8: Representation of: a) an ECG with the beat occurrence times; b) interval tachogram; c)
inverse interval tachogram; d) interval function; e) inverse interval function. Reproduced from [26].
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physiological interpretation of each one, NN and SDNN are related with the overall

activity of HRV, and SDSD, RMSSD and pNN50 are associated with short-term

variations that are reflected in the parasympathetic branch of the ANS response [27].

Frequency domain parameters consists in the analysis of the Power Spectral

Distribution (PSD) in three main frequency bands of interest: the very low frequency

(VLF) band, ranging from 0 to 0.04 Hz, the low frequency (LF) band, which extends

from 0.04 up to 0.15 Hz, and the high frequency (HF) band, which goes from 0.15

to 0.4 Hz [27]. Figure 1.9 illustrates a classic spectral representation of HRV, with

their bands separated.

Figure 1.9: HRV power spectral distribution with its 3 classic frequency bands, extracted from [31].

The physiological interpretation of HRV frequency components has been stud-

ied by inferring sympathetic and/or parasympathetic blockades. The physiological

interpretation of the power in the VLF band (PV LF ) has been related with thermoreg-

ulation and the rennin-angiotensin system [32]. The power in the LF band (PLF )

has been suggested to represent both sympathetic and parasympathetic modulation,

where as the power in the HF band (PHF ) has been related only with parasympa-

thetic activity. Apart from these parameters, also the normalized power in the low

frequency band (PLFn) and the ratio between powers in LF and HF band (RLF/HF )

are widely employed. PLFn is interpreted as a marker of sympathetic activity, while

RLF/HF is used as a measurement of the sympathovagal balance [33].
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Finally, in the recent years a great amount of non-linear parameters have been

developed, based on quantitative measurements of the complexity or regularity of

HRV. Some examples are the correlation dimension, the approximate entropy, the

sample entropy or the Poincarè plot. Another technique that account to linear and

non-linear parameters is the PDM analysis, which is able to extract and separate

sympathetic and parasympathetic dynamics [34]. This non-linear analysis will be

used in this dissertation and will be more explained in Section 5.3.5.

1.4.2 Photoplethysmography

Pulse photoplethysmography, introduced by Hertzman [35], is a non-invasive method

for measuring the relative blood volume changes in the microvascular bed of periph-

eral tissues and evaluating peripheral circulation [36]. This signal is obtained through

non-invasive pulse oximetry systems and it is based on blood light absorption [37].

PPG consists of illuminating the tissue and simultaneously measuring the trans-

mitted (transmission mode) or the reflected light (reflection mode) using a specific

wavelength. About the wavelengths, green (530 nm), red (660 nm) and infrared

(940 nm) are the most common, being deeper the light penetration when the wave-

length increases. The PPG signal has two components: one component reflecting

the arterial pulse produced by the heartbeats (AC component), and another compo-

nent due to the non-pulsating blood volume and the surrounding tissue, producing

a signal with slow changes (DC component). An example of the AC component of a

PPG signal, labelled xPPG, can be observed in Figure 1.10.

37 38 39 40 41 42 43

Time (s)
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Figure 1.10: An example of the AC component of a PPG signal, measured in arbitrary units (a.u.).
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The morphology of the PPG pulses can be divided into two phases. On one hand,

the rise of the pulse which corresponds to the systole, and the descent of the pulse

which corresponds to the diastole and the wave reflections. PPG pulses from subjects

with no arterial compliance problems usually present a dichrotic notch, which is an

inflection point on the pulse downward slope. Not all the PPG pulses have the

same waveform, in fact, morphological changes have been observed due to the body

location where PPG is registered [38], as Figure 1.11 shows.

Figure 1.11: PPG pulses in different body locations, from [39].

The main advantage of PPG signal is that it could provide multiple information

using only one sensor, making its use simpler, more comfortable and cheaper than

multiple sensor devices. Among its applications, the most highlighted are [39]:
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• Vascular assessment: measuring the arterial disease, compliance or ageing

among others characteristics of the vascular tissue [40].

• Blood pressure (BP) measurement [41]: BP is the pressure exerted by the blood

flux over the arteries walls. When the heart beats, a blood volume is pumped

out to the arteries increasing BP and reaching its maximum, known as systolic

pressure. When the heart relaxes, BP decreases and it falls to its minimum

value, which is known as diastolic pressure. BP is usually quantified with a

pair of numbers which correspond to the systolic and the diastolic pressures,

e.g., 120/80 mmHg. BP can be estimated from the PPG using the pulse transit

time (PTT), which is the time that the heart beat pulse takes to propagate

from the heart to the body peripherals [42], or using time domain features of

the PPG signal [43] or its derivatives [44], although usually a calibration is

needed.

• Oxygen saturation (SpO2) estimation [45]: is the fraction of oxygen-saturated

hemoglobin relative to total hemoglobin (unsaturated + saturated) in the

blood. As oxygenated hemoglobin and non-oxygenated hemoglobin have dif-

ferent light-absorption properties, SpO2 can be measured by using two PPG

signals (usually two different wavelengths, the red and infrared bands) acquired

at the same location. The method is based on the ratio between AC and DC

components of the two PPG signals.

Autonomic information in the PPG signal

In a similar way than in the ECG, ANS information in the PPG signal can be

found in the PRV signal, which has been proved to be a surrogate measurement of

the HRV [4, 5, 6, 7], although some controversy still exists [8]. While in the ECG

the HRV signal is extracted from the NN intervals, in the PPG signals the fiducial

points varies, using the apex points [46], the medium points [47], the maximum

of PPG derivatives [48] or the tangent intersection points [49]. Irrespective of the

fiducial points used, the same time and frequency domains parameters obtained from

the ECG signal can be extracted from the pulse rate and its variability.

Furthermore, not only PRV contains information about the ANS response. Also,

PPG morphology can provide a great amount of information about vascular as-
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sessment or arterial compliance, since pulse pressure propagation in arteries causes

alterations in blood volume and therefore changes in the PPG pulse shape [39, 50].

In fact, these distortions in the pulse waveform have been related to physiological

changes in the subjects [9]. For example, a reduction in the pulse amplitude may be

directly attributable to a loss of central arterial pressure, which could be related to

an activation of the sympathetic system of the subject [51]. The ratio between the

pulse-to-pulse interval and the systolic amplitude could provide an understanding

of the properties of a person’s cardiovascular system [52]. Talking about ratios, the

relationship between the amplitude of the systolic peak and the diastolic peak of

the PPG, called Reflection Index (RI), has been used as an estimator of the vas-

cular resistance of the peripheral arteries [40, 53]. Also, the ratio between the age

of the subject and the time delay between the systolic and diastolic peaks, called

large artery stiffness (SI), formulated an index of the contour of the PPG that is

related to large artery stiffness [54]. The ratio of two PPG subareas (divided at the

dicrotic notch) can be used as an indicator of total peripheral resistance [55]. The

PPG pulse width is also important, since some studies suggest that the PPG width

correlates better with the systemic vascular resistance than the PPG amplitude [56].

Therefore, the PPG morphology is another tool for measuring the ANS information.

1.4.3 Respiratory signal

The respiratory signal reflects changes in the thoracic cavity or in the airflow of the

respiratory system during breathing. Breathing is a rhythmic process (generally un-

conscious) which involves the exchange of air between the atmosphere and the lungs,

providing oxygen to the tissues and removing carbon dioxide. The movement of air

into the lungs is called inspiration and it involves the contraction of the diaphragm

and of the external intercostal muscles, increasing the diameter of the thoracic cav-

ity and allowing the entrance of O2. The movement of air out of the lungs is called

expiration and it supposes a relaxation of the diaphragm and external intercostal

muscles, compressing the chest wall and expelling CO2 of the lungs [57].

Among others, respiratory related chest movements can be measured using a res-

piratory belt made from a piezoelectric sensor, which changes the electrical charge

concentration in response to the chest movement. Also, respiratory rate can be di-
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rectly estimated with the changing impedance of the thoracic cavity, which varies

with each inhalation (increasing) and exhalation (decreasing), that results in a cor-

responding voltage change that can be measured with electrodes.

Furthermore, respiratory signals can be derived indirectly from other biological

signals, as the ECG and the PPG, that contain respiratory influences [58]. For

example, respiration modulates the beat-to-beat/pulse-to-pulse intervals, which are

smaller during inspiration than during expiration. This phenomenon is known as

respiratory sinus arrhythmia (RSA) and could be noticed in the ECG and PPG sig-

nals as a Frequency modulation (FM) [59, 60]. It has been reported that the ampli-

tude of these heart rate oscillations decreases as the respiratory rate increases [61].

Also, an Amplitude modulation (AM) phenomena is found since inspiration can

lead to a reduction in tissue blood volume, lowering the ECG and PPG signal

amplitude. This reduction in tissue blood volume is generated by two different

mechanisms: a reduction of cardiac output, and a reduction of intra-thoracic pres-

sure [59, 62]. Alterations in intra-thoracic pressure also causes the Baseline modula-

tion (BM) [60, 63, 64, 65], which is a variation of perfusion baseline that arises from

respiratory-induced variations in venous return to the heart. The effects of these

modulations over ECG and PPG signal can be seen in Figure 1.12.

Figure 1.12: Respiratory modulations over PPG and ECG signals, reproduced and modified
from [58].
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Apart from these modulations, ECG morphology could also be affected by respi-

ration through relative movements of the electrodes with respect to the heart, and

changes of impedance distribution in thorax due to the filling and emptying of the

lungs [66]. Taking this into account, ECG can be used to estimate the respiratory sig-

nal through the ECG derived respiratory (EDR) signals, that reflects the variations

in ECG morphology due to the effect of respiration, including the QRS amplitude

and the up-slope and down-slope of the QRS complexes [67]. This last method will

be used in this dissertation to obtain a respiratory rate estimation from the ECG

signal and will be more explained in Section 2.3.2.

Respiratory signal is also estimated from the PPG signal, based on the as-

sumption that respiration modulates PPG signal through several effects [59]. A

lot of works have developed algorithms to estimate respiratory rate from PPG sig-

nal directly, as in [68, 69, 70, 71, 72]. Other works prefer to develop their al-

gorithms over PPG derived respiratory (PDR) signals, which contain information

about the respiratory modulation. Some of these PDR signals are: respiratory-

induced intensity variability (RIIV) signal, that reflects the BM [60, 63, 64, 65];

respiratory-induced frequency variation (RIFV) signal or PRV signal, that reflects

the FM [59, 60, 73, 74]; respiratory-induced amplitude variation (RIAV) o Pulse

Amplitude Variability (PAV) signal, which reflects the AM [60, 65, 73, 74]; and the

Pulse Width Variability (PWV), which exploits the respiratory information present

in the pulse wave velocity and dispersion, and it is modulated by blood vessels stiff-

ness in addition to the pressure changes in the thorax during respiratory cycle [73].

The method explained in [73] will be used in this dissertation to obtain a respiratory

rate estimation from the PPG signal and will be more explained in Sections 2.3.2

and 3.3.2. It must be noticed than PPG morphology is also dependent on the loca-

tion of the sensor, so where should be placed the PPG device is another factor to be

taken into account.

Autonomic information in the respiratory signal

Respiration plays a vital role in hyperbaric environments, since when hydrostatic

pressure increases, air consumption increases, respiratory effort increases, and fatigue

occurs. Some techniques based on breathing slowly and deeply with the diaphragm

are proposed to control the rhythm and minimize the oxygen consumption.
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Cardio-respiratory system is characterized by a complex interplay of several lin-

ear and non-linear subsystems, with iterations between them. In this regard, it has

been shown that changes in the respiratory pattern alter the spectral content of

HRV/PRV [75] and, consequently, the interpretation of sympathetic or vagal activa-

tions [76, 77, 78]. In fact, RSA could affect the interpretation of frequency domain

parameters, since respiration, which is mediated by the parasympathetic system, is

reflected in different frequencies. Normal range of human respiration in rest condi-

tions is [0.08, 0.5] Hz, so it is not a surprising situation that respiration is in the LF

band or exceeds the upper limit of the classic HF band. Because of this, the inclusion

of respiratory rate information in HRV analysis can improve the ANS assessment:

some works discard those subjects whose respiratory rate falls into the LF band [78];

in other studies, the HF band is centered at the respiratory rate using either a con-

stant or a time-dependent bandwidth [76]. Other approximation to this situation

is to separate respiratory influences from the heart rate for a better estimation of

the sympathovagal balance, as the OSP method does [79]. During this thesis, both

solutions will be applied, discarding those subjects with a respiratory rate lower than

0.15 Hz in Chapter 2 and applying the OSP method in Chapter 4.

1.5 Objective and structure of the thesis

The main objective of this thesis is the study of the ANS response in hyperbaric

environments, through the variations of time, frequency and non-linear parameters

extracted from biological signals in a non-invasive way. The content of this thesis is

organized as follows:

• Chapter 2: A comparison between ECG and PPG time and frequency domain

parameters is performed to see if the PRV signal can be used as a surrogate

measurement of the HRV signal to study the ANS response in a hyperbaric

environment. To that end, a new dataset was created with subjects into a

hyperbaric chamber. The main differences from this dataset to others in the

bibliography are: i) the increase in the number of physiological signals recorded

(ECG and PPG vs. only ECG); ii) the increase in the number of subjects (28

vs. 8 to 12); iii) the increase in the number of stages with different atmospheric
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pressure (5 stages with 1 atm; descent to 3 and 5 atm; ascent to 3 and 1 atm

vs. 1 stage between 2,5 or 3 atm). A study of the ANS response based in

the time and frequency parameters was also done, taking into account the

respiratory information. The study of this new dataset generated the following

publications:

– C. Sánchez, M.D. Peláez-Coca, M.T. Lozano, M. Aiger, A. Hernando

and E. Gil. “Autonomic Nervous System Non-stationary Response to

Controlled Changes in Barometric Pressure”, Proceedings of the XLIV

International Conference on Computing in Cardiology (CinC), Rennes,

France, 2017.

– C. Pérez, M.D. Peláez-Coca, A. Hernando, E. Gil and C. Sánchez.

“Multivariable Relationships between Autonomic Nervous System Re-

lated Indices in Hyperbaric Environments”, 41st International Conference

of the IEEE Engineering in Medicine & Biology Society (EMBC), Berlin,

Germany, 2019.

– A. Hernando, M.D. Peláez-Coca, M.T. Lozano, M. Aiger, D. Izquierdo,

A. Sánchez, M.I. López-Jurado, I. Moura, J. Fidalgo, J. Lázaro and E.

Gil. “Autonomic nervous system measurement in hyperbaric environ-

ments using ECG and PPG signals”, IEEE Journal of Biomedical and

Health Informatics, 23(1), 132-142, 2019.

– C. Sánchez, A. Hernando, J. Bolea, D. Izquierdo, M.T. Lozano, M.D.

Peláez-Coca. “Safety Ranges for Heart Rate Variability Parameters in

Hyperbaric Environments”, Proceedings of the XLVII International Con-

ference on Computing in Cardiology, Rimini, Italy, 2020.

• Chapter 3: An evaluation of the PPG sensor location for respiratory rate

estimation is performed in this Chapter, due to respiratory rate is necessary

to complete the study of the ANS response. In this Chapter, respiratory rate

is estimated only from PPG signal because results in Chapter 2 show that

PRV provides a surrogate measurement of HRV, indicating than only PPG

could be used to characterize the ANS response. A dataset with 35 subjects

breathing spontaneously and with a controlled respiration at a constant rate
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from 0.1 Hz to 0.6 Hz, in 0.1 Hz steps, was created for that end. Respiratory

signal and finger and forehead PPG were recorded simultaneously and four

PDR signals were extracted from each one of the recorded PPG signals. The

research described in this Chapter generated the following publications:

– A. Hernando, M.D. Peláez-Coca, M.T. Lozano, M. Aiger, E. Gil and J.

Lázaro. “Finger and Forehead PPG Signal Comparison for Respiratory

Rate Estimation Based on Pulse Amplitude Variability”, 25th European

Signal Processing Conference (EUSIPCO), Kos, Greece, 2130-2134, 2017.

– A. Hernando, M.D. Peláez-Coca, M.T. Lozano, J. Lázaro and E. Gil.

“Finger and forehead PPG signal comparison for respiratory rate estima-

tion”, Physiological Measurement, 40, 095007 (12pp), 2019.

• Chapter 4: A new algorithm to decompose the PPG pulse into two waves

related with the systolic and the diastolic peaks is presented in this Chapter.

The first wave is extracted directly from the PPG pulse waveform and the

second wave is modelled by a lognormal curve. From these two waves, some

parameters such as the amplitude, the width, the time instant, the area under

the curve and some ratios are computed. This algorithm is applied into the hy-

perbaric chamber dataset to identify alterations in the morphology of the PPG

pulse due to the exposure of the subjects to the hyperbaric environment. The

following publications associated with the PPG morphology were generated:

– M.D. Peláez-Coca, A. Hernando, C. Sánchez, M.T. Lozano, D. Izquierdo

and E. Gil. “Photoplethysmographic Waveform in Hyperbaric Environ-

ment”, 41st Annual International Conference of the IEEE Engineering in

Medicine & Biology Society (EMBC), Berlin, Germany, 2019.

– M.D. Peláez-Coca, M.T. Lozano, A. Hernando, M. Aiger and E. Gil.

“Photoplethysmographic Waveform Versus Heart Rate Variability to Iden-

tify Low Stress States. Attention Test”, IEEE Journal of Biomedical and

Health Informatics, 23(5), 1940-1951, 2019.

– M.D. Peláez-Coca, A. Hernando, M.T. Lozano, C. Sánchez, D. Izquierdo

and E. Gil. “Photoplethysmographic Waveform and Pulse Rate Variabil-
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ity Analysis in Hyperbaric Environments”, IEEE Journal of Biomedical

and Health Informatics, 2020.

– A. Hernando, M.D. Peláez-Coca and E. Gil. “Photoplethysmogram

waveform decomposition into systolic and diastolic waves for Autonomic

Nervous System characterization in hyperbaric environments”, IEEE Trans-

actions on Biomedical Engineering, Under Review

• Chapter 5: The objective of this Chapter is the characterization of the ANS

response in three different hyperbaric environments: a) in the hyperbaric cham-

ber dataset, presented in the Chapter 2; b) in a controlled water immersion

where divers remained static in order to minimize the effects of different vari-

ables; c) in an uncontrolled water immersion where divers performed physical

activities during the immersion, which is expected to alter ANS dynamics. The

effects of different factors over the ANS response, such as the pressure, the cold

water or the physical activity during the dive, are analyzed in this Chapter.

To do that, OSP and PDM methods are used to overcome the limitations of

classic PSD frequency domain parameters when the respiratory rate falls in the

LF band and in the account of linear and non-linear properties. The research

described in this Chapter generated the following publications:

– C. Varon, J. Lázaro, J. Bolea, A. Hernando, J. Aguiló, E. Gil, S. Van

Huffel and R. Bailón. “Unconstrained Estimation of HRV Indices af-

ter Removing Respiratory Influences from Heart Rate”, IEEE Journal of

Biomedical and Health Informatics, 23(6), 2386-2397, 2019.

– A. Hernando, M.D. Peláez-Coca, C. Sánchez, J. Bolea, D. Izquierdo,

M.T. Lozano and E. Gil. “Autonomic Nervous System Response During

Scuba Diving Activity”, Proceedings of the XLVII International Confer-

ence on Computing in Cardiology. Rimini, Italy, 2020.

– A. Hernando, H. Posada-Quintero, M.D. Peláez-Coca, E. Gil, K.H.

Chon. “Respiratory component and non-linear analysis of Heart Rate

Variability for Autonomic Nervous System characterization in hyperbaric

environments”, Computer Methods and Programs in Biomedicine, Under

review.
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• Chapter 6: The final chapter contains the conclusions and the possible future

lines of this thesis.





Chapter 2

PRV as a surrogate measurement

of HRV in hyperbaric

environments

2.1 Introduction

As it is said in Section 1.2, the fact of being under the water, since this element is

almost 800 times denser than air, supposes that a descent of 10 meters implies a

pressure increase of one atmosphere. To regulate this pressure change, the diver’s

body needs to adapt itself to the new environments in the best possible manner,

trying to maintain the homeostasis.

The fast response to changes that occur during a dive is reflected by the two

branches of the ANS, the sympathetic and parasympathetic nervous systems. The

most popular way to measure the ANS activity in a non-invasive way is the HRV

signal, extracted from the ECG. However, the fact of using electrodes on the subject’s

chest maybe is not the best option in hyperbaric environments, especially during

a real immersion. That is the reason to propose the PRV signal extracted from

the PPG as an alternative non-invasive measure of the ANS response. PRV has

been proved to be a surrogate measurement of the HRV [4, 5, 6, 7], although some

controversy still exists [8]. The advantages of using PPG are: it requires only one

low-cost device; this device can be located in several parts of the body; PPG allows

28
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to obtain extra information that ECG does not, as the oxygen saturation. For

these reasons, PPG signal could be better suited to measure the ANS response in

hyperbaric environments.

The ANS response has been analysed in several studies simulating atmospheric

pressure conditions inside a hyperbaric chamber, without needing to go under wa-

ter [1, 15, 16, 17, 18]. The results of these studies suggest an increase in parasym-

pathetic activity, that could lead to a reduction in the heart rate. All the cited

studies inside a hyperbaric chamber are characterised by: a low number of subjects

(between 8 and 12); the use of only the HRV to characterise the ANS behaviour;

and the measurement of only one hyperbaric stage between 2.5 and 3 atm.

In light of the above, the main goal of this Chapter is to determine if PRV

is a surrogate measurement of HRV in hyperbaric environments. To that end, an

analysis of HRV, PRV and respiratory rate was performed in 26 healthy subjects

inside a hyperbaric chamber during five stages, with pressure increasing from 1 atm

to 3 and 5 atm and later decreasing it to 3 and 1 atm again. ECG and PPG

signals were recorded and respiratory rate was estimated from these signals, and

was included in the HRV and PRV analysis to obtain a more reliable interpretation

of the results [76, 77, 78]. An statistical analysis and a correlation of the time and

frequency domain parameters was made to compare ECG and PPG signals. Also, the

ANS response to atmospheric pressure changes and the time spent in a hyperbaric

environment was studied, with a higher number of subjects and more stages with

varying atmospheric pressures in comparison to previous studies.

2.2 Materials

A total of 26 subjects (22 males and 4 females), with a mean age of 28.73 ± 6.39 years

and a strong component of military personnel (21 out of 26, 80.78% of the total study

population) were recorded inside the hyperbaric chamber of the Hospital General de

la Defensa de Zaragoza (it can be seen in Figure 2.1). The study protocol was

approved by “Comité de ética de la investigación con medicamentos de la inspección

general de sanidad de la Defensa”, the hospital Review Board, and all subjects signed

the written informed consent.
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Figure 2.1: The hyperbaric chamber used in this study.

The protocol consisted of five different pressure stages at 1 atm (sea level), 3 atm

(simulating 20 metres depth) and 5 atm (simulating 40 meters depth), and sub-

sequently returning to 3 atm and 1 atm. Subjects remained relaxed and sitting

comfortably, and the chamber was correctly ventilated throughout the protocol in

an attempt to avoid major changes in temperature and humidity. During the five

different stages, there were 5 min stops where the subjects remained in silence and

without any movements for a good ECG and PPG recording. Therefore, a total of

five stages, referred to as S1D, S3D, S5, S3A and S1A (the letter S from stage; the

number 1, 3, or 5 reflects the pressure in atm; the letter D or A refers to descent or

ascent) were studied. A schematic representation of the entire protocol is shown in

Table 2.1. The complete duration of the protocol was about two hours and most of

the time was spent in the decompression stops between 3 atm and 1 atm, as recom-

mended in standard decompression tables. In 21 subjects, this decompression time

was 44 min, distributed as follows: 2 min at 1.9 atm, 16 min at 1.6 atm and 26 min

at 1.3 atm. In the rest of the cases, the decompression time was slightly fewer, but

always upper than 30 min.

Recordings were performed using a Nautilus device [80], which recorded the ECG

signal with three frontal bipolar leads at a sampling frequency (fs) of 2000 Hz, along

with the PPG signal (fs = 1000 Hz) on the finger with two possible wavelengths

(red and infrared) and the atmospheric pressure (fs = 250 Hz) inside the chamber.
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Table 2.1: Explanation of the protocol, showing the atmospheric pressure, the different parts and
their respective durations.

Pressure 1 atm (sea level) 1-3 atm 3 atm 3-5 atm 5 atm 5-3 atm 3 atm 3-1 atm 1 atm (sea level)

Explanation S1D Descending S3D Descending S5 Ascending S3A Ascending S1A

Duration 5 min 6-8 min 5 min 6-8 min 5 min 6-8 min 5 min 50-55 min 5 min

2.3 Methods

2.3.1 ECG and PPG analysis

ECG and PPG signals needed some preprocessing before analysis. ECG was first

down-sampled to 1000 Hz to obtain the same sampling frequency as the PPG signal.

A low-pass finite impulse response (FIR) filter was then applied to the two signals

to estimate the baseline interference and to remove this noise from the signal (cut-

off frequency of 0.03 Hz and 0.07 Hz for ECG and PPG signals respectively) [26].

Another low-pass FIR filter was applied over the PPG signal (cut-off frequency of

35 Hz) to remove the high frequency noise [73]. The filtered ECG and PPG signals

were labelled as xECG and xPPG respectively.

Heart beats were detected in the ECG using a wavelet-based algorithm over the

second lead of the recorded ECG signal [81]. In addition, ectopic beats and missed

and false detections were identified and corrected [82]. As a result, the QRS complex

could be located in each beat (i) of the ECG, and the difference between consecutive

R waves was used to generate the beat-to-beat RR time series.

Artefacts in the PPG signal pulses were suppressed using the detector described

in [83]. From each pulse (i), the medium points (nMi
) of the PPG pulses were then de-

tected automatically using an algorithm based on a low-pass differentiator filter [46],

since they were considered the fiducial points because of their robustness [47, 84], so

the difference between them was used to compute the pulse-to-pulse PP time series.

Figure 2.2 shows an example of how time series from the ECG and PPG signals were

estimated using the fiducial points of both signals.
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Figure 2.2: Left, ECG signal with the R peaks of the QRS complexes highlighted and the RR
time series delimited with an arrow; right, PPG signal with the medium points of the pulse wave
highlighted and the PP time series delimited with an arrow.

Four time domain parameters were computed for both signals using the beat-to-

beat/pulse-to-pulse time series for each stage:

• NN(s): median of the Normal-to-Normal intervals between the fiducial points

of both signals.

• IQR(s): Interquartile range as a measure of statistical dispersion, which re-

flects the difference between the upper and lower quartiles.

• RMSSD(s): root mean square of successive differences between adjacent NN

intervals.

• pNN50(%): number of pairs of successive NNs that differ by more than 50 ms,

divided by the total number of NN intervals.

The frequency domain parameters were extracted from the TVIPFM model. This

model assumes that the beat/pulse occurrence times (Ri or nMi
) were supposed to

be generated by a modulating signal, mX(n), with X ∈ [H,P], extracted from ECG

and PPG respectively, which has zero-mean and carries the information of ANS

modulation. The input signal, consisting in mX(n) superimposed to a DC level, was

integrated until the threshold TX(n), which represents the time-varying mean heart

period, was reached. Then, a beat occurred and the integration process was reset.

A schematic of the TVIPFM model is displayed in Figure 2.3.
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Figure 2.3: Schematic representation of the time-varying integral pulse frequency modulation
(TVIPFM) model. Adapted and reproduced from [76].

From this model, the instantaneous heart/pulse rate signal (dXR(n)), sampled at

4 Hz, was represented by:

dXR(n) =
1 +mX(n)

TX(n)
. (2.1)

Assuming that the variations in the term 1/TX(n) are slower than those in the

term mX(n)/TX(n), the time-varying mean HR or PR (dXRM(n)) could be obtained

by low-pass filtering dXR(n), with a cut-off frequency of 0.03 Hz, as follows:

dXRM(n) =
1

TX(n)
. (2.2)

HRV and PRV signals (dXRV (n)) were subsequently obtained as:

dXRV (n) = dXR(n)− dXRM(n) =
mX(n)

TX(n)
. (2.3)

Finally, mX(n) was estimated by correcting dXRV (n) by dXRM(n):

mX(n) =
dXRV (n)

dXRM(n)
. (2.4)

Figure 2.4 shows an example of dXR(n), dXRM(n), and mX(n) signals extracted

from the ECG and from the PPG.

As the five stages were considered stationary, four frequency domain parameters

were calculated based on the PSD analysis of the modulating signal mX(n), using

Welch’s power spectral density estimation, with nine 1-min Hamming windows and

an overlap of 50%. The parameters computed were:
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Figure 2.4: dXR(n) (in blue), dXRM (n) (in red), and mX(n) (in black) signals extracted from the
ECG (left) and from the PPG (right).

• PLF (a.u.): power inside the LF band (0.04-0.15 Hz). Measurement units: a.u.,

arbitrary units.

• PHF (a.u.): power inside the HF band (0.15-0.4 Hz).

• PLFn(n.u.): power in LF band normalised with respect to those of the LF and

HF bands. Measurement units: n.u., normalized units.

• RLF/HF (n.u.): ratio between LF and HF powers.

These eight time and frequency domain parameters allowed a comparison among

ECG and PPG estimations in order to determine whether both signals provide the

same information in hyperbaric environments. Furthermore these parameters also

permitted to characterise the ANS response to atmospheric pressure changes and

time spent in the hyperbaric chamber.

2.3.2 Respiratory rate extracted from ECG and PPG signals

As it was explained in Sections 1.4.1 and 1.4.2, respiratory information affects the

interpretation of frequency parameters, since respiration, which is parasympathetic

related, has a normal range of [0.08, 0.5] Hz in rest conditions, so it is not a surprising

situation that respiration is in the LF band or exceeds the upper limit of the classic

HF band. Therefore, an estimation of the respiratory rate of the five stages is

necessary to avoid misinterpretations of the frequency parameters. Since there is
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not a respiratory device or a chest band that estimates respiratory rate directly, in

this Chapter respiratory rate should be extracted from the ECG and PPG signals.

The first step was obtaining all the EDR and PDR signals. Secondly, and after

combining the EDR and PDR signals, the same algorithm was applied to them to

obtain the respiratory rate. Finally, a combined respiratory rate was averaged if

both estimations provided a similar value during at least one minute of the analysis

window. If not, no respiratory rate estimation was performed for that subject at

that stage. Those subjects with an averaged respiratory rate lower than 0.15 Hz

(upper limit of the LF band) were discarded to avoid possible misinterpretations

when studying the ANS results, as in [78].

EDR signals extraction from the ECG

The method for estimating respiratory rate from ECG presented in [67] was used

to obtain the EDR signals. This method exploits respiration-induced morphology

variations in the QRS slope and R-wave angle of the ECG signal [85].

For each QRS complex, two slopes were measured: upward slope of the R wave

and downward slope of the R wave. To do that, first time instants associated with

the maximum variation points of the ECG signal between Q and R points (nQl,i
and

nRl,i
), and between R and S points (nRl,i

and nSl,i
), were computed as:

nUl,i
= max

n∈[nQl,i
,nRl,i

]
{|l′l(n)|} ; (2.5)

nDl,i
= max

n∈[nRl,i
,nSl,i

]
{|l′l(n)|} , (2.6)

where l′ is the first derivative of lead l and i indicate the beat index.

Then, a straight line was fitted to the ECG signal by least squares in two 8 ms-

length intervals, one of them centred at nUl,i
and the other one at nDl,i

. The slopes

of these lines are denoted IUSl,i
and IDSl,i

, respectively.

A R-wave angle was also used to derive respiratory rate. This angle corresponds

to the smallest one formed by the straight lines that define IUSl,i
and IDSl,i

[86]. The

equation that defines this angle is:

φRl,i
= arctan

∣∣∣∣ IUSl,i
− IDSl,i

0.4(6.25 + IUSl,i
· IDSl,i

)

∣∣∣∣. (2.7)
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Figure 2.5 shows an example of this algorithm over one QRS complex.

Figure 2.5: Estimation of the up-slope, down-slope and R-wave angle, extracted from [67]. Thick
magenta lines represent the two straight lines from which the slope series are obtained. R-wave
angle series are obtained from the smallest angle formed by these two lines.

An EDR signal was generated for each one of the QRS slopes series by assigning

to each beat occurrence (Rl,i), the value of its associated QRS slope:

duUS,DSl
(n) =

∑
i

IUS,DSl,i
· δ(n−Rl,i), (2.8)

duRl
(n) =

∑
i

φRl,i
· δ(n−Rl,i). (2.9)

As these signals were unevenly sampled, a resampling at 4 Hz was necessary to

standardise them. Finally, a mad-based-outlier rejection and a band-pass filter were

applied (0.07 - 1 Hz cut-off frequencies) to study only the frequency range where the

respiratory rate was expected to be found [87]. Therefore, the three filtered EDR

signals were called Ra, Us, and Ds and an example of these three signals can be
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seen in Figure 2.6. Three leads were registered in this study, with three EDR signals

estimated for each lead, thus meaning that nine final EDR signals were used in the

ensemble to extract respiratory information.
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Figure 2.6: An example of the three EDR signals extracted from one ECG lead.

PDR signals extraction from the PPG

The algorithm explained in [73] was applied to obtain three morphology-based

PDR signals from the PPG. The first one is related with the PRV signal:

duPRV (n) =
∑
i

fs ·
1

nMi
− nMi−1

· δ(n− nMi
). (2.10)

Then, the PAV signal, which reflects the amplitude variation between the apex

(nAi
) and the basal (nBi

) points, detected as in [46], was also obtained:

duPAV (n) =
∑
i

[xPPG(nAi
)− xPPG(nBi

)] · δ(n− nAi
). (2.11)

Finally, the PWV signal, which reflects the width variation of the PPG pulse, was

also estimated. In order to measure the pulses width in PPG signal, it is necessary

to locate the onset (nOi
) and the end points (nEi

) of each pulse wave. To do that,

the maximum up-slope point (nPPGUi
) was found inside a determined region around

the apex point in the low-pass derivative PPG signal (x′PPG(n)):

nPPGUi
= arg max

n
{x′PPG(n)} , n ∈ [nAi

− 0.3fs, nAi
] . (2.12)
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The pulse wave onset, nOi
, search is limited to ΩOi

interval and is determined as:

ΩOi
=
[
nAi
− 0.3fs, n

PPG
Ui

]
(2.13)

nOi
=


arg min

n∈ΩOi

{∣∣x′PPG(n)− η · x′PPG(nPPGUi
)
∣∣} if C1

last relative minimum of x′PPG(n) if C2

arg minn∈ΩOi
{x′PPG(n)} otherwise

(2.14)

where η · x′PPG(nPPGUi
) represents a beat varying threshold dependent on maximum

up-slope value of each pulse wave, and conditions C1 and C2 are defined by:

• C1: ∃ m ∈ ΩOi
3 x′PPG(m) ≤ η · x′PPG(nPPGUi

)

• C2: C1 ∧ exists a relative minimum of x′PPG in ΩOi

Pulse wave ends, nEi
, were detected in a similar way as nOi

, but using maximum

down-slope (nPPGDi
) instead of nPPGUi

, in the interval [nAi
, nAi

+ 0.3 · fs] and ΩOi
=[

nPPGDi
, nAi

+ 0.3 · fs
]
.

Once nOi
and nEi

were detected, the PDR signal based on pulse width variability

was computed as:

duPWV (n) =
∑
i

1

fs
· (nEi

− nOi
) · δ(n− nMi

) (2.15)

Figure 2.7 shows an example of the nOi
and nEi

points detection and the estima-

tion of duPWV (n).

As the three PDR signals were unevenly sampled, a resampling at 4 Hz was

applied to standardise them, along with a mad-based-outlier rejection and a band-

pass filter (0.07 - 1 Hz cut-off frequencies). PRV, PAV and PWV conformed the

ensemble used to extract respiratory information from the PPG. Figure 2.8 shows

an example of these three PDR signals obtained from the PPG.

Respiratory rate estimation

The same fusion algorithm based on [67] was applied to the nine EDR signals (j

= 1...9) and the three PDR signals (j = 1...3) to estimate respiratory rate (FX
R ), with

X ∈ [H,P], from peaked-conditioned averaged spectra. A power spectrum density
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Figure 2.7: Estimation of the nOi and nEi points, together with the estimation of the PDR signal
based on pulse width variability. Extracted and modified from [73].
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Figure 2.8: An example of the three PDR signals extracted from the PPG.

SXj,k(f) was estimated every 5 seconds from the kth 40 s length running window using

the Welch’s periodogram with sub-windows of 12 s and a 50% overlap, for each EDR

and PDR signal (j). The location of the largest peak fXI (j, k) was determined for

each SXj,k(f). A reference interval ΩX
R (j, k) was subsequently established as:

ΩX
R (j, k) =

[
FX
R (j, k − 1)− δ, FX

R (j, k − 1) + 2δ
]
, (2.16)

where FX
R (k−1) is the respiratory rate estimated from the previous (k−1) window,

and δ = 0.1.

All peaks larger than 85% of fXI (j, k) inside ΩX
R (j, k) were detected, and fXII (j, k)

was chosen as the nearest peak to FX
R (j, k − 1), since respiratory variation in 5 s is

supposed to be slow. Note that fXII (j, k) could be the same fXI (j, k) if the largest
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peak was also the nearest peak to FX
R (j, k − 1). An example of selection of fXI (j, k)

and fXII (j, k) is shown in Figure 2.9.

Figure 2.9: Example of selection of fX
I (j, k) and fX

II(j, k) for an hypothetical SX
j,k(f) and for a

given FX
R (k − 1), extracted and modified from [67]. Peak (a) was selected as fX

I (j, k) because is
the highest peak. Then, peaks higher than 85% of fX

I (j, k) within ΩX
R (j, k) were detected. Peak

(b) was selected as fX
II(j, k) because is the nearest to FX

R (k−1). Extracted and modified from [67].

A measure of peakness was subsequently obtained from SXj,k(f) as the percentage

of power around the fXII (j, k) with respect to the reference interval ΩX
R (j, k). This

is the only difference between the respiratory rate estimation from ECG and PPG

signals, while the peakness for EDR signals was determined as:

PH
j,k =

∫ fHII(j,k)+0.6δ

fHII(j,k)−0.6δ

SHj,k(f)df∫ FH
R (k−1)+2δ

FH
R (k−1)−δ

SHj,k(f)df

· 100. (2.17)

A different peakness formulation, which follows the criterion described in [88],

changing the peakness conditions and limits to enhance the high frequencies, was

used for PDR signals:
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P P
j,k =

∫ (1+g)fPII(j,k)

(1−g)fPII(j,k)

SPj,k(f)df∫ FP
R (k−1)+δP

FP
R (k−1)−δP

SPj,k(f)df

· 100, (2.18)

where g = 0.5 and δP = 0.2.

Then, a peaked-conditioned average spectra, SXk (f), was obtained by averaging

those SXj,k(f) which were sufficiently peaked:

SXk (f) =
Ls∑

l=−Ls

Ns∑
j=1

χAj,k−l · χBj,k−l · SXj,k−l(f), (2.19)

where Ls was set to 2 in order to average a maximum of 5 spectra for each EDR

and PDR signal as in [67], Ns is the number of signals (9 for ECG and 3 for PPG),

and χAj,k−l and χBj,k−l are two criteria used to determine whether the power spectrum

SXj,k−l(f) was sufficiently peaked:

χAj,k =

{
1, PX

j,k ≥ 85

0, otherwise
, (2.20)

χBj,k =

{
1, PX

j,k ≥ maxj (PX
j,k)− λ

0, otherwise
. (2.21)

Therefore, only those SXj,k(f) whose peakness PX
j,k was above 85% and had a

total power close to the maximum (λ = 0.05) were averaged. Figure 2.10 shows an

example of two spectra, one with P P
j,k > 85% (sufficiently peaked to be used for the

average), and another one with P P
j,k < 85% (insufficiently peaked to be used for the

average).

Consequently, the respiratory rate was estimated for both signals as the maximum

of SXk (f):

FX
R (k) = arg max

f
SXk (f). (2.22)
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Figure 2.10: Differences between one spectrum (extracted from the PPG) that satisfy the peakness
condition and one spectrum that do not. Red dashed lines illustrate the limits of the integrating
interval of the numerator in PP

j,k with the solid line marking the fP
II(k) value. Black dashed lines

illustrate the limits of the integrating interval of the numerator in PP
j,k, with the solid line marking

the FP
R (k − 1) value.

Finally, a combined respiratory rate (FC
R (k)) was calculated as the mean of both

estimations if they were similar. The difference between PPG and ECG respiratory

rate estimations must be less than 0.05 Hz for at least 25% of the analysis window.

This restriction was defined based on the estimation errors found in [67, 73], and

imposes that, to obtain the mean respiratory rate value representing the entire stage

(FC
R ), both estimations have to be similar during 1 min at least. If this criterion was

not fulfilled, the combined respiratory rate was not estimated for the subject in that

stage. If this criterion was fulfilled, but FC
R is lower than 0.15 Hz, the subject was

discarded in this stage to avoid misinterpretations in the ANS response.

The percentage of time (PT ) during which both estimations matched was also

calculated:

PT (%) =
100

Nt

·
Tn∑
k=0

Cf (k), (2.23)

where Cf (k) = 1 if both estimations match and Cf (k) = 0 if not, and Nt is the total

number of time instants during the entire stage.

2.3.3 Oxygen saturation

Oxygen saturation can be computed using both wavelengths (red and infrared) of

the PPG signal, applying the decomposition in AC and DC components [36]. Both
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signals were initially band-pass-filtered with cut-off frequencies of 0.4 and 10 Hz.

They were then divided into series of 0.8 s and the maximum and minimum for each

series were determined. The AC component in the red and infrared wavelengths was

described as the difference between the maximum and minimum values, whereas the

DC component was just the maximum value. This defined two ratios, namely the red

ratio, which is obtained by dividing the AC component by the DC component, and

the infrared ratio, which is the same operation but for the infrared wavelength. The

division of these two ratios gave the so-called ratio of ratios (R(n)), computed for

each serie (n). Finally, the oxygen saturation, SpO2, was calculated (and expressed

as a percentage) according to the device manufacturer’s instructions. The oxygen

saturation equation was extracted from an experimental calibration curve obtained

by comparing this device’s recordings with a reference device to obtain the same

oxygen saturation measures:

SpO2(%) =
[
−4.73R(n)2 + 1.12R(n) + 99.7

]
· 100. (2.24)

2.3.4 Statistical analysis

Two different statistical tests were used to analyse if PRV is a surrogate measurement

of HRV. The first was a comparison between ECG and PPG likeness by means of

the correlation of the modulating signal mX(n) extracted from the ECG and from

the PPG. The second one involved an analysis of the difference for each parameter

extracted from HRV and PRV, with a Shapiro-Wilk test being applied to verify the

normal distribution of the eight parameters and then a paired sample Student’s t-test

being applied to the same parameter extracted with both signals. The correlation

between the parameters extracted was also studied as a marker of the similarity

between the two signals.

One statistical analysis was applied to each parameter to determine the presence

of significant differences between the five stages of the protocol looking for differences

in the ANS response. Thus, a Shapiro-Wilk test was applied to check the normal

distribution of the parameter, with Student’s t-test being applied to every pair of

stages if the distribution was normal and the Wilcoxon paired test if not. In all the

methods, a p-value < 0.05 indicated statistical significance.
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2.4 Results

In this Section, data for the two final stages were not recorded in one subject, thus

meaning that there were 26 subjects for S1D, S3D and S5 and only 25 subjects for

S3A and S1A. As the results obtained for the red and infrared wavelengths in the

PPG signal were very similar, only those for the red configuration were shown to

help the reader’s understanding.

2.4.1 Respiratory parameters

As mentioned above in Section 2.3.2, respiratory rate was estimated from the ECG

and the PPG signals. When both estimations were very close for at least one minute

during the stage, a mean combined respiratory rate was computed. As this require-

ment was not always fulfilled, the number of final subjects in each stage varies: 22

in S1D and S3A; 21 in S1A; 20 in S3D; and 19 in S5. The mean and standard devi-

ation (SD) for the combined respiratory rate and the percentage of time that both

estimations have a similar value for each stage are presented in Table 2.2. As the

normal distribution was verified, a paired Student’s t-test was performed to detect

any differences in respiratory rate among stages. The number of subjects in each

paired comparison were: 15 for S3A versus (vs.) S3D; 16 for S3A vs. S1D, S5 vs.

S3D, S1A vs. S3D, S3A vs. S5 and S1A vs. S5; 17 for S5 vs. S1D and S1A vs. S1D;

18 for S3D vs. S1D; and 20 for S1A vs. S3A.

Table 2.2: Mean and sd for the combined respiratory rate estimation (FC
R ) and the percentage of

time when both estimations match (PT ). Statistical differences (p<0.05) are represented by a ?
when compared with S1D.

Stages S1D S3D S5 S3A S1A

FC
R (Hz)

0.21 ± 0.23 ± 0.25 ± 0.26 ± 0.24 ±
0.07 0.06 0.05 ? 0.06 ? 0.07

PT (%)
81.29 ± 78.08 ± 75.68 ± 83.06 ± 81.17 ±

18.75 18.67 20.53 16.29 15.84

The overall results show that the respiratory rate was higher in the latter stages

than in the initial ones, with a significant difference being found when comparing S5
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and S3A with S1D. The percentage of time with a match between both estimations

decreased as the atmospheric pressure increased, although the difference was not

significant. It must be noted that three subjects in S1D, and one subject in S3D, S5,

S3A and S1A, had a respiratory rate value lower than 0.15 Hz, thus meaning that

in this study they were discarded in the ANS interpretation.

2.4.2 HRV and PRV parameters

With the elimination of those subjects whose combined respiratory rate was not

computed due to EDR and PDR estimations did not match during one minute and

those subjects whose combined respiratory rate was lower than 0.15 Hz, there was

a total of 21 subjects in S3A stage, 20 in S1A, 19 in S1D and S3D, and 18 in S5.

Figure 2.11 shows one example when the combined respiratory rate is lower than

0.15 Hz and other when is higher than 0.15 Hz.
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Figure 2.11: Time-frequency map of the combined respiratory rate estimation for two subjects in
the same stage: a) the combined respiratory rate (highlighted in black) is lower than 0.15 Hz, so
respiration is inside the LF band and therefore this subject will be discarded of the analysis; b) the
combined respiratory rate (highlighted in black) is higher than 0.15 Hz, so respiration is within the
HF band (whose limits are marked in red) and therefore this subject will be analyzed.

Table 2.3 presents the mean and SD for the eight parameters extracted from the

ECG and PPG signals in every stage, together with the p-value (T-TEST) and the

correlation (CORR) of each parameter extracted from the ECG and PPG signals.

Figure 2.12 shows one boxplot for each parameter to highlight the similarity between

the ECG and PPG parameters and to follow the trend of each one during the various

stages. In these boxplots, a paired statistical test was carried out comparing the
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different stages in pairs, with different numbers of subjects involved in the comparison

depending on the stages analysed: 15 subjects for S5 vs. S3D, S1A vs. S3D and

S1A vs. S5; 18 for S1A vs. S3A; and 14 for the remaining comparisons.

Table 2.3: Mean ± sd for time and frequency domain parameters in each stage extracted from ECG
and PPG signals, along with p-value and correlation for each parameter extracted from the ECG
and PPG signals.

Stage Parameters NN(s) IQR(s) RMSSD(s) pNN50(%) PLF (a.u.) PHF (a.u.) PLFn(n.u.) RLF/HF (n.u.)

S1D

ECG 0.92 ± 0.14 0.08 ± 0.03 0.92 ± 0.14 11.96 ± 10.02 2.90 ± 1.56 1.44 ± 0.98 0.67 ± 0.12 2.67 ± 1.78
PPG 0.92 ± 0.15 0.09 ± 0.03 0.93 ± 0.13 13.58 ± 10.21 2.88 ± 1.46 1.58 ± 1.03 0.66 ± 0.13 2.49 ± 1.75

T-TEST 0.99 0.77 0.86 0.64 0.98 0.69 0.54 0.78
CORR 0.99 0.99 0.94 0.99 0.96 0.98 0.89 0.90

S3D

ECG 0.99 ± 0.18 0.11 ± 0.05 1.01 ± 0.18 16.58 ± 11.99 3.53 ± 2.42 1.37 ± 0.81 0.66 ± 0.18 3.31 ± 2.58
PPG 0.99 ± 0.18 0.12 ± 0.05 0.99 ± 0.17 19.21 ± 11.74 3.79 ± 2.63 1.60 ± 0.87 0.65 ± 0.17 2.76 ± 1.71

T-TEST 0.97 0.60 0.78 0.52 0.79 0.48 0.90 0.49
CORR 0.99 0.99 0.99 0.96 0.99 0.87 0.96 0.88

S5

ECG 1.00 ± 0.17 0.13 ± 0.08 1.01 ± 0.16 21.99 ± 13.75 3.77 ± 3.09 2.44 ± 2.30 0.60 ± 0.18 2.26 ± 2.04
PPG 0.99 ± 0.17 0.15 ± 0.08 0.99 ± 0.17 24.43 ± 13.03 3.84 ± 3.30 2.71 ± 2.45 0.58 ± 0.18 2.05 ± 1.69

T-TEST 0.99 0.55 0.74 0.65 0.95 0.75 0.77 0.76
CORR 0.99 0.88 0.98 0.98 0.99 0.99 0.99 0.98

S3A

ECG 1.06 ± 0.19 0.11 ± 0.06 1.06 ± 0.19 18.74 ± 11.84 2.38 ± 2.01 1.37 ± 0.96 0.59 ± 0.15 1.98 ± 1.52
PPG 1.05 ± 0.19 0.12 ± 0.05 1.05 ± 0.18 21.43 ± 11.58 2.34 ± 1.98 1.57 ± 1.04 0.57 ± 0.14 1.60 ± 0.84

T-TEST 0.97 0.75 0.90 0.47 0.90 0.60 0.55 0.40
CORR 0.99 0.99 0.99 0.98 0.97 0.98 0.92 0.87

S1A

ECG 1.07 ± 0.19 0.13 ± 0.07 1.08 ± 0.20 19.38 ± 11.07 2.42 ± 2.08 1.64 ± 1.34 0.58 ± 0.18 2.04 ± 1.55
PPG 1.07 ± 0.19 0.14 ± 0.09 1.07 ± 0.18 20.92 ± 10.51 2.64 ± 2.31 1.68 ± 1.27 0.58 ± 0.18 2.03 ± 1.48

T-TEST 0.96 0.58 0.87 0.65 0.75 0.98 0.99 0.99
CORR 0.99 0.88 0.95 0.97 0.96 0.98 0.94 0.94

The similarity between HRV and PRV is demonstrated by the correlation between

the signals and the parameters extracted from them. The median value for the

correlation between the modulating signals from the ECG and PPG is higher than

95% for all stages. Moreover, the time and frequency domain parameters extracted

from them are also essentially identical: both distributions are similar (p>0.05) for

all the parameters during all stages and the correlation is higher than 90% in almost

all cases (see Table 2.3).

About the evolution between stages of time domain parameters, NN andRMSSD

increased their value during the entire test, whereas IQR and pNN50 had their max-

imum at stage S5, when the highest pressure was reached. It must be highlighted

that the evolution of these parameters was the same, no matter if ECG or PPG signal

was used. For the four time domain parameters, all stages were significantly different

when compared to the first one. The last two stages (S3A and S1A) also presented

statistically significant differences with the previous two stages (S3D and S5) for
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Figure 2.12: Boxplots of the ECG (in blue) and PPG (in red) parameters. Significant differences
between stages are represented by an arrow joining the two stages analysed: black arrow if differ-
ences are found in both ECG and PPG; blue dashed arrow when differences are only in ECG; red
dotted arrow when only in PPG.
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NN and RMSSD. However, pNN50 had a different distribution, with significant

differences being found for S5 vs. S3D and S3A vs. S3D.

With regard to the frequency domain parameters, PHF exhibited the main differ-

ence, being slightly higher in the PPG signal than in the ECG signal, thus affecting

the normalised power and the ratio. About the trend of each frequency domain

parameter, PLF and PHF increased during the descent, reaching their maximum at

the deepest stage S5 and then decreasing in value during the ascent. Significant

differences were found in PLF when comparing S3A and S1A with S3D and S5, and

S5 was significantly different from S1D, but only when PLF was extracted from the

PPG signal. PHF was significantly higher in S5 than S1D, and S1A exhibited a

significant difference with respect to S5, but only with the PPG signal. In general

terms, PLFn and RLF/HF were higher during the initial stages and their values de-

creased continuously in the latter stages. Significant differences were found for S5

vs. S1D, S3A vs. S1D and S3A vs. S3D in both markers of sympathetic dominance.

2.4.3 Oxygen saturation

The mean of the SpO2 was computed for each subject in each stage. Table 2.4 shows

the inter-subject mean of SpO2 for each stage. As can be seen, oxygen saturation

remained stable during all the stages.

Table 2.4: Mean ± sd for the percentage of oxygen saturation during each stage.

Stages S1D S3D S5 S3A S1A

SpO2(%)
96.16 96.12 96.15 96.13 96.18
± 0.10 ± 0.08 ± 0.08 ± 0.06 ± 0.09

2.5 Discussion

ECG and PPG signals have been recorded for subjects inside a hyperbaric chamber

when the atmospheric pressure varies, subsequently analysing the five stages pro-

posed. The main goal of this Chapter is to corroborate if PPG signal provides the
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same information in terms of ANS response than ECG signal, because PPG could be

a more suitable signal in these environments, since PPG device is easier to locate and

PPG could estimate some parameters, as the oxygen saturation, than ECG could

not. To that end, an analysis of HRV and PRV time and frequency domain parame-

ters is performed and the correlation among them is studied. Also a characterization

of how the ANS reacts to pressure changes and the time spent in the hyperbaric

environment is done with these parameters, taking into account the respiratory in-

formation extracted from the ECG and PPG signals in order to complete the study

of the ANS response.

The main limitation of this work is the lack of a respiratory rate reference. To

minimize this problem, two validated algorithms were implemented to extract respi-

ratory information from the ECG and PPG signals in order to guide the HRV and

PRV analysis. If these techniques provided similar results, respiration was assumed

to have been correctly measured. This similarity criterion among the two estima-

tions was impose in order to maximize the robustness of the estimation by merging

the respiratory information from both signals and attempt to minimise the limita-

tion resulting from this lack of respiratory reference. It must be noted that the two

algorithms used [67, 73] were tested with respect to a reference device and the good

results obtained validate their use for estimating respiratory rates. In addition, the

possibility of both algorithms providing the same wrong result at the same time is

considered highly unlikely in this work as they are based on different physiological

principles. The threshold of the similarity criterion is based on the margin of error

reported for the EDR [67] and PDR [73] methods. In the worst case, the error has an

SD of approximately 0.025 Hz, therefore this value was doubled (0.05 Hz) to provide

the threshold of likeness. In addition, the similarity must be maintained for at least

1 min of each 4 min stage (25%) in order to correctly characterize the respiratory

rate of the entire stage. The peakness criteria and thresholds were strictly imposed

because in this Chapter, more importance was given to having a clear respiratory

component than to having more time during which the respiratory rate can be es-

timated. However, the parameters and algorithms could be modified depending on

the final application, so for future applications in which only one signal is available

this respiratory rate estimation could change, modifying the peakness criteria and
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thresholds in order to be less restrictive and be able to estimate the respiratory rate

over a longer period of time even though the respiratory information may be less

clear.

Talking about the results of the respiratory rate inside the hyperbaric chamber,

the general trend is an increase in the respiratory rate as the pressure increases, with

a lower value at 1 atm than at 3 atm and a maximum for 5 atm. The fact that almost

the same result was obtained for S5 and S3A can be explained by considering that

these two stages are very close in time and therefore there may not have been enough

time to recover for the high pressure effects. These similar measurements explain

the fact that differences in the complete dataset are significant when comparing S5

and S3A with respect to S1D. No statistically significant differences between stages

were found when considering the percentage of time than EDR and PDR estimations

match (PT ). However, an increase in the mismatch between the two respiratory rates

when the pressure increased could be distinguished. One possible explanation for this

pattern may be a change in the PPG waveform morphology as a result of the pressure

variations. This change may lead to differences in the PDR signals, which could

affect the respiratory rate estimation. Another possible explanation for the mismatch

between respiratory rates, especially when high pressures were reached, could be

that respiratory modulation in the ECG and PPG does not behave the same in all

cases. As it was shown in [87], respiratory modulation can be affected by different

factors and varies between subjects, so it is possible that pressure changes modify the

respiratory modulation, at least in some subjects. While respiratory rate estimation

based on the ECG exploits the morphological changes in QRS complexes provoked

by the movement of the electrodes with respect to the heart, and by the impedance

changes in the thorax, respiratory rate estimation based on the PPG exploits ANS

control over the cardiovascular system and intrathoracic pressure changes, so if one

of these factors is altered by the pressure, respiratory modulation could be affected.

This, together with the high variability between subjects, means that respiratory

information is sometimes very clear in the modulating signals whereas sometimes it

is not, thus increasing the results variability. Furthermore, as the peakness criteria in

this work are very strict, if the respiratory component is not very clear, the algorithm

uses the previous estimated respiratory rate and does not update it. If this behaviour
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is repeated for a long period of time with ECG or PPG signals, and new estimations

are calculated in the other one, it is possible that the final results do not match,

thereby increasing the time during which the two estimations do not match and its

variability.

The respiratory rate was used to complement the ANS information extracted

from the HRV and PRV analysis, discarding those subjects with a respiratory rate

lower than 0.15 Hz to avoid misinterpretations of the ANS response [75, 77, 78]. The

first interesting point arising from our observations is that the ECG and PPG signals

provide the same information. A similar behaviour has been reported previously [4,

5, 6, 7], although there are no studies of the ECG and PPG at different atmospheric

pressures. The results provided by ECG and PPG are very similar, as can be seen

from Table 2.3 and Figure 2.12, being all the p-values comparing ECG and PPG

parameters higher than 0.05 and the correlation between parameters extracted from

the ECG and PPG higher than 90% in almost all stages. There is only one difference

between ECG and PPG parameters, that is a slightly increase in the PHF when it

is measured from the PPG signal. This behaviour has been reported previously

in the literature [8] and could appear since respiration is differently represented in

PRV than in HRV due to the PTT, that is the time the pulse wave takes to travel

from the heart to the finger. Despite this minor difference, results from statistical

test and correlation among ECG and PPG signals show that they provide the same

information irrespective of atmospheric pressure.

Another interesting point from this Chapter is the study of the ANS response

inside the hyperbaric chamber. It must be noticed than the variation of each pa-

rameter during the stages has the same behaviour when they are extracted from the

ECG and from the PPG. The time domain parameters (NN , IQR, RMSSD and

pNN50) increase significantly their value with respect to the first stage, as shown in

Figure 2.12. Despite this common behaviour, two different trends are observed: the

increase in NN and RMSSD values occurs during the entire test when comparing

each stage with the previous one, whereas the increase in IQR and pNN50 ends

at the deepest stage (S5). An increase in NN (and therefore a decrease in heart

rate) related to the time spent in a hyperbaric environment has been reported pre-

viously [15, 17, 18]. This bradycardia could arise due to the fact that the increased
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ambient pressure balances the systemic circulation, and shifts the blood from the

lower part of body to the central circulation, contributing to a reduction of the heart

rate [19] and by the presence of gases inside the body, since their partial pressure

increases with the ambient pressure and this increased density of gases brings to

reduced heart rate [2]. The behaviour observed for IQR and pNN50 could suggest

that the vital signs of the subjects are more unstable at greater depths as these two

parameters mostly reflect the stability of the signal. However, the IQR and pNN50

values in S3A and S1A are higher than in S3D and S1D, respectively, thus suggesting

some degree of modification due to the time spent in the hyperbaric environment, as

the significant differences between S5 and S3A vs. S3D suggest. Note that, although

not statistically significant differences exist, some parameters change in opposite di-

rection along hyperbaric variation trend. For instance, IQR decreases from S5 to

S3A but increases from S3A to S1A. This behaviour could be due to the long period

of time spent in the decompression stops (44 min in almost all the subjects), but

future studies are needed to corroborate this.

Each frequency domain parameter is evaluated individually. PLF increased to a

maximum for the deepest stage (S5), and then decreased quickly, reaching a minimum

value for stages S3A and S1A. Significant differences were found for S3A and S1A

with respect to S3D and S5 because of this rapid decrease. A similar increase in

LF power at higher atmospheric pressures has been reported in [1], but with no

significant differences. The physiological interpretation of this parameter by itself

is complicated as PLF registers both sympathetic and parasympathetic responses,

therefore no clear interpretation of this parameter is possible. As mentioned above,

a difference was observed between the ECG and PPG signals in PHF , although this

had no effect on the statistical analysis. PHF increases until the highest pressure is

reached, as seen in previous studies [1, 15, 16, 17]. Significant differences were only

found in the deepest stage with respect to the initial stage (S5 vs. S1D) and in the

final stage with respect to the deepest one (S1A vs. S5) for the PRV signal, thus

reinforcing this pattern. A possible reason for this increase in PHF could be the rise

in peripheral vascular resistance that may occur in hyperbaric environments, which

would cause a higher blood pressure leading to a baroreflex system reaction and so,

an observation of an increase of the parasympathetic tone [2, 19]. A detailed study
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of the baroreflex system inside hyperbaric environments should be needed to confirm

this hypothesis. The sympathetic indices (PLFn and RLF/HF ) reach their maximum

values in the first two stages (S1D and S3D) and then decrease, reaching a minimum

in the final two stages (S3A and S1A). The decrease of these parameters in the final

stages when a considerable time is spent inside the chamber has been corroborated

in other studies [15, 16, 17]. The statistical differences in PLFn found for S5 and S3A

vs. S1D, and for S3A vs. S3D, supports this theory. To sum up the contribution

of the frequency parameters, it should be noted that while the behaviour of the

sympathetic components (PLFn and RLF/HF ) varies with the time spent inside the

hyperbaric chamber, the parasympathetic component (PHF ) varies with changes in

atmospheric pressure, which is one of the novel findings of this study. However, since

PLF registers the influence of both sympathetic and parasympathetic components,

PLF behaviour does not show any clear pressure or time dependency.

Finally, oxygen saturation remains stable during all stages due to the ventila-

tion system of the hyperbaric chamber, which maintains a steady gas concentration.

The possibility of being able to measure SpO2 is very interesting, especially when

subjects are exposed to compressed air, as in real diving. The percentage of oxygen

in the body will allow hyperoxia to be identified and controlled, thus meaning that

decompression stops can be performed based on this concentration instead of the

time established in the tables. Therefore, use of the PPG signal in real diving would

appear to be very useful, although further studies are required to analyse all the

possibilities that this signal can provide in terms of subject analysis.

2.6 Conclusion

It has been shown that the PRV signal provides a surrogate measurement of HRV

in hyperbaric environments since correlation and statistical analysis from ECG and

PPG signals show the similarity among both measures. Respiratory rate extracted

from both signals provides a similar estimation in most of the subjects, allowing

to include respiratory information in the ANS response. These two points, together

with the fact that PPG signal provides very useful additional information such as the

oxygen saturation, that ECG does not, makes PPG signal a suitable tool for measure
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ANS response in hyperbaric environments. About the parameters variation inside the

chamber, it has been shown that respiratory rate and PHF , which is related with the

parasympathetic activity, increase in those stages when the atmospheric pressure is

high, and the heart rate and the sympathetic markers (PLFn and RLF/HF ) decreases

as more time is spent inside the chamber.





Chapter 3

Deriving Respiratory Rate from

PPG signal

3.1 Introduction

As it was pointed out in Section 1.4.3, respiration plays an important role in hyper-

baric environments, since it is necessary to breath slowly and deeply to maintain a

low air consumption and avoid an increase in the respiratory effort that could cause

fatigue. Besides, it is important to include respiratory information in the HRV/PRV

analysis, since it has been shown that changes in the respiratory pattern alter the

spectral content [75] and, consequently, the interpretation of sympathetic or vagal

activations [76, 77, 78].

In Chapter 2, respiratory rate was obtained combining ECG and PPG because

of the lack of a respiratory rate device. Now, if only PPG wants to be used, since in

the previous Chapter it was concluded than PRV can be considered as a surrogate

measurement of HRV in hyperbaric environments, a comparison among the PPG

respiratory rate estimation and a respiratory rate reference is needed in order to

study how reliable is this PPG estimation by itself. Therefore, this Chapter is

focused in respiratory rate estimation from PPG signal. Some works have developed

algorithms to estimate respiratory rate from PPG signal directly, as in [68, 69, 70,

71, 72]. Other works prefer to develop their algorithms over PDR signals, which

contain information about the respiratory modulation, as in [59, 60, 63, 64, 65,

56
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73, 74, 89]. Respiratory rate can be estimated over one of this PDR signals [63,

64, 89] or over an ensemble of them [60, 65, 73, 74], through the application of

several algorithms as autoregressive decomposition [69, 90], fusion of fast Fourier

transforms [60, 71], wavelet transform methods [65, 70], time-frequency maps [68]

or peak-averaged combination of power spectra estimation [73]. This last method is

the one chosen to estimate the respiratory rate in this Chapter.

The location of the PPG sensor has their importance in respiratory rate esti-

mation, since morphological changes in PPG have been observed due to the body

location where PPG is registered [38, 39]. Most of the cited works have the PPG

recorded in the finger, but in some of them this signal was registered in the fore-

arm [63, 64], in the earlobe [89] or in the forehead [74]. Few works in the bibliography

have compared respiratory rate estimation extracted from different PPG locations

and there is not an agreement between them: while some studies suggest than finger

and forehead are good places to locate the PPG sensor [38, 91], other work indi-

cates than only the finger is a good location [92] and another one even proposes the

forearm as the best place [93].

Therefore, in this Chapter, PPG signal is recorded from finger and forehead and

4 PDR signals are extracted from each location: PRV, PAV, PWV and RIIV. Res-

piratory rate for these PDR signals (and all the possible combinations of them) is

estimated and the success rate, the relative error and a confusion matrix are com-

puted to evaluate how the location of the PPG sensor affects to the respiratory rate

estimation. The power distribution of respiratory information and some morpholog-

ical parameters of both PPG signals are studied too to complete the analysis.

3.2 Materials

Thirty-five subjects (18 males and 17 females) with a mean age of 35.1 ± 6.5 years

conformed the whole dataset. During the whole test subjects remained comfortably

seated during approximately half an hour. The protocol consisted of 7 different

stages with a duration of 3 minutes each one: first, subjects were registered during

spontaneous breathing; then a different respiratory rate was imposed in each of the

remaining six stages, starting at 0.6 Hz and ending at 0.1 Hz in steps of 0.1 Hz.
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A schematic representation of this protocol is shown in Table 3.1. This controlled

breathing was given by a sinusoidal wave that the subjects had to follow, marking

the moment of inhale and exhale.

Table 3.1: Explanation of the protocol, with the fixed respiratory rate of each stage and its duration.

Respiratory Spontaneous
0.6 Hz 0.5 Hz 0.4 Hz 0.3 Hz 0.2 Hz 0.1 Hz

rate (Spt)
Duration 3 min 3 min 3 min 3 min 3 min 3 min 3 min

Finger and forehead PPG signals were recorded simultaneously as well as a chest-

band respiratory signal. These signals were registered with the Medicom System,

ABP-10 module (Medicom MTD, Ltd, Russia), a device specifically created to ac-

quire raw biomedical signals without any preprocessing. The sample frequency was

fs = 250 Hz. Only the last 2 minutes of each stage were used to extract the features

of the wave morphology and the respiratory information from the PPG signals. Re-

sults of respiratory chest-band signal obtained the same respiratory rate imposed by

the guided sinusoidal wave, so it was used as the reference to compare the respiratory

rate estimated from finger and forehead PPG signals.

3.3 Methods

3.3.1 PDR signals

Preprocessing of finger and forehead PPG signals was very similar than the one

described in Section 2.3.1. First of all, a band-pass filter (cut-off frequencies of 0.3 -

35 Hz) was applied to both PPG signals (xPPG) in order to avoid baseline noise and

possible interference [94]. Then, artefacts in the PPG signal pulses were suppressed

using the detector described in [83]. Finally, the apex, nAi, the basal, nBi, and the

medium, nMi, points of PPG pulses were automatically detected using an algorithm

based on a low-pass differentiator filter [46]. The medium points were considered the

fiducial points because of their robustness [47, 84], so the difference between them

was used to compute the pulse-to-pulse time series (PPi). Onset, nOi, and end, nEi,
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points of the pulses were detected as described in [73] and detailed in Section 2.3.2.

Figure 3.1 shows an example of finger and forehead PPG signals with their most

representative points highlighted.
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Figure 3.1: Two pulse waves of PPG signal recorded in the finger (left) and in the forehead (right),
with their most representative points highlighted.

Finally, 4 unevenly sampled (superscript u) PDR signals were obtained, assuming

that their variations were due to a modulation based on respiratory information.

• Pulse Rate Variability: it represents the time difference between two adjacent

medium points [30, 59, 60, 73, 74]:

duPRV (n) =
∑
i

fs ·
[

1

(nMi − nMi−1)

]
· δ(n− nMi). (3.1)

• Pulse Amplitude Variability: it reflects the amplitude variation between the

apex and the basal points [60, 65, 73, 74]:

duPAV (n) =
∑
i

[xPPG(nAi)− xPPG(nBi)] · δ(n− nMi). (3.2)

• Pulse Width Variability: it reflects the width variation of the pulses [73]:

duPWV (n) =
∑
i

1

fs
· (nEi − nOi) · δ(n− nMi). (3.3)
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• Respiratory-Induced Intensity Variability: it represents the intensity variations

produced by the respiration [60, 63, 64, 65]. This signal was estimated from

nBi points before the initial band-pass filter was applied.

duRIIV (n) =
∑
i

xPPG(nBi) · δ(n− nMi). (3.4)

Due to the presence of some outliers in these signals, a median-absolute-deviation-

based outlier rejection rule was applied together with a resampling by cubic splines

interpolation at 4 Hz to standardize the four PDR signals: PRV, PWV, PAV and

RIIV. Then, a band-pass filter (cut-off frequencies of 0.07 - 1 Hz) was applied over

the PDR signals in order to limit the analysis within the frequency range where

respiratory information was [73]. An example of the four PDR signals is shown in

Figure 3.2.
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Figure 3.2: One minute representation of each PDR signal: PRV (top left), PWV (top right), PAV
(bottom left) and RIIV (bottom right). PDR signals extracted in the finger (Fin) are represented
in blue and in the forehead (For) are represented in red. The chest-band respiratory signal (Resp)
is also represented in black.
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3.3.2 Respiratory rate estimation

The same algorithm explained in Section 2.3.2 was applied to estimate the respiratory

rate from both PPG signals. As a reminder, this algorithm is a fusion technique based

on frequency analysis of PDR signals [73] to estimate the respiratory rate every

5 seconds from peaked-conditioned averaged spectra. Every 5 seconds, a Welch’s

periodogram from a 40 s length running window of each PDR signal was calculated

and the biggest peak near the previous respiratory rate estimation was selected

and the percentage of power around this peak with respect a reference interval was

computed. If this percentage was higher than a established threshold (if the signal

was peaked enough), the spectrum was promediated together to the other PDR

spectra peaked enough and a peaked-conditioned average spectrum was obtained.

The location of the largest peak in this average spectrum was selected as the new

respiratory rate estimation (FR). This algorithm was applied over a single PDR

signal and over all the possible combinations of PDR signals.

The same method was applied over the respiratory chest-band signal in order

to obtain chest-band respiratory rate estimation (FC). This estimation was checked

with the respiratory rate marked by the sinusoidal wave and all their estimations

matched, thus this signal could be considered a reference of the real respiratory rate.

3.3.3 Performance measurements

A comparison among the respiratory rate estimated with the PDR signals and the

reference was done every 5 seconds with an experimental margin of error of ± 0.05 Hz

(± 0.3 bpm). If the estimation matched with the reference, it was considered as a

Correct Estimation (CE), while a Wrong Estimation (WE) was considered otherwise.

The success rate (SR) was used as a performance measure:

SR =
CE

CE +WE
· 100. (3.5)

The inter-subject mean of this percentage was calculated for every stage and for

each PDR signal and all possible combination of them. Also, a confusion matrix was

computed to analyse what happen when the respiratory rate was not successfully

estimated. In addition, the relative error (er) of the respiratory rate estimation was
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also calculated:

er =
FR − FC
FC

· 100. (3.6)

Another interesting point of study was the power distribution for each PDR

signal, specially the power associated with the respiratory information. Thus, for

each stage, the power within a bandwidth of 0.1 Hz around the expected respiratory

frequency (given by the respiratory chest-band) was compared with the total power

in the averaged spectrum (from 0.07 to 0.65 Hz).

PR(k) =

∫ f=FC+0.05

f=FC−0.05

Sk(f)df∫ f=0.65

f=0.07

Sk(f)df

. (3.7)

where Sk(f) was the peaked-conditioned averaged spectrum and k represented the

time instant (every 5 seconds). This ratio aimed to quantify how much power related

to the respiratory component appeared in each PDR signal in each stage, assuming

than a higher relative power means more respiratory signal-to-noise ratio.

As PPG sensor location could change PPG morphology and therefore vary res-

piratory information in the PDR signals [39, 93], also the width and the rate were

analysed for each pulse (subscript i) of the PPG signal recorded in the finger and

the forehead:

• Width: reflected the pulse width of each wave.

PWi = nEi − nOi. (3.8)

• Rate: reflected the difference between adjacent medium points.

PRi =
1

nMi − nMi−1

. (3.9)

Figure 3.3 shows an example of how the rate and the width are extracted from

finger and forehead PPG signals.
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Figure 3.3: Extraction of the rate and width from finger (left) and forehead (right) PPG signals.

Finally, an statistical analysis was made to compare all these results from the

PPG signal registered in the finger and the forehead. First, a Shapiro-Wilk test

was applied to verify the normal distribution of the data. The t-Student test was

applied if the distribution was normal, otherwise, the Wilcoxon paired test was the

one applied. In both methods, p-value ≤ 0.05 defined the significance.

3.4 Results

Figure 3.4 shows an example of 8 different PDR signals spectra during the controlled

breathing stage at a respiratory rate of 0.4 Hz. Each column represents one different

PPG signal (finger and forehead) and each row corresponds with one different PDR

signal (PRV, PWV, PAV and RIIV). It can be seen that there is a high spectral

power component (yellow zone) around the expected respiratory rate (red line) in six

out of eight PDR signals. In the other two, (RIIV extracted in finger and forehead),

the main frequency component is located between 0.1 and 0.2 Hz and no related to

respiration.

Table 3.2 shows the respiratory rate estimation success rate in each stage using a

single PDR signal and with all the possible combinations of them, for both possible

PPG sensor locations. Results showed a better performance of the algorithm at

low respiratory rates and when the sensor was located in the finger. When only

one PDR signal was used, PRV obtained the best results at lower frequencies, but

when the frequency was above 0.2 Hz PAV reached the best results in finger and
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Figure 3.4: Time-frequency maps of the respiratory rate estimation using the finger (left column)
and the forehead (right column) PPG signal with different PDR signals: PRV (first row); PAV
(second row); PWV (third row); and RIIV (last row). Red line represents the chest-band respiratory
rate estimation.
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PWV in forehead. Good results were found when several signals were combined,

specially with PRV-PWV, PWV-PAV and PRV-PWV-PAV. The worst results were

found with RIIV signal (and all its combinations) except in 0.1 Hz stage. It must

be noticed that combining PDR signals did not imply an increase in success rate.

Table 3.3 shows the relative error of each single PDR signal and with all the

possible combinations of them for both possible PPG sensor locations. It must be

noticed that the error was usually negative (except in 0.1 Hz stage). This indicates

that the estimated respiratory rate was lower than the real respiratory rate. Results

showed lower error when the sensor was located in the finger and when the respiratory

rate was low. Similar to Table 3.2, the lower error was found in PAV in finger and

in PWV in forehead when only one PDR signal was used. Also, combinations that

showed a low error were PWV-PAV and PRV-PWV-PAV.

Due to the differences found in the respiratory rate estimation of every PDR

signal, a study of the four PDR signals separately was done to analyse the causes

of the differences between both locations of the PPG sensor. Table 3.4 shows 4

confusion matrix where all the estimations of each single PDR signal were compared

with respect to the reference respiratory rate given by the chest band for both possible

PPG sensor locations. Results show higher accuracy in lower frequencies and in finger

with respect to forehead estimations. In PRV, PWV and PAV the diagonal presents

the highest values (this indicates than the estimation matched with the reference)

except from 0.6 Hz stage in PRV and PAV. In RIIV, in all the stages except in

0.2 Hz, the highest percentage of estimations was found in the 0.1 Hz stage in finger

and in 0.1 and 0.2 Hz stages in forehead. This means that, when an error occurred,

the respiratory rate estimation was 0.1 or 0.2 Hz in most of the cases. This result

is in agreement with the poor success rate showed in Table 3.2 and with the large

negative error in Table 3.3.

Figure 3.5 shows the mean of the relative power in each stage for finger and

forehead. For the four PDR signals, PR was higher in the finger than in the forehead

and it decreased when the frequency increased. PWV is the one with less significant

differences in both locations, only in 0.2 and 0.3 Hz stages.
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Table 3.4: Confusion matrix by each PDR signal comparing each respiratory rate estimation (ver-
tical axis) with the reference given by the chest band (horizontal axis), in both locations (Fin for
finger and For for forehead). Best results of each stage are highlighted in bold.

PRV Zone Spt 0.1 0.2 0.3 0.4 0.5 0.6 PWV Zone Spt 0.1 0.2 0.3 0.4 0.5 0.6

Spt
Fin 267 0 0 0 0 0 0

Spt
Fin 262 0 0 0 0 0 0

For 196 0 0 0 0 0 0 For 221 0 0 0 0 0 0

0.1
Fin 91 371 34 55 119 144 177

0.1
Fin 75 305 34 48 90 88 98

For 152 377 65 114 150 125 147 For 55 301 27 41 44 72 101

0.2
Fin 18 0 348 8 0 5 11

0.2
Fin 17 66 346 30 34 45 56

For 12 2 292 19 18 24 32 For 45 32 289 40 18 41 51

0.3
Fin 1 0 0 317 2 4 16

0.3
Fin 21 0 2 298 30 36 20

For 1 0 9 220 30 22 13 For 38 36 42 276 86 63 35

0.4
Fin 2 0 0 0 259 8 11

0.4
Fin 4 0 0 4 226 18 29

For 14 0 9 24 174 49 39 For 2 6 18 21 224 26 23

0.5
Fin 0 0 0 0 0 220 26

0.5
Fin 0 0 0 0 0 194 3

For 2 0 1 3 0 152 39 For 5 4 0 2 0 172 38

0.6
Fin 0 0 0 0 0 0 140

0.6
Fin 0 0 0 0 0 0 175

For 0 0 0 0 0 2 107 For 11 0 0 0 0 0 129

PAV Zone Spt 0.1 0.2 0.3 0.4 0.5 0.6 RIIV Zone Spt 0.1 0.2 0.3 0.4 0.5 0.6

Spt
Fin 291 0 0 0 0 0 0

Spt
Fin 117 0 0 0 0 0 0

For 243 0 0 0 0 0 0 For 130 0 0 0 0 0 0

0.1
Fin 84 326 40 30 79 74 92

0.1
Fin 255 361 166 254 264 310 320

For 5 169 19 45 65 34 63 For 162 298 145 198 203 192 203

0.2
Fin 0 38 330 11 0 0 7

0.2
Fin 17 10 216 10 1 2 0

For 35 89 208 64 64 100 119 For 79 81 229 171 163 182 172

0.3
Fin 2 7 2 339 3 0 24

0.3
Fin 0 0 0 116 1 0 13

For 26 41 42 240 22 47 30 For 6 0 0 11 1 0 1

0.4
Fin 2 0 10 0 298 17 18

0.4
Fin 0 0 0 0 114 2 7

For 60 76 83 27 214 45 48 For 0 0 2 0 5 0 0

0.5
Fin 0 0 0 0 0 290 60

0.5
Fin 0 0 0 0 0 67 1

For 6 4 22 4 7 148 39 For 0 0 0 0 0 0 1

0.6
Fin 0 0 0 0 0 0 180

0.6
Fin 0 0 0 0 0 0 40

For 2 0 2 0 0 0 78 For 0 0 0 0 0 0 0

Not only differences in the power distribution, but also morphological differences

between the two PPG signals extracted in the finger and the forehead have been

found. Figure 3.6 shows the width and rate of the PPG signal in both locations.

The width was higher in the forehead than in the finger but the rate remained nearly

equal for both signals.
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Figure 3.5: Boxplots of PR from finger (blue) and forehead (red) PPG using PRV (top left), PWV
(top right), PAV (bottom left) and RIIV (bottom right). Significant differences between finger and
forehead values are indicated with an ∗ (p < 0.01) or with a ∗∗ (p < 0.001).
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Figure 3.6: Boxplots of the morphological parameters extracted from PPG signals recorded in the
finger (blue) and the forehead (red). Significant differences between finger and forehead values are
indicated with an ∗ (p < 0.01) or with a ∗∗ (p < 0.001).
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3.5 Discussion

In this Chapter, an evaluation of how the location of the PPG sensor affects the

respiratory rate estimation and which PDR signals are more appropriated to this

purpose is performed. PPG signals have been recorded in finger and forehead from

subjects breathing spontaneously and at different controlled respiratory rates. 4

PDR signals (PRV, PWV, PAV and RIIV) have been extracted to both locations of

the PPG signals, obtaining one respiratory rate estimation per PDR signal. In addi-

tion, respiratory rate have been also estimated from all the possible combinations of

these 4 PDR signals. The estimations have been compared with the respiratory rate

estimated from chest-band, which was taken as reference. The respiratory estimation

has been considered accurate if it differs less than 0.05 Hz (0.3 bpm) from the refer-

ence, based on the errors reported in previous works [73]. The success rate and the

relative error of the estimated respiratory rate from both locations are presented, as

well as a confusion matrix for each PDR signal to evaluate their performance. Also,

the power distribution of the respiratory information in the averaged spectrum and

the rate and the width of the pulse wave in finger and forehead PPG signals are

analyzed trying to explain the differences between both sensor locations.

Finger and forehead were the selected parts of the body since they are the most ex-

tended locations of PPG sensor in the bibliography [38, 65, 69, 70, 71, 72, 73, 74, 95].

In fact, one of the conclusions in [38] was that finger and forehead were the best sites

to place PPG sensor for respiratory rate estimation, compared to other four possible

locations. The change in the place where PPG signal is registered involves some vari-

ations that should be considered: different locations imply different configurations

in signal acquisition, as light-transmission configuration can be used in the finger

but not in the forehead, where light-reflection is the only possible configuration; the

optical features of the skin are not the same in the finger than in the forehead; also

the peripheral blood flow varies from one location to another because different cap-

illary vessels irrigate the different zones. These changes affect the PPG morphology,

obtaining a smoother waveform when the signal is recorded in forehead than in fin-

ger [39, 93]. This change in the waveform may affect respiratory information in the

PDR signals, with a possible variation in the modulation that respiration induces
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over these signals, and therefore affecting respiratory rate estimation. In fact, an im-

portant conclusion of this study is that respiratory rate estimation is more accurate

when PPG signal is recorded in the finger than in the forehead. The success rate

is higher and the relative error is lower in finger than in forehead for all the stages

and all the PDR signals. In addition, the diagonal of the confusion matrix shows

higher number of correct estimations in finger than in forehead. One possible expla-

nation of this best results in finger lies in the relative power of the respiratory band,

represented in Figure 3.5. In finger, a higher PR was calculated, which means that

the respiratory component is easier to be identified, and therefore, the respiratory

rate estimator has more chances to give a correct result. In forehead (specially in

the high frequencies) a lower value of PR was calculated, which implies that is easier

to mislead the respiratory component and consequently getting a wrong estimation.

This result is in contrast with [93], where the frequency component analysis shows

lower power of the respiratory component in the finger compared to other sensor lo-

cations. It is worth noting that in that study signals were recorded in supine position

where parasympathetic activity is enhanced and the methodology used was based

in the analysis of the PPG signal spectrum, while our recordings were in sitting

position and the analysed spectral power is extracted from PDR signals. Therefore

the counterbalance of respiratory related and unrelated components of PDR signals

seems to be essential, at least for frequency based methods.

Another important conclusion of this work is the best performance of the respira-

tory rate estimation in lower frequencies than in higher ones. As Table 3.2 shows, the

success rate decreases 30% from 0.2 to 0.5 Hz stages in almost all the PDR signals

(except in PAV) and for both body locations. Consequently, the error committed is

higher in 0.5 Hz stage (more than a 25% with respect to the 0.2 Hz stage). Spon-

taneous respiratory stage also shows good results because respiratory rate during

rest usually is in the lower frequencies range, with a mean value of 0.23 Hz in this

dataset. The relative error in spontaneous breathing is slightly higher than in 0.3 Hz

stage because 6 subjects have a respiratory rate above 0.3 Hz, being more difficult

to properly estimate respiratory rate in these cases. The best performance of the

respiratory estimation in lower frequencies than in higher ones has also been reported

in other studies [65, 91, 92]. A possible explanation to this could be a decrease in
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the power of the respiratory component when the respiratory rate increases, for the

4 PDR signals, as Figure 3.5 shows. This could happen due to a low respiration-

related modulation [96], since respiratory rate was the only difference in the setup of

the different stages. In case of PRV, this is coherent with the well-known decrease

of respiratory sinus arrhythmia as respiratory rate increases [97, 98]. A possible rea-

son of this observation is that autonomic nervous system may act as a physiological

low-pass filter. That would explain also the effect in PAV and PWV. Even more,

PRV and PWV could be affected also by the mechanical effect of respiration on the

intrathoracic blood pressure, which may have also a low-pass behaviour [96]. The de-

crease of the power of the respiratory spectral component at high breathing rates also

causes that other spectral components non-related with respiration become relevant

and act as a confound. Our results suggest the presence of a non-respiratory related

spectral component around 0.1 and 0.2 Hz (see Figure 3.4, specially in RIIV). When

an error occurred, respiratory rate estimation was usually around 0.15 Hz. In fact, in

Table 3.4 the higher values of the confusion matrix are found either in the expected

stage or in 0.1-0.2 Hz. This component is probably related to Mayer waves [99, 100]

and the problems that may cause for respiratory rate estimation has been pointed

out in others works [60]. In this dataset, this problem seems to significantly influence

PPG signal, specially when it is registered in forehead. If the respiratory rate of one

specific application is expected to be higher than 0.15 Hz, a more restrictive filter

with a higher value of the low cut-off frequency could be applied trying to overcome

this non-respiratory related component. In this work, a trial with 0.15 Hz as the low

cut-off frequency of the filter that isolate respiratory components was implemented

and results showed an increase higher than 20% in the success rate for all the single

PDR signals when the PPG was registered in the finger and an increase of 10% in

the forehead.

Concerning which PDR signal is the best to estimate the respiratory rate, PRV

showed the best results for lower frequencies (below 0.3 Hz), with the higher success

rate, the lower relative error and the higher number of correct estimations. However,

its performance was not so good for higher frequencies. Above 0.3 Hz, PAV was

the one with the best results when PPG was registered in finger, although results in

lower frequencies were quite acceptable too. However, PAV results were not so good
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in forehead, with significant differences in the success rate and the power around

the respiratory component between both locations. This difference in PAV between

finger and forehead measurements have been already noticed in [101], with better

values in finger. In that study, removing the baseline modulation helped to reduce

the variability between the two places, but in our study this type of filtering did not

change the results. On the other hand, PWV was the one with best results in the

forehead, specially in frequencies above 0.3 Hz. PWV was the only PDR signal whose

results in finger were quite similar to the forehead ones. This could be explained by

the similar distribution of the power related to the respiratory component in both

locations, with no significant differences between both sites. Although RIIV was

used in previous studies to estimate respiratory rate [60, 63, 64, 65, 74], it was the

one which obtained the worst results both for finger and specially for forehead. This

could be explained by the low power in the spectra at the expected respiratory rate,

thus leading to a selection of a component non-related to respiration as the given

estimation. Finally, the combination of PDR signals did not give the method more

robustness, even more, results with a combination of PDR signals were worse in the

higher frequency stages. This result is in contrast with the conclusion extracted

in several works [60, 65, 73, 74], where the PDR signal combination offered more

accurate estimations. Probably, the combination of several PDR signals is a good

method if each PDR signal by itself provide good results (an accuracy of more than

85%-90%), but this was not the case in this study. Also, the final aim of the dataset

must be considered for PDR signals combination: these 4 PDR signals have been

studied in this specific dataset, conformed by healthy subjects with a mean age of

35.1 ± 6.5 years, however, in the study of a different dataset with different subjects,

maybe some of these PDR signals could be eliminated as they could not provide

faithful respiratory information. For example, while in this dataset PAV seems to

be the one with the best performance, in a different dataset conformed by patients

with a fluid overload PAV may not provide valid information [102]. Otherwise, in an

elderly dataset where respiratory sinus arrhythmia will be not so significant [103],

PRV performance should decrease. Therefore, the inclusion of each PDR signal in

the respiratory rate estimation method should be considered depending on the final

application.
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Finally, an analysis of the morphology of PPG waveform was also presented

in order to study how different the finger and forehead waves are, and whether

PPG morphology is affected by the respiratory rate or not. Results show higher

width when the PPG was registered in the forehead in comparison with the finger,

independently of the respiratory rate. These differences imply morphological changes

between both locations, as other studies in the bibliography show [39, 93]. However,

the results do not show that these morphological changes cause restrictions in the

respiratory rate estimation. In the case of the width of the pulses, a higher width

does not imply a decrease in the modulation that the respiration induces over the

PWV signal. In fact, PWV is the PDR signal with lower differences between finger

and forehead recordings, despite of these change in the pulse width. Therefore,

respiratory rate estimation is apparently more affected by the ratio between the

respiratory power with respect to the power of the entire spectrum that could mask

the respiratory information than by morphological factors.

3.6 Conclusion

It has been shown that differences in the respiratory rate estimation and changes in

morphological features are found when the PPG signal is recorded in the finger and

in the forehead. General results for respiratory rate estimation are characterized by

a better performance in the low frequencies and when the sensor is located in the

finger when compared to the forehead. Also, RIIV showed a poor performance and

it affected negatively to the accuracy of the estimation when RIIV was combined

with other PDR signals. Therefore, finger is the recommended location for PPG

signal acquisition and RIIV signal is not recommended, specially when respiratory

rate could increase to higher values. For this specific dataset, although PRV in

finger obtain good results in lower frequencies, the use of PAV in finger would be

preferable because it also obtains good results at lower frequencies (above 85% of

success rate at 0.1 and 0.2 Hz) and the best results at higher frequencies (almost 90%

of success rate at 0.3 Hz and above 75% at 0.4 and 0.5 Hz) and during spontaneous

breathing (almost 80% of success rate). The inclusion of each PDR signal in the

fusion algorithm should be analysed for each specific application considering both
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the subject population and the breathing pattern, taking into account the effect of

these factors on the respiratory modulation of the PPG.





Chapter 4

Changes in PPG morphology in

hyperbaric environments

4.1 Introduction

As it was probed in Chapter 2, PRV is an efficient tool to measure ANS activity inside

a hyperbaric chamber. Furthermore, not only PRV contains information about the

ANS response. Also, PPG morphology can provide a great amount of information

about vascular assessment or arterial compliance, since pulse pressure propagation in

arteries causes alterations in blood volume and therefore changes in the PPG pulse

shape [39, 50]. As mentioned in Section 1.4.2, the amplitude [51], the width [56], the

areas[55] or some ratios [40, 52, 53, 54] could give information about the systemic

vascular resistance controlled by the ANS system. All these PPG morphological

parameters allows to identify low stress states [104] or distinguish between different

types of exercise [9, 105] or even differentiate postural changes [106].

These parameters are extracted from the original PPG waveform or from its

first or second derivatives. In other works, those parameters are extracted from

PPG pulses modelled by a linear combination of several waves. This methodology

is called Pulse Decomposition Analysis (PDA). The premise of the PDA model is

that the peripheral arterial pressure pulse is a superposition of individual component

pressure pulses, the first of which is due to the left ventricular ejection from the heart

while the remaining component pressure pulses are reflections and re-reflections [107].

77
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Most of the PDA techniques try to fit a model based on a superposition of waves at

once, based on different shapes including gaussians [107, 108, 109], lognormals [110],

rayleights [111] or a combination of them [112, 113]. Some works decompose the

PPG pulse in systole and diastole and then modelled each part separately [114].

Another type of approach is to extract the waves one-by-one, as in [115, 116] instead

of fitting a several-waves-model at once.

In this Chapter, a new algorithm is proposed to extract systolic and diastolic

information. A first wave related to the systole is extracted directly from the PPG

pulse concatenating the up-slope (from the beginning till the absolute maximum)

with itself horizontally flipped. Then a second wave related with the diastole is

modelled by a lognormal wave. From these two waves, the amplitude, the time

instant, the width, the area and some ratios are extracted with the aim of identifying

parameters that show significant changes in the ANS response of subjects exposed

to variable hyperbaric environments.

4.2 Materials

PPG signal of 23 subjects (22 males and 1 female), with a mean age of 27.74 ± 5.15

years, from the hyperbaric chamber dataset presented in Section 2.2 were used. In

this case, only the stages of five different pressures (S1D, S3D, S5, S3A and S1A)

were analyzed. More details of this protocol can be consulted in Section 2.2.

4.3 Methods

4.3.1 PPG preprocessing

A low-pass FIR filter with a cut-off frequency of 10 Hz was applied to the PPG in

order to attenuate noise [73]. Artefactual pulses were suppressed by using the artefact

detector described in [83]. Later, the PPG pulses were automatically detected and

the basal points, nBi, of each pulse were obtained using an algorithm based on a low-

pass differentiator filter [46]. Finally, the baseline of the PPG signal was estimated

by cubic-spline-interpolation of nBi and subsequently subtracted to ensure that each



Chapter 4. PPG morphological parameters 79

PPG pulse begins and ends with zero amplitude. The resulting PPG signal was

called xPPG(n).

4.3.2 Pulse decomposition analysis

Once each pulse was isolated, the new algorithm is applied, extracting two main

waves, the first one related with the systole and the second one related with the

diastole, trying to match the maximum of each wave with the two peaks. To do

that, the algorithm explained in [115] was applied to extract the first wave related

to the systole part of the i-th pulse as follows:

1. Set the beginning of the up-slope wave as the previous to the first non-zero-

amplitude sample (in this case, nBi).

2. Set the end of the up-slope wave as the time instant of the absolute maximum

(nAi).

3. Estimate the systolic wave (yS,i(n)) by concatenating the up-slope with itself

horizontally flipped, as it is shown in Eq. 4.1, assuming that it is symmetric.

yS,i(n) =


xPPG(n), n ∈ [nBi, nAi]

xPPG(−n+ 2nAi), n ∈ [nAi, 2nAi − nBi]
0, otherwise

(4.1)

Therefore, this first wave represents the part of the PPG associated with the

systolic peak. Then, this wave was subtracted from the original PPG waveform

to characterize the diastolic part, obtaining the residual pulse waveform (r1
PPG(n)).

Usually, as the systolic up-slope is more abrupt than the down-slope, the new max-

imum is found at the beginning of r1
PPG(n) instead of being in the diastolic peak. If

this happens, the same algorithm explained for the first wave was repeated one more

time, obtaining a transition second wave that was not used. The way to determine

if this maximum belongs to the diastolic peak or not was by setting a temporal

threshold: if the temporal location of the maximum is higher than the 35% of the

pulse wave duration, this peak belongs to the diastolic part; if not, a transition wave

(yT,i(n)) is obtained concatenating the up-slope with itself horizontally flipped again
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and subtracted from r1
PPG(n), obtaining another residual pulse waveform (r2

PPG(n)).

Finally, when the residual waveform related to the diastolic part was found (r1
PPG(n)

or r2
PPG(n)), it was modelled as a lognormal wave in order to be able to extract some

characteristics as the amplitude, the width and the area under the curve. To do this

modelling, first the residual waveform was normalized to the unit in amplitude and

to 1000 samples in time by spline interpolation. Once normalized, a lognormal wave

was created as in Eq. 4.2:

f(x) =
1

x · σ ·
√

2π
exp−(lnx− µ)2

2σ2
, (4.2)

with µ varying from µ0-100 to µ0+300 in steps of 25 (where µ0 is the time location of

the maximum) and σ varying from 0.2 to 1 in steps of 0.1. The values of µ and σ that

minimize the mean-squared error between the lognormal wave and the residual pulse

waveform were selected and the lognormal wave obtained was now reconverted to the

original values of amplitude and time (yD,i(n)). All the entire process is illustrated

in Figures 4.1 and 4.2, with an example of the PPG pulse decomposition with three

waves and with only two waves, respectively.

4.3.3 Pulse waveform characteristics

From the first wave associated with the systolic peak (yS,i(n)) and from the log-

normal associated with the diastolic peak (yD,i(n)), several morphological features

were extracted. The amplitude (A1 and A2) and the position of the maximum (T1

and T2) of the two waves were defined. The width (W1 and W2) was estimated as

the full-width at half maximum since the end of the lognormal down-slope did not

finish in the zero value. Also the area under the curve from the top until the half

maximum (D1 and D2) was computed. An example of these parameters can be seen

in Figure 4.3. The time delay between both waves (T12 = T2-T1), the reflection

index (RI = A2/A1), the ratio between the widths (W2/W1), the ratio between the

areas (D2/D1), the index of large artery stiffness (SI = h/T12, where h is the sub-

ject age) and the pulse-to-pulse interval (TBB), measured as the difference between

consecutive nBi, were also calculated. These parameters were extracted from the five

stages of the hyperbaric chamber dataset to see differences between the stages.
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Figure 4.1: Example of the entire algorithm with three waves. Firstly, a) represents the original
PPG pulse (xPPG(n)); b) represents the extraction of the wave related to the systolic peak (yS,i(n)),
with the up-slope (that it was horizontally flipped) highlighted in black. Secondly, c) represents the
first residual pulse waveform (r1PPG(n)), obtained as the subtraction of yS,i(n) from xPPG(n), with
the time duration of its maximum being shorter than the 35% of the complete pulse time duration;
d) represents the extraction of the transition wave (yT,i(n)) not related with the diastolic peak,
with the up-slope (that it was horizontally flipped) highlighted in black. Finally, e) represents the
second residual pulse waveform (r2PPG(n)), obtained as the subtraction of yT,i(n) from r1PPG(n);
f) represents the extraction of the wave related with the diastolic peak (yD,i(n)), modelled as a
lognormal wave (in black).
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Figure 4.2: Example of the entire algorithm with two waves. Firstly, a) represents the original PPG
pulse (xPPG(n)); b) represents the extraction of the wave related to the systolic peak (yS,i(n)), with
the up-slope (that it was horizontally flipped) highlighted in black. Secondly, c) represents the first
residual pulse waveform (r1PPG(n)), obtained as the subtraction of yS,i(n) from xPPG(n), with the
time duration of its maximum being longer than the 35% of the complete pulse time duration; d)
represents the extraction of the wave related to the diastolic peak (yD,i(n)), modelled as a lognormal
wave (in black).

4.3.4 Statistical analysis

A Shapiro-Wilk test was applied to check the normal distribution of each parameter,

with paired Student’s t-test being applied to every pair of stages if the distribution

was normal and the Wilcoxon paired test if not. In both methods, a p-value ≤ α

defined significance, where α could be 0.05, 0.01 or 0.001.
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Figure 4.3: Example of the amplitude (A1 and A2), position (T1 and T2), width (W1 and W2),
area (D1 and D2) and time delay (T12) in two PPG pulses, the first one decomposed with three
waves (a) and the second one decomposed with two waves (b).

4.4 Results

It must be noticed than some subjects could not be recorded properly in all the

stages due to a poor PPG signal quality because the PPG sensor was moved during

the recording. Then, there were 23 subjects in S1D and S3D, 18 in S5, 19 in S3A

and 17 in S1A. For the stages comparison, 23 subjects were compared in S1D vs.

S3D; 18 in S1D vs. S5 and in S3D vs. S5; 19 in S1D vs. S3A and in S3D vs. S3A;

17 in S1D vs. S1A, in S3D vs. S1A and in S3A vs. S1A; 16 in S5 vs. S3A; and 13

in S5 vs. S1A.

Figure 4.4 shows the amplitude (A1 and A2), the position (T1 and T2), the width

(W1 and W2) and the area (D1 and D2) of the first and second waves of the PPG

pulse associated with the systolic and the diastolic peak. The pulse-to-pulse interval

(TBB), the time delay between both waves (T12), the large artery stiffness (SI), the

reflection index (RI), the ratio between the width (W2/W1), and the ratio between

the areas (D2/D1) are also shown. Results showed three different trends: i) A1, A2,

D1 and D2 did not show significant changes among stages; ii) TBB, T2, T12, SI, RI,

W2, W2/W1 and D2/D1 showed significant differences between the initial stages

with the final stages, increasing or decreasing their value during the entire protocol;

iii) T1 and W1 increased their value from S1D to S5 stages and then decreased till

S1A, with significant differences between stages of 1 and 5 atm.
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Figure 4.4: Boxplots of the pulse-to-pulse interval, TBB, the time instant of the first peak and the
second peak and the difference among them, T1, T2, and T12, the large artery stiffness index, SI,
the amplitude of the first peak and the second peak and the reflection index, A1, A2 and RI, the
width of the first and second peak and the ratio between them, W1, W2 and W2/W1, and the
area under the curve of the first and second peak and the ratio between them, D1, D2 and D2/D1.
Significant differences between stages are represented by a double arrow (dotted if p−value≤0.05,
dashed if p−value≤0.01 and solid if p−value≤0.001).
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4.5 Discussion

In this Chapter, 14 morphological parameters extracted from the PPG pulse wave

were analyzed to find differences due to the effect of the pressure in a dataset recorded

inside a hyperbaric chamber. To do that, five different stages with three different

pressures (1, 3 and 5 atm) were analyzed and the PPG signal was recorded in each

of these stages. Each PPG pulse was isolated and two waves were extracted from

them. The first one, related to the systole, was extracted directly from the pulse, by

concatenating the up-slope from the beginning to the maximum with itself flipped

horizontally. The second wave was modelled by a lognormal wave whose maximum

matched with the maximum associate with the diastolic peak. From these two waves,

the amplitude, the time of their maximum, the width and the area under these curves

were calculated, together with some ratios and other parameters extracted from the

literature as the large artery stiffness index, to find out if there were changes in these

parameters due to the pressure.

The main novelty of this Chapter is the algorithm to extract the two waves.

The idea issues from the necessity of having two waves whose peaks match with

the systolic and the diastolic peaks. One option was applying a pulse decomposition

analysis that models the PPG pulse as a main wave superposed with several reflected

waves. Several models can be found in the literature, based on different shapes

including gaussians [107, 108, 109], lognormals [110], rayleights [111] or a combination

of them [112, 113]. The main problems of this approximation are that not always

the decomposed waves match with the systolic and diastolic peaks and that the

amplitude of the waves can be not higher enough to extract some parameters as the

amplitude or the reflection index, therefore this strategy was discarded. Other option

was using a pulse decomposition analysis based on extracting the waves one-by-one,

as in [115, 116]. This was the strategy selected here, following the same algorithm

that in these works: first, the beginning of the up-slope of each wave is set as the

previous to the first non-zero-amplitude sample; secondly, the end of the up-slope

is set as the first relative maximum; then, each wave is estimated by concatenating

the up-slope with itself horizontally flipped, assuming that it is symmetric; finally

each wave is subtracted to the original PPG waveform to obtain the residual PPG
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waveform that has to be decomposed. The algorithm assumes than each wave can

be modelled as a gaussian, so the amplitude, the mean and the standard deviation

can be computed. This algorithm fits with the first peak and is able to characterize

the systolic peak, however, when the first wave is subtracted and the residual PPG

waveform is obtained, the up-slope of this new pulse is usually more abrupt than the

down-slope. This caused a problem, since with the use of three waves as in [115, 116]

it was impossible to decompose the entire pulse. Therefore, the alternative that we

propose in this work is using a lognormal wave to characterize the diastolic part of

the PPG pulse, since its down-slope is smoother than its up-slope and this type of

curve fits better with the rest of the PPG pulse wave.

In fact, the approximation of modelling each part of the PPG pulse separately

is not new in the literature, for example in [114] the anacrotic and catatrotic phases

were modelled separately. Once the type of wave to model the diastolic phase was

established, it was necessary that the maximum peak of the residual PPG waveform

matched with the diastolic peak. It must be noticed than when the wave associated to

the systolic part is subtracted from the original PPG pulse, then the new maximum

of the residual PPG waveform is usually found at the beginning of the new waveform

instead of being in the diastolic peak. If this happens, the same algorithm explained

for the first wave is repeated one more time, obtaining a transition second wave that

it is not used for extracting parameters, but it is subtracted from the PPG pulse.

Again, the new maximum of the residual PPG pulse (with the subtraction of one

or two waves if necessary) is located, and this value do match with the diastolic

peak, so this part can be modelled as the diastolic part. The way to determine if

this maximum belongs to the diastolic peak or not (in other words, if the second

wave extracted only for subtraction is needed) is by setting a temporal threshold:

if the temporal location of the maximum is higher than the 35% of the pulse wave

duration, this peak belongs to the diastolic part; if not, the maximum is located

in the transition part and the second wave is obtained and subtracted from the

resultant pulse waveform. This temporal threshold of 35% has been determined

experimentally. Other way to determine if the maximum belongs to the diastolic

part could be the maximum after the dicrotic notch. However, this point is not easy

to identify in all pulses, so this was the reason to establish a temporal threshold.
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Once the rest of the PPG pulse related to the diastolic part is determined, the

resultant pulse can be modelled as a lognormal wave, whose amplitude, width and

area characterize the diastolic part of the PPG pulse. Therefore, the resultant pulse

is modelled as a lognormal wave, fitting µ and σ in order to minimize the mean-

squared error between the lognormal wave and the resulting pulse waveform. The

main problem of this type of wave is that the end part of the down-slope do not

return to the zero value, therefore the width and the area under the curve were

calculated using the 50% of amplitude instead of the 100%.

Morphological parameters were extracted from the systolic and diastolic waves.

The first parameters to analyze are the ones associated with time. First of all,

there was a significant increase in the pulse-to-pulse interval, TBB, from the first

stages (S1D and S3D) to the last ones (S5, S3A and S1A). In fact, the increase in

the pulse-to-pulse interval, implies a decrease in the heart rate, which had been re-

ported previously in hyperbaric chamber studies [1, 15, 16, 17, 117] and in immersion

data [12, 14]. Results from the time instant of the peaks revealed two different trends:

while the value of T1 increased when the pressure increased, from its minimum in

S1D to its maximum in S5 and then decreasing till another minimum in S1A, the

value of T2 increased from the two first stages to the last three ones. This mean that

T1, which is related with the systolic peak and only reflect the heart pumping, was

affected by pressure, but T2, which is related with the diastolic peak and reflects

both the heart pumping and wave reflections from the periphery, was affected by

the pressure and the time spent inside the hyperbaric chamber. The increase of T1

when the pressure increased may be explained by an increased vascular resistance,

which could be attributable to a vasoconstriction [56]. This vasoconstriction could

be related to an activation of the sympathetic system of the subject [51]. The rela-

tionship with the time spent inside the hyperbaric environment showed in T2 was

also reflected in T12, that increased its value in each stage, as it was logical seeing

the values of T1 and T2. The variation in T12 was reflected in the large artery

stiffness index (SI), since it depends on the age of the subject (that did not vary)

and the time between the two peaks [54]. This index is based on the time difference

between systolic and diastolic peaks, that can be used to infer the transit time taken

for the PPG wave to propagate along the aorta and large arteries to the major sites
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of reflection in the lower body and back to the root of the subclavian artery [118].

Therefore, the decrease in SI could mean a change in PPG pulse contour due to a de-

crease in large artery stiffness when subjects are inside the hyperbaric environment.

Other parameter related with the large artery stiffness is the ratio between the two

amplitudes (RI) [40, 53, 114, 119], that showed an increase in its value during the

entire protocol. Although both SI and RI had a similar trend, varying when most

time was spent inside the chamber, these parameters are usually related with the

subject age, so their interpretation as markers of the cardiovascular response of the

body in hyperbaric environments should be taken into account carefully. Related

to RI, the amplitude of the two peaks did not show significant differences between

stages.

About the widths, W1 increased its value from the first stage to the deepest

stage and then decreased until the last stage, however W2 increased from the two

first stages to the last three ones. It must be noticed than these trends were the same

that the trends of T1 and T2 respectively, so W1 was affected by pressure and W2

was affected by pressure and the time spent into the hyperbaric chamber. A possible

explanation of these behaviours is that the width of the first wave depends only on

the systemic vascular resistance, while the width of the second wave depends on the

systemic vascular resistance and on the heart rate. When the heart rate decreases

(as it did during the protocol), the heart beat had more time to recover and therefore

the down-slope of the pulse was larger (as T12 showed), thus increasing the width

of the diastolic part. Then, the increase of W1 due to pressure could reflect only

the vasoconstriction, which could be related to an activation of the sympathetic

system [51], since the reduction in the arterial diameter could mean that more time

is required to the blood to circulate, and therefore the up-slope of the pulse wave

was enlarged. The ratio between the two widths only showed significant differences

among S1A and the rest of stages, however no physiological interpretation of this

ratio had been found in the literature. The areas showed significant differences

between S1D with S3D and S3A, but not with S5. Maybe, as they depend on the

amplitude (which did not show differences among stages) and on the width, the area

at half the amplitude did not have power enough to discriminate between stages. The

ratio between the two subareas (D2/D1) also showed the difference among S1A and
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the rest of the stages, as the ratio of the two widths. This parameter was linked with

an increase in the total peripheral resistance and therefore with a vasoconstriction

in other work [55], however in this dataset this ratio does not follow the same trend

than the time and width parameters, which also pointed out to a vasoconstriction.

To summarize, time and width parameters extracted with the decomposition

of the PPG pulse using this new algorithm showed a dependency with pressure of

the parameters of the systolic wave and a dependency with the time spent in the

hyperbaric chamber of the parameters of the diastolic wave. On the one hand, the

systolic part reflects a vasoconstriction related with an increase in pressure, probably

due to an activation of the sympathetic system on the blood vessels that increases

the systemic vascular resistance [51]. On the other hand, the diastolic part depends

on the systemic vascular resistance and on an increase in the pulse-to-pulse interval

during the entire protocol. The ratio of the amplitudes did show this last behaviour,

although the amplitudes by theirselves did not show changes between stages. The

parameters related with the area did not show the same differences as the others.

Based on our knowledge, the most similar work to this was the one in [120],

where alterations in the morphology of the PPG were studied inside a hyperbaric

chamber. One difference among the two studies lies in the separation of the pulses:

while in [120] the pulse was divided into the anacrotic and the catatrotic phases,

with the maximum of the PPG pulse being the separation of both phases, in this

work two waves representing the systolic and diastolic peaks were obtained. In fact,

in [120] the difficulty to estimate the location of the dicrotic notch and the diastolic

peak was pointed out, so the algorithm presented in this work proposed a robust

method to overcome these difficulties and this methodology gives us the opportunity

to study some parameters than in the other study were impossible to measure, as

the amplitude and the time instant of the peaks, and the time instant difference or

the amplitude ratio. Other difference among the studies resides in the way to extract

the morphological parameters: while in [120] they were extracted directly from the

pulse, in this study they were extracted from the pulse in the first wave and also from

the lognormal curve than approximates the diastolic wave. This change in the form

to extract the PPG parameters made that they could be computed only at half the

maximum in this work, while in [120] the were computed both at half the maximum
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and at the base. Looking at the results, in [120] the width of the up-slope (similar to

W1 here) had a maximum in S3A instead of S5, so the dependency with the pressure

was not found with this parameter, however in the area of the up-slope (similar to D1

here) there was an increase with the increase of the pressure, which matches with our

findings. Independently of the methodology used, results of both works point out to

a vasoconstriction when the pressure increases, with an increased vascular resistance.

This vasoconstriction could be produced by the increase in partial pressure of oxygen

that occurs inside the hyperbaric environments [121].

4.6 Conclusion

In this Chapter, a new methodology to decompose the PPG pulse into two waves

related with the systolic and the diastolic peaks was presented. The first wave was

obtained concatenating the up-slope from the beginning to the first maximum with

itself flipped horizontally. The second wave was modelled by a lognormal curve,

adjusting its maximum to the diastolic peak (this happened only if the temporal

location of the maximum is higher than the 35% of the pulse wave duration) and

varying µ and σ in order to minimize the difference between the lognormal wave and

the resulting pulse waveform. This methodology was applied in a hyperbaric chamber

dataset. Results of the time and width of the wave related with the systolic peak

pointed out to a vasoconstriction, probably due to an activation of the sympathetic

system on the blood vessels, when the pressure increased. Results of the time and

width of the wave related with the diastolic peak reflected the vasoconstriction but

also a dependency with the pulse-to-pulse interval. Therefore this methodology offers

an alternative to extract parameters related to PPG morphology that are able to

distinguish changes in its waveform, at least in hyperbaric environments.





Chapter 5

ANS response in different

hyperbaric environments

5.1 Introduction

In Chapter 2, a study of the ANS response inside a hyperbaric chamber allowed us

to evaluate the ANS response changes due to the pressure. However, there are more

variables that could affect the body’s cardiovascular response during diving, such as

diver body position, diver equipment, visibility, physical activity, water temperature,

breathing with a scuba mouthpieces and more [122, 123, 124]. This is the reason

why in this Chapter, the ANS response in three different hyperbaric environments,

including two real dives, is analyzed. There are only a few studies analyzing ANS

response during immersion and they show dominance of the parasympathetic activ-

ity [10, 12, 13, 14]. However, these studies involved lower depths in a pool [10], or

only linear relationships were considered in their analysis [10, 12], or they analyzed

divers that remained static during the immersion [13, 14].

Also in Chapter 2, the ANS response inside a hyperbaric chamber was char-

acterized using classic time and frequency domain parameters. However, although

PSD methods are widely used in the literature, its true efficacy as an accurate ANS

index has been questioned [125, 126, 127]. Among PSD limitations, the two more

highlighted are: i) PSD is a linear technique, so it fails to account for non-linear prop-

erties of HRV; ii) PSD overestimates the power in the LF band (and consequently

92
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underestimates the power in the HF band) when the respiratory rate falls into the

LF band. To overcome them, two different analyses are presented in this Chapter:

i) PDM method, which is able to extract and separate sympathetic and parasym-

pathetic dynamics and handles linear and non-linear relationships [34], as results

from human studies have shown [14, 128, 129]; ii) The OSP method, which is able

to separate the linearly related respiratory influences from the heart rate variability,

providing information about how much of the respiratory component is reflected in

the HRV and therefore leading to a more accurate estimation of the sympathovagal

balance [79, 130].

Other factor that has been questioned recently is the time duration of the record-

ings: while the Task Force indicates that 2 minutes are needed to address the LF and

HF components [27], some recent studies suggest that less than 5 minutes recordings

may not be sufficient to assess HRV parameters accurately [131, 132].

In light of the above, three different aims are studied in this Chapter. Firstly,

a comparison between PSD, OSP and PDM methods has been performed for data

obtained in a hyperbaric chamber, to examine if OSP and PDM can overcome the

aforementioned limitations of PSD. Secondly, comparison between time domain,

frequency domain, PDM and OSP parameters from 5 minutes and 3 minutes record-

ings has been done in this same dataset to examine the appropriateness of these

two time durations. Finally, to complete the analysis of ANS response in hyperbaric

environments, time domain, PDM and OSP parameters have been studied in two

additional datasets: the first dataset involves a controlled water immersion, where

divers remained static in order to minimize the effects of different variables; the sec-

ond dataset consists in an uncontrolled water immersion, where divers performed

physical activities during the immersion, which is expected to alter ANS dynamics.

5.2 Materials

Three different datasets were analyzed in this Chapter. The first dataset is comprised

of data collected in the hyperbaric chamber presented in Section 2.2. This dataset

was used to compare the PSD method against both, OSP and PDM. In addition,

the two different data lengths (5 and 3 minutes) were compared. For the other two
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water immersion datasets, the ANS response during real immersions with similar

depths (around 20 m or 66 ft) were investigated and compared with the hyperbaric

chamber dataset. Subjects in the three datasets were different, but they shared to

be military personnel, to be physically active (at least one hour of exercise daily), to

be experienced scuba divers (more than 10 dives in the last year) and to have not

taken caffeinated beverages prior to the study.

5.2.1 Datasets

1. Hyperbaric Chamber (HC): 28 subjects (24 males and 4 females) with a mean

age of 28.73 ± 6.39 years were recorded inside the hyperbaric chamber of

the Hospital General de la Defensa de Zaragoza. This dataset was the same

presented in Section 2.2, so more details could be consulted there. In this case,

only ECG (fs=2000 Hz) and pressure (fs=250 Hz) recordings were studied

during the 5 minutes stops at 1 atm (which is the pressure at sea level), at

3 atm (simulating 20 meters or 66 feet depth), at 5 atm (simulating 40 meters

or 131 feet depth), and then coming back to 3 and 1 atm. These stages were

named S1D, S3D, S5, S3A and S1A (S from stage; the number reflects the

pressure, n atm; the letter D or A refers to descent or ascent).

2. Controlled Dive (CD): 11 experienced scuba divers (all men) with a mean age

of 41.13 ± 2.03 years were recorded during an immersion in the sea, with the

approval of the Worcester Polytechnic Institute’s Institutional Review Board.

Only two stages have been analyzed in this work, although there are multi-

ple stages in the data (this is a longer dataset, see details in [14]). In the

baseline stage, the divers floated on the surface for 10 minutes with minimal

movement, in the supine position, with their faces out of water and breathing

through their scuba masks. In the immersion stage, divers remained at 66

feet (20 m) in a prone body position with minimal movement for 30 minutes,

breathing air through their scuba masks. Water temperature at the bottom

depth was 12.78 ± 0.57◦C and divers wore a dry suit. With this dataset, the

effect of the change of pressure in a semi-controlled real immersion can be ana-

lyzed, trying to minimize the influence of the rest of the variables. Recordings
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were performed using a 5 lead digital Holter ECG monitor (RZ153+, Rozinn

Electronics, Cleveland, OH), fs=180 Hz. A diving data logger (GEO, Oceanic,

San Leandro, CA) was used to record each diver’s dive profile including the

dive duration, depth, and water temperature.

3. Uncontrolled Dive (UD): 15 experienced scuba divers (all men) with a mean

age of 28.40 ± 4.95 years were recorded in a real dive in a reservoir, with

the approval of “Comité de ética de la investigación con medicamentos de la

inspección general de sanidad de la Defensa”, the hospital Review Board. Two

different stages were analyzed. In the baseline stage, divers remained relaxed

and sitting comfortably in silence without moving during 5 minutes outside

the water. In the immersion stage, divers immersed for variable duration, but

with a 3 minutes stay between 15 and 25 m (49 to 82 ft), breathing air through

a scuba mouthpiece, performing physical tasks under low visibility. Water

temperature on the surface was 8◦C and divers wore dry suits. In this dataset,

several factors such as body position, the type of activity, the surroundings

during immersion and the way of breathing varied. Therefore, results needed

to be carefully analyzed taking into account all these factors. Similar to the

hyperbaric chamber dataset, recordings were performed using the Nautilus

device [80], so signals from 3 lead ECG (fs=2000 Hz) and the atmospheric

pressure (fs=250 Hz) were obtained.

A schematic representation of the three datasets comparison is shown in Table 5.1.

From the HC dataset, stages S1D (as baseline) and S3D (as immersion) were selected

to study the effect of pressure change, since the rest of variables remained equal.

Table 5.1: Explanation of the comparison of the three datasets, with the differences between them.

Immersion Hyperbaric Controlled dive (CD) Uncontrolled dive (UD)
factors chamber (HC) (sea immersion) (reservoir immersion)
Stages Baseline Immersion Baseline Immersion Baseline Immersion

Pressure 1 atm 3 atm 1 atm 3 atm 1 atm 3 atm
Location Chamber Chamber On water surface Inside the water Outside the water Inside the water
Position Sitting Sitting Supine Prone Sitting Activity

Environment Controlled Controlled Controlled Semi-controlled Controlled Challenging
Breathing Normal Normal Diver mask Diver mask Normal Diver mask
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5.2.2 Data extraction

The 5 minutes stops of each stage in the HC dataset were chosen in order to compare

PSD vs. PDM and OSP methods. Then, the first 3 minutes of each stage were

selected to compare the parameters extracted with the 5 minutes recordings, to see

if the HRV parameters were reliable and did not change significantly from different

signal duration. Finally, the first 3 minutes of each stage in the HC, CD and UD

datasets were chosen, in order to be able to compare the ANS response between the

three datasets. These 3 minutes segments were selected because it was the time that

divers remained at the maximum depth during the reservoir immersion.

5.2.3 Respiration analysis

In order to better characterize the effect of the way of breathing through a scuba

mouthpiece (breath is exaggerated, which can affect the parasympathetic system),

an extra dataset was studied. In this fourth dataset, 12 subjects (6 men and 6

women) with a mean age of 27.17 ± 5.22 years were recorded while breathing in a

spontaneous way and then while simulating respiration with a scuba mask, breathing

deeply and rapidly, with pursed lips. Both stages (breathing styles) had a duration

of 3 minutes and subjects remained sitting and relaxed during the entire test. One

lead ECG recordings were taken using an HP 78354A ECG (Hewlett-Packard) and

signals were digitized using a PowerLab system at 1000 Hz.

5.3 Methods

5.3.1 ECG Analysis

For HC and UD datasets, a similar preprocessing to the one applied in Section 2.3

was done. A FIR low-pass filter was applied to the ECG signal to estimate the

baseline and then to remove baseline wandering (cut-off frequency of 0.03 Hz) [26].

Heartbeats were detected using a wavelet-based algorithm on the second lead of the

recorded ECG signal [81]. In addition, ectopic beats and missed and false detections

were identified and corrected [82]. As a result, the QRS complexes could be located
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in the ECG, and the difference between consecutive R waves was used to generate

the RR time series.

For the CD dataset, R waves in the ECG recordings were detected using au-

tomated software developed for the Rozinn monitor (Holter for Windows+). Any

incorrectly recognized R waves were manually corrected.

Then, for the three datasets, the TVIPFM model was applied to determine the

influence of the ANS on the beat occurrence time series [30]. More information about

this model can be consulted in Section 2.3.1. Using this model, the instantaneous

heart rate signal (dHR) was created at a sampling rate of 4 Hz. The mean heart

rate (dHRM) was obtained by low-pass filtering the dHR with a cut-off frequency of

0.03 Hz. Finally, the heart rate variability (dHRV ) was obtained as the difference

between these two terms: dHRV = dHR − dHRM .

5.3.2 Time Domain Parameters

Four time domain parameters were computed from the beat-to-beat time series:

• mHR(b.p.m.): mean of the mean heart rate, measured in beats per minute

(b.p.m.).

• SDNN(s): standard deviation of the Normal-to-Normal (NN) intervals, as a

measure of statistical dispersion. This parameter could be interpreted as an

indicator of overall ANS activity [27].

• RMSSD(s): Root mean Square of the successive differences between adjacent

NN intervals. This parameter mainly reflects the parasympathetic tone [27].

• pNN50(%): number of pairs of successive NNs that differ by more than 50

ms divided by the total number of NN intervals.

5.3.3 Frequency Domain Parameters

As the recordings in the hyperbaric chamber were considered stationary, four fre-

quency domain parameters were calculated based on the PSD analysis of the dHRV

signal, using Welch’s power spectral density estimation. The parameters computed

were:
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• PLF (a.u.): power inside the LF band (0.04-0.15 Hz).

• PHF (a.u.): power inside the HF band (0.15-0.4 Hz).

• PLFn(n.u.): power in LF band normalized with respect to those of the LF and

HF bands.

• RLF/HF (n.u.): ratio between LF and HF powers.

5.3.4 Respiratory information extracted from ECG

As it was announced in Section 1.4.3, the relationship between respiratory rate and

the parasympathetic system must be taken into consideration during the analysis of

ANS response. The method presented in Section 2.3.2, which consists of estimating

the respiratory rate from peaked-conditioned averaged spectra, is used. As a sum up,

this method exploits respiration-induced morphology variations in the ECG signal

based on three EDR signals, namely the R-wave angle, and upwards and downwards

of the R wave slope [85]. For each EDR signal, PSD was estimated every 5 seconds

and the location of the largest peak closest to the previous respiratory rate estimation

inside a reference interval was selected. A measure of peakness was subsequently

obtained as the percentage of power around this peak with respect to the reference

interval. Only if this measure was higher than a threshold (if it was peaked enough)

the respiratory component was considered clear. Then, a peaked-conditioned average

spectra was obtained by averaging those spectra (5 at maximum) which were peaked

enough. Finally, the respiratory rate (FR) was estimated as the maximum of the

averaged spectra. Those subjects with FR lower than 0.15 Hz (upper limit of the LF

band) were discarded from the classic PSD analysis of the ANS response to avoid

possible misinterpretations [78].

5.3.5 Analysis of HRV using Principal Dynamic Mode

The PDM is a method based on extracting only the principal dynamic components

of the signal via eigen decomposition. The PDMs were calculated using Volterra-

Wiener kernels based on expansion of Laguerre polynomials [133]. A minimum set

of basis functions was determined by using principal component analysis, in which



Chapter 5. ANS response in different hyperbaric environments 99

the dominant eigenvectors were retained, as they relate more closely to the true

characteristics of the signal. In the case of HRV signal, the dominant eigenvectors

should reflect the dynamics of the sympathetic and parasympathetic systems. The

non-dominant eigenvectors represent noise or non-essential characteristics.

The first step of the PDM method is to obtain a signal with broadband spectral

characteristics in order to accurately estimate the Volterra-Wiener kernel. In many

instances, significant power in HRV exists in the VLF band (0-0.04 Hz) compared

to the LF and HF bands. Consequently, the method introduced by Tarvainen et

al [134] was used with the aim of reducing VLF power to the level of the LF and HF

bands so that the overall spectral characteristics are broadband. The result of this

process was labeled as dHRC [34].

The PDM method requires both the input and output data, but we had only

the output signal (dHRC), so it was necessary to create an input signal with broad-

band spectral characteristics and with a correlation to the dynamics of the heart

rate. The Time Variant-Optimal Parameter Search (TV-OPS) algorithm, explained

in [135], was used to create the input signal. This procedure was represented as

an autoregressive (AR) model where the output signal (dHRC) could be estimated

through past samples of this signal (delayed dHRC):

dHRC(n) =
P∑
i=1

a(i, n) · dHRC(n− i) + e(n), (5.1)

where a(i, n) represents the time-varying AR coefficients, P is the maximum order

of the AR model (established in 8 as in [135]) and e(n) is the prediction error.

These a(i, n) coefficients are expanded onto a set of eight (V = 0...7) Legendre

polynomials basis functions (πk(n)):

a(i, n) =
V∑
k=0

α(i, k) · πk(n). (5.2)

Legendre polynomials are selected because they are more appropriate for smoothly

changing dynamics. An example of the first eight orders of Legendre functions can

be seen in Figure 5.1.
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Figure 5.1: Dynamic characteristics of the first eight orders of Legendre functions.

Then, the projection of the past samples of the signal over the Legendre basis

functions can be formulated as:

dHRK(k, n− i) = πk(n) · dHRC(n− i). (5.3)

Substituting Eq 5.2 and Eq 5.3 into Eq 5.1, the following expression can be

obtained:

dHRC(n) =
P∑
i=1

V∑
k=0

α(i, k) · dHRK(k, n− i) + e(n). (5.4)

Then, a pool of linear independent candidates was selected to estimate the pro-

jected coefficients. Between all the candidates, the first candidate vector (dHRK(0, n−
1)) and the second one (dHRK(1, n− 1)) are used to determine whether they are lin-

early independent by the least-square analysis and calculate the residual of the fit.

If this residual is larger than a preset threshold, then dHRK(1, n − 1) is considered

independent from dHRK(0, n− 1) and if not is discarded. This procedure is repeated

with all the candidates, until all of the linearly independent candidate vectors are

selected (W ):

W = (w1, w2, ..., ws), (5.5)

being S the number of the linearly independent candidate vectors.
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With this new matrix of linearly independent vector, the reconstructed output

signal (dHRR) can be formulated as:

dHRR(n) = ΘT ·W + e(n), (5.6)

being Θ = [α(1), α(2), ..., α(S)].

As the objective is to minimize the error, a least-square criterion function is

applied, defined as follows:

JN(Θ) =
N∑
n=1

[dHRR(n)−ΘT ·W ]2. (5.7)

The last mean-square error criterion is quadratic in Θ, so the projected coefficients

can be estimated as:

Θ = [W ·W T ]−1 ·W · dHRC (5.8)

Therefore, substituting this equation into Eq. 5.6, the output signal of TV-OPS

algorithm can be obtained. This signal was subtracted from the original output

signal to obtain the estimation error signal, labeled dHRE: dHRE = dHRC − dHRR.

This error signal, normalized to a unit variance (dHRN), had the broadband

characteristics needed for accurate estimation of PDMs. Therefore, dHRN was used

as the input signal and dHRC was used as the output signal of PDM model to estimate

the Volterra-Wiener kernel, as was used in previous studies [14, 34, 128]. In fact, the

general input-output relation of a stable non-linear time invariant dynamic system

is given by the discrete time Volterra series as:

dHRC(n) = k0 +
M−1∑
m=0

k1(m) · dHRN(n−m)+

M−1∑
m1=0

M−1∑
m2=0

k2(m1,m2) · dHRN(n−m1) · dHRN(n−m2) + ...

(5.9)

where dHRN is the input, dHRC is the output, M is the memory of the system (limited

to 60) and k0, k1, k2... are the Volterra kernels, which describe the dynamics of the

system from a hierarchy of system non-linearities.



Chapter 5. ANS response in different hyperbaric environments 102

The kernel values are combined to form a real symmetric (M+1)x(M+1) square

matrix, that allow to express the second order Volterra model response in a quadratic

form:

Q =



k0
1
2
k1(0) 1

2
k1(1) · · · 1

2
k1(M − 1)

1
2
k1(0) k2(0, 0) k2(0, 1) · · · k2(0,M − 1)

1
2
k1(1) k2(1, 0) k2(1, 1) · · · k2(1,M − 1)

...
...

...
. . .

...
1
2
k1(M − 1) k2(M − 1, 0) k2(M − 1, 1) · · · k2(M − 1,M − 1)


, (5.10)

dHRC(n) = dTHRN(n) ·Q · dHRN(n). (5.11)

Expansion of the Volterra kernels on a complete basis using a maximum of 6 (L)

Laguerre functions (bj(m)) transforms Eq. 5.9 in:

dHRC(n) = c0 +
L−1∑
j=0

c1(j) · vj(n) +
L−1∑
j1=0

L−1∑
j2=0

c2(j1, j2) · vj1(n) · vj2(n) + ..., (5.12)

with

vj(n) =
M−1∑
m=0

bj(m) · dHRN(n−m). (5.13)

In the same way, Q can be constructed with the estimated kernels (c0, c1, c2...) in

the following way:

Q =

[
c0

1
2
cT1 ·BT

1
2
B · c1 BT · c2 ·B

]
(5.14)

with B = [bT0 , b
T
1 , ..., b

T
L−1].

Laguerre functions are selected because they are an orthogonal basis, meaning

than now Q is a real symmetric square matrix that can be decomposed as:

Q = R · Λ ·RT , (5.15)

where R is the eigenvector matrix and Λ is the diagonal eigenvalue matrix.
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For each significant eigenvalue λs, the values of the corresponding eigenvector

µTs = [µs,0, µs,1, ..., µs,M ] (except of µs,0) defines the sth PDM. In the case of HRV

signal, the dominant eigenvectors and eigenvalues should reflect the dynamics of the

sympathetic and parasympathetic systems. While the obtained PDMs were in time

domain representation, the Fast Fourier Transform (FFT) transform was used to

convert them to the frequency domain. The PDM with the highest power in the

HF band was selected to represent the dynamics corresponding to the parasympa-

thetic nervous activity. The power in 0.04 Hz to 0.4 Hz range was computed for

this mode (PDMpara) since parasympathetic component is reflected in LF and HF

classical bands [27, 125, 126, 127]. Then, the PDM with the highest power in the

LF band (discarding the one selected as parasympathetic) was chosen as the PDM

that represents the sympathetic activity and its power in the LF band was com-

puted (PDMsymp). These two components reflect the dynamics of the two ANS

branches [14]. This process is illustrated in Figure 5.2.

Figure 5.2: Diagram of PDM method.

5.3.6 Analysis of HRV using Orthogonal Subspace Projec-

tion

OSP is a method based on decomposing the HRV signal into two different compo-

nents: one respiratory component, describing all linearly-related variations associ-

ated with respiration, and one residual component, describing all dynamics modu-

lated by other mechanisms different from respiration. In fact, the residual component

describes dynamics modulated by the sympathetic nervous system, and other (pos-

sible) vagal modulators unrelated to respiration [79, 130].
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To apply this method, the respiratory signal, (dR), and the HRV signal, dHRV ,

are needed, together with the assumption that the respiratory signal drives changes

in the HRV signal [136]. In this work, respiratory signals were obtained from the

ECG using QRS slopes and R-wave angle as described in Section 5.3.4. However,

this method could not be applied in the second dataset (CD), because only RR series

were available, not the complete recorded ECG signal, therefore OSP was analyzed

only for the HC and UD datasets.

In order to extract all dynamics of the heart rate that are linearly related to

respiration, dHRV can be projected onto a subspace V defined by all variations in

respiratory signal. This subspace is constructed using the respiratory signal, dR,

and its delayed versions, going from 1 to m samples [137]. In other words, a matrix

V spanning the subspace V is constructed as: V = [R(0), R(1), ..., R(m)], with

R(d) = [dR(d+1), dR(d+2), ..., dR(N −m+d)]T , d = 0, ...,m and N as the length of

the respiratory signal. In this study, the value of m (model order) is defined as the

minimum amount of delays obtained using both the Minimum Description Length

(MDL) principle and the Akaike Information Criterion (AIC), with a maximum delay

of 10 s.

After creating the matrix V , the HRV signal can be projected onto the respiratory

subspace V by means of:

dHRVR = P · dHRV , (5.16)

where P is a projection matrix defined as:

P = V · (V T · V )−1 · V T . (5.17)

As a result, all dynamics of HRV linearly related to respiration are described in

the respiratory component dHRVR . Furthermore, an orthogonal component (resid-

ual component), which is related to other heart rate modulators, was computed as

dHRV⊥ = dHRV − dHRVR . This process is illustrated in Figure 5.3.

The relative power of each component (PR for respiratory component and P⊥ for

the residual component) can be calculated as:
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PR =
d′HRVR · dHRVR
d′HRV · dHRV

, P⊥ =
d′HRV⊥ · dHRV⊥
d′HRV · dHRV

. (5.18)

Figure 5.3: Diagram of OSP method.

These powers indicate how much information is shared between respiration and

heart rate. For instance, when PR >> P⊥, most of the variations in the heart rate

can be described by changes in the respiration and vice versa. PR can also be used

as a marker for RSA assessment, and due to the relationship between RSA and the

vagal tone, PR can be interpreted as a parasympathetic marker. In addition, the

power of the residual component in the LF band (PLF⊥) could be interpreted as a

marker of the sympathetic system, and the power of the residual component in the

HF band (PHF⊥) as a marker of the parasympathetic system.

5.3.7 Statistical analysis

First, a statistical analysis was applied to each time domain, frequency domain, OSP

and PDM parameter to determine the presence of significant differences between the

five stages of the HC dataset. Thus, a Shapiro-Wilk test was applied to check the

normal distribution of the parameter, with Student’s t-test being applied to every

pair of stages if the distribution was normal and the Wilcoxon paired test if not.

Then, the correlation of each parameter extracted from 5 and 3 minutes recordings

together with a paired sample Student’s t-test was performed to study the similarity

between these recordings.

Finally, statistical analyses were performed to compare the baseline versus immer-

sion stages in the three hyperbaric datasets and to compare normal versus simulated

scuba mask breathing. A Shapiro-Wilk test was applied to verify the normal distri-

bution of the data, and as these distributions were no-normal, the Wilcoxon paired
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test was applied. Also, another statistical analysis was made to compare the three

baseline stages. In this case, as they were three independent groups with a non-

normal distribution, the Kruskall-Wallis test was applied. Three different p-values,

0.05, 0.01 and 0.001, defined the significance.

5.4 Results

ECG recording of one subject stopped in the middle of the HC test, therefore there

were 28 subjects for S1D, S3D and S5 stages and only 27 for S3A and S1A stages.

5.4.1 Respiratory rate in HC dataset

Table 5.2 shows the respiratory rate in the HC dataset with 5 and 3 minutes record-

ings. No significant differences were found among stages and between the same stage

with different duration. It should be noted that 4 subjects in S1D, 5 in S3D, 4 in

S5, 2 in S3A and 3 in S1A had a respiratory rate lower than 0.15 Hz.

Table 5.2: Mean ± std of the estimated respiratory rate in the HC dataset.

Duration S1D S3D S5 S3A S1A

FR(Hz)
5 min 0.22±0.09 0.22±0.09 0.22±0.07 0.24±0.08 0.23±0.09
3 min 0.21±0.07 0.21±0.06 0.21±0.06 0.23±0.06 0.22±0.07

5.4.2 PSD vs. PDM and OSP methods

Table 5.3 shows the total power of the respiratory and the residual component of the

OSP for the HC dataset for 5 and 3 minutes recordings. No significant differences

were found between 5 and 3 minutes powers. P⊥ was significantly higher than PR in

all stages.

Figure 5.4 shows the time domain, the classic frequency domain, the PDM and

the residual OSP parameters for the HC dataset. It should be noted that for the

classic frequency domain parameters, subjects with a respiratory rate lower than

0.15 Hz were discarded, thus leaving 24 subjects in S1D and S5, 23 in S3D, 26 in
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Table 5.3: Mean ± std of the total power of the respiratory component and the residual component
in the HC dataset. Significant differences between PR and P⊥ are highlighted with a dagger
(p−value≤0.05).

5 min 3 min
PR P⊥ PR P⊥

S1D 0.037±0.056 1.262±0.671 † 0.043±0.068 1.353±0.772 †
S3D 0.049±0.058 1.581±1.001 † 0.054±0.071 1.672±1.054 †
S5 0.049±0.067 1.914±1.063 † 0.081±0.097 1.946±1.162 †

S3A 0.032±0.049 1.212±0.719 † 0.043±0.071 1.236±0.857 †
S1A 0.021±0.022 1.099±0.662 † 0.036±0.042 1.152±0.729 †

S3A and 25 in S1A. For the comparisons between stages there were 20 subjects in

S1D vs. S3D, S1D vs. S1A, S5 vs. S1A; 21 in S1D vs. S3A, S3D vs. S5, S3D vs.

S1A, S5 vs. S3A; 22 in S1D vs. S5, S3D vs. S3A; and 23 in S3A vs. S1A. As shown

in Figure 5.4, mHR decreased and RMSSD increased with each stage, whereas

SDNN and pNN50 reached a maximum value at stage S5 and S3A respectively.

For the frequency domain results, PLF and PHF increased their value during the

descent, reaching a maximum at the deepest stage S5 and then decreasing in value

during the ascent. PLFn and RLF/HF did not follow a clear trend, but they had their

maximum in the S5 stage and their minimum in the S3A stage. Finally, PDMsymp,

PDMpara, PLF⊥ and PHF⊥ followed the same trend, increasing their value until the

S5 stage and then decreasing it until the last stage. The only exception of this path

occurred with PDMpara, between stages S1D and S3D.

5.4.3 5 minutes vs. 3 minutes recordings

Figure 5.5 shows the time domain, the classic frequency domain, the PDM and

the residual OSP parameters extracted from 5 minutes recordings and 3 minutes

recordings in the HC dataset. The 3 minutes recordings were the first 3 minutes of

the 5 minutes recordings. Correlation between parameters extracted with 5 minutes

and with 3 minutes was greater than 90% in all parameters except in two stages of

PLF , in one stage of PLF⊥ and for PDMsymp and PDMpara (from 0.55 to 0.89

in these last two parameters). The paired t-test did not show significant differences

between the two recordings.
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Figure 5.4: Boxplots of the time domain (first column), the classic frequency domain (second
column), the PDM and the residual OSP (third column) parameters in the HC dataset. Signifi-
cant differences between stages of the same dataset are represented by a double arrow (dotted if
p−value≤0.05, dashed if p−value≤0.01 and solid if p−value≤0.001).
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Figure 5.5: Boxplots of the time domain (first column), classic frequency domain (second column),
the PDM and the residual OSP (third column) parameters of 5 minutes recordings (in blue) and
3 minutes recordings (in red) in the HC dataset. The correlation (first row) and the paired t-test
(second row) between 5 and 3 minutes measurements are showed on the top.
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5.4.4 Hyperbaric environments comparison

Figure 5.6 shows the time domain, the PDM and the residual OSP parameters from

baseline and immersion stages in the HC, CD and UD datasets. About the time

domain parameters, mHR significantly decreased from baseline to immersion in HC

and CD while the rest of the time domain parameters increased. However, this

behavior is the opposite in UD, where mHR significantly increased and SDNN ,

RMSSD and pNN50 decreased. The comparison between the baseline stages of the

three datasets found that mHR was significantly higher in CD with respect to the

other two baseline stages while the rest of the time parameters were lower in CD.

PDM parameters showed that PDMsymp was significantly higher during immersion

in the CD and UD datasets while PDMpara was only significantly higher in UD.

Table 5.4 shows the total power of the respiratory and the residual components of

OSP for the HC and UD datasets. P⊥ was significantly higher than PR in both stages

and in both datasets. As shown in Figure 5.6, power of the residual OSP component

(calculated only in HC and UD datasets because of the lack of respiratory signal

in CD) showed a significant increase in PLF⊥ (only in UD) and in PHF⊥ (in both

datasets) during immersion.

Table 5.4: Mean ± std of the total power of the respiratory and the residual components of OSP
for the HC and UD datasets. Significant differences between PR and P⊥ are highlighted with a
dagger (p−value≤0.05).

Baseline Immersion
PR P⊥ PR P⊥

HC 0.048±0.064 1.201±0.695 † 0.063±0.087 1.590±1.068 †
UD 0.104±0.124 1.238±0.788 † 0.089±0.110 2.836±2.035 †

5.4.5 Spontaneous vs. simulated scuba mask breathings

Figure 5.7 shows the differences between time domain, the PDM and the residual

OSP parameters during spontaneous breathing and simulated scuba mask breathing.

mHR significantly increased from spontaneous to simulated scuba mask breathing,

SDNN also increased but not significantly, RMSSD significantly decreased and
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Figure 5.6: Boxplots of the time domain (a-d), the PDM (e,f) and the residual OSP (g,h) pa-
rameters of baseline (in blue) and immersion (in red) stages in the HC, CD and UD datasets.
Significant differences between stages of the same dataset are represented by a double arrow (dot-
ted if p−value≤0.05, dashed if p−value≤0.01 and solid if p−value≤0.001).
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pNN50 did not change. PDMsymp did not show differences between stages but

PDMpara presented a significant increase from spontaneous to simulated scuba

mask breathing stage. Regarding OSP parameters, Table 5.5 shows the total power

of the respiratory and the residual components of OSP for spontaneous vs. simulated

scuba mask breathing. P⊥ was significantly higher than PR in both stages. For OSP

residual parameters in Figure 5.7, PHF⊥ increased when subjects were breathing

through their mouths.
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Figure 5.7: Boxplots of the time domain (a-d), the PDM (e,f) and residual OSP (g,h) parameters
during spontaneous (Spt) and simulated scuba mask (scuba) breathing. Significant differences
between stages are represented by a double arrow (dotted if p−value≤0.05, dashed if p−value≤0.01
and solid if p−value≤0.001).
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Table 5.5: Mean ± std of the total power of the respiratory and the residual components of OSP
for spontaneous vs. simulated scuba mask breathing (Resp). Significant differences between PR

and P⊥ are highlighted with a dagger (p−value≤0.05).

Spontaneous Scuba mask
PR P⊥ PR P⊥

Resp 0.024±0.030 1.140±1.094 † 0.021±0.024 2.185±2.115 †

5.5 Discussion

The main goal of this Chapter is the study of the ANS response in three different

hyperbaric environments: inside a hyperbaric chamber, where only the pressure

varied; during a controlled dive in the sea, where the pressure changed but the effects

of other factors were minimized; and during an uncontrolled dive in a reservoir, where

more factors differed from baseline to immersion stage, such as the low visibility

environment, the physical activity, the position of the diver and breathing through

a scuba mask. A comparison of the HRV features between the two stages (baseline

and immersion) in each dataset was carried out to study how these factors related

to scuba diving activity affect the ANS response. To do this comparison, instead of

the classic PSD methods, the PDM and the OSP methods were used to account for

linear and non-linear interactions and to deal with the respiratory component that

could affect the ANS response, respectively.

One important fact to be highlighted in this Chapter is the use of the ECG

instead of the PPG signal, when in the three previous Chapters this last signal has

been used. While in the HC dataset, both signals were registered, in the other two

datasets only the ECG signal was recorded. In the UD dataset PPG was not recorded

because the Nautilus device was attached in the diver’s arm inside of the dry suit,

and if the PPG sensor was located in the finger or in the forehead it could break the

seal, making that the water entered inside the suit. In fact, the use of a dry suit in

both immersions made that ECG could be properly recorded, since water did not

enter inside the suit and therefore it can not alter or took of the electrodes located

in the diver’s chest. That is the reason why in this Chapter the ANS response was

studied with the ECG signal.
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Figure 5.4 presents the comparison of PSD, PDM and OSP methods for the HC

dataset. Although PSD methods are widely spread in the literature, one of their

main limitations occurs when the respiratory rate falls into the LF band (a frequent

condition in experiments with scuba divers), since respiration is linked with the

parasympathetic branch. It has been shown that changes in respiratory patterns alter

the spectral content of HRV [75] and, consequently, the interpretation of sympathetic

or vagal activations [76, 77, 78]. In fact, in Chapter 2 and in this Chapter, data from

subjects with a respiratory rate below 0.15 Hz were discarded when PSD methods

were used to avoid misinterpretations of the ANS response. In this Chapter, data

from up to 5 subjects were discarded in some stages leading to comparisons among

stages that used 20 subjects instead of 28 (the 71.43% of the total population). To

avoid this limitation due to the respiratory rate, the OSP method [79, 130] is used

in this work, since it is able to separate respiratory influences from the heart rate.

Another limitation of the PSD methods is its incapability to account for the non-

linear dynamics of HRV. That is the reason to use the PDM method, described

in [14], since it is able to extract and separate the linear and non-linear sympathetic

and parasympathetic dynamics of the ANS [34]. Coming back to the results in

Figure 5.4, it can be seen that parasympathetic activity follows the same trend with

the three different methods (PHF with PSD, PDMpara with PDM and PHF⊥ with

OSP), increasing their value until stage S5, and then decreasing until the end of the

protocol. Also, sympathetic activity has similar behaviour with the three methods

(PLFn and RLF/HF with PSD, PDMsymp with PDM and PLF⊥ with OSP) increasing

their value from the beginning to the S5 stage, and then suddenly decreasing their

value until a minimum in the two last stages. Therefore, HRV analysis with OSP

and PDM methods allows to properly characterize the ANS response inside the

hyperbaric chamber, circumventing the respiratory rate limitation that would have

forced us to eliminate some data and also allowing to analyze the linear and non-

linear dynamics of the ANS response.

Next, a comparison among parameters extracted from 5 minutes recordings and

from 3 minutes recordings was performed. This comparison was done because some

recent works suggest that less than 5 minutes recordings may not be sufficient to

assess HRV parameters accurately [131, 132], although the Task Force said that 2



Chapter 5. ANS response in different hyperbaric environments 115

minutes would be time enough for frequency domain parameters [27]. This 3 minutes

temporal slot was chosen for comparison among the three datasets, since subjects

remained below 15 m for only 3 minutes in the uncontrolled dive in the reservoir.

Time domain parameters did not show differences due to the time slot duration, with

a correlation higher than 90% in SDNN and higher than 98% in the other three

parameters (see Figure 5.5). The same trend among 5 and 3 minutes recordings

was found in the classic frequency domain parameters extracted from PSD methods,

with a correlation higher than 90% in all stages and for the four parameters, except

in stages S5 and S3A in PLF , with a correlation of 84%. PDM parameters showed

the lowest correlation (from 55% to 89%) between 5 and 3 minutes parameters. This

could be due to in 3 minutes there were not enough samples in HC dataset for a

reliable measure. Although there is not a standard minimum number of samples

for a reliable measure with non-linear parameters [138], in other works that used

this PDM technique at least 300 samples were used [14, 34]. This 300 samples were

not reached in 3 minutes recordings, but they were reached in 5 minutes recordings

of HC dataset. Despite these worse correlation results, the paired t-test did not

show significant differences among 5 and 3 minutes recordings in HC dataset and

the trend of PDMpara and PDMsymp among stages was not affected, decreasing

or increasing their value in both parameters at the same time. OSP parameters also

did not show differences due to the time slot duration, with a correlation higher than

90% in all stages for the two parameters, except in the S3A stage in PLF⊥, with a

correlation of 87%.

Another difference between this Chapter and other hyperbaric studies is the se-

lection of the temporal window for analyses. While other works has used a middle-to-

final time range windows to compare different stages, to account for the adaptation

of the diver’s body to the hyperbaric conditions [12, 14, 15, 17], in our case we have

selected the first 3 minutes. This temporal window allowed to study how quickly the

body adapted to the hyperbaric environment. In [14], a continuous study of a 30

minutes immersion at 66 ft was performed and significant differences with respect to

baseline stage were already found in the first 5 minutes, so the selection of the first

3 minutes should not imply a limitation of this study.
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One of the main results of this Chapter is the lower power in the OSP respiratory

component with respect to the residual OSP component, as Table 5.4 shows. This

suggests that cardio-respiratory coupling is reduced in these hyperbaric scenarios,

so most of the variations in the heart rate cannot be described by changes in the

respiration, but they can be explained by changes in other factors. Therefore, a

careful description of each stage in the dataset, with a description of all the changes

related to important factors that may affect the ANS response, is needed. The three

different analyzed datasets have a similar protocol: one stage of baseline and another

stage of immersion, with a pressure around 3 atm. In the two stages of the hyperbaric

chamber dataset, subjects remained seated comfortably without talking and the

chamber was ventilated to avoid big temperature differences. The only difference

between the two stages was the pressure, so its effect on the ANS response can be

measured with this dataset. During the controlled dive in the sea, both stages were

very similar also: divers remained in horizontal, with all the equipment and breathing

through their scuba masks. The only difference was their location: in the baseline

stage they were on the water surface, with their heads out of the water, and in the

immersion stage they were at a depth of 20 m. It must be highlighted how different

this baseline stage was from the hyperbaric chamber baseline stage: both baseline

stages were so different between them because the main aim in these two datasets was

to maintain baseline and immersion stages as similar as possible, to study only the

pressure differences in the ANS response. However, the possible effects of cold water

and currents in the immersion stage in the controlled dive in the sea has to be taken

into account. Finally, the uncontrolled dive in the reservoir presents more differences

between its two stages. In baseline, subjects remained sitting comfortably, outside

the water, without diving equipment and breathing spontaneously, as this stage is

similar to the HC baseline but very different to the CD baseline. During reservoir

immersion, subjects performed a physical activity in pairs, under the water, with low

visibility, with all their equipment, and breathing through scuba masks. Therefore,

in our opinion, in this dataset not only the effect of the pressure, but also the effect of

an environment with low visibility, physical activity, body position and scuba mask

breathing could be analyzed.
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Although pressure changes occurred in all three experiments, it is only in the

first two where the effect of pressure can be isolated, to learn how pressure changes

affects ANS response. In both datasets, there is a significant decrease in mHR

and a significant increase in the rest of time domain parameters from the baseline

to the immersion stage. The heart rate decrease has been reported previously in

hyperbaric chamber studies [1, 15, 16, 17] and in immersion data [10, 12, 13, 14].

The possible reason for this bradycardia could be the effect of the diving reflex

and the effect of the pressure [122, 139]. The significant increase in the rest of

the temporal parameters (especially in RMSSD), together with the decrease in the

mHR, seems to point out an increase in the parasympathetic activity or a decrease

in the sympathetic one. However, PDM results do not show any significant change

during the immersion in the parasympathetic activity (PDMpara) in HC and CD.

The lack of parasympathetic activity due to the pressure in the hyperbaric chamber

is in agreement with results in Section 2.4, where no differences were found between

the first two stages. One possible factor that may affect this measure is the descent

speed. In the HC protocol, it took from 5-7 minutes to transition from 1 atm to

3 atm, although this time was significantly shorter in real immersions (less than 2

minutes for an experimented diver). This slow descent could be less demanding for

the subject to adapt to, and this could be a reason why no significant difference in

parasympathetic activity was found in the HC data. The descent duration were not

reported in the other studies. In CD, there was an increase in PDMpara during

immersion, but it was not statistically significant (p−value = 0.1). Concerning the

sympathetic activity, a decrease in PDMsymp was found in HC, that could explain

the trends in the time domain parameters. In contrast, an increase in PDMsymp was

observed in CD. This increase could be explained by the fact that diving in deeper

and colder water with greater current strength will cause substantial stress on even

the most experienced divers, so this increase in the sympathetic activity possibly is

not related to the pressure changes. On the other hand, the OSP method shows a

lower power in the respiratory component with respect to the residual component

for HC data, which indicates that most of the variations in the heart rate are not

produced by changes in the respiration. Therefore, the study of the power in the LF

and HF bands of the residual component could give some information about the two
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branches of the ANS. There is an increase in PHF⊥ that points to an activation of the

parasympathetic activity, and this may be due to the effect of pressure as previous

studies suggests [1, 15, 16, 17]. In sum, pressure changes have an impact on time

domain parameters, with a decrease in mHR and an increase in SDNN , RMSSD

and pNN50, but the effect of pressure changes is not so clear in the frequency domain

parameters: while PHF⊥ from the OSP method could reflect a significant increase in

the parasympathetic activity during immersion, PDMpara from the PDM method

does not show this change; however, a decrease in PDMsymp is found in HC, and

this sympathetic decrease could explain the results of the time domain parameters.

Finally, results from the uncontrolled reservoir dive show the opposite trend in

temporal parameters than those from the hyperbaric chamber and the controlled

sea dive. In UD results, a significant increase in mHR and a decrease in the other

three time domain parameters (significant in RMSSD) are shown. This suggests

an activation of the sympathetic system, as the increases in PDMsymp and PLF⊥

confirm. This activation could be explained by different factors: one could be the

predominance of the physical activity and the stress of the challenging environment

during the immersion. In fact, it has been proved that physical activity during im-

mersion increase the sympathetic tone [140]. Another factor is the stress related to

the immersion: some studies have pointed out that an immersion performing a stress-

ful task could increase the heart rate and the sympathetic activity [11]. Therefore,

physical activity and stress during the immersion, together with the low visibility en-

vironment, that could increase even more the stress of the immersion, and the effect

of cold water, that also increases the heart rate [20, 141], contribute to the predom-

inance of the sympathetic activity. There is also an increase in the parasympathetic

activity in the UD data. UD is the only dataset with significant differences between

stages in PDMpara and in PHF⊥ (p−value < 10−5). This could imply that other

factors, apart from the pressure, have some effect over the vagal tone. In fact, there

was a last factor that affects the UD dataset: the difference in the way of breathing,

spontaneous in the baseline stage versus through a scuba mask in the immersion

stage. It must be highlighted that UD is the only dataset where this difference in

the way of breathing between its stages exists, since in the CD dataset subjects were

breathing through the scuba mask for both stages. To our understanding, there is no
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previous works studying the difference between these two types of breathing. This

is why we recorded a small dataset of 12 subjects, first breathing spontaneously and

then inhaling and exhaling deeply and slightly more rapidly through the mouth, as

if they were wearing a scuba mask and breathing through a regulator. As Figure 5.7

shows, there was an activation of the parasympathetic activity. PDMpara increases

from spontaneous breathing to simulated scuba mask breathing in all the subjects,

so this factor could explain, together with the effect of pressure, the increase of the

parasympathetic activity in the UD dataset. However, time and frequency domain

parameters in the breathing dataset seem to be contradictory. It must be noticed

that these results for the way of breathing (increase in mHR and PDMpara and

decrease in RMSSD) have the same trend as the results of the uncontrolled dive,

so may be this factor has more significance in the ANS response than expected.

Therefore, the factor of how the divers are breathing during the different stages of a

diving protocol should be taken into account for future studies.

In spite of the differences in the datasets, a comparison of the baseline stages were

performed. The baseline stage in the HC data was similar to that in the UD, but

both were different with respect to the baseline stage in the CD data. Differences

of body position (sitting vs. supine position), environment (on land vs. in cold

water) and breathing (spontaneous vs. through a scuba mask) were analyzed in this

baseline comparison. An increase in the mHR and a decrease in the rest of the time

domain parameters, comparing the first stage of CD with respect to HC and UD, is

shown in Figure 5.6. According to the literature, there is no significant change in

heart rate between sitting and supine position [142] and between being outside the

water or immersed with the head out [10]. However, the effect of cold water and

the effect of breathing through the scuba mask increases the heart rate, as we have

discussed before. Therefore, the effect of breathing through the scuba mask seems

to be again an important factor when comparing the baseline stages of the three

datasets.

Finally, as a limitation of this study, the number of scuba divers in both immer-

sions (11 and 15) has to be highlighted. Nevertheless, the difficulty of recruiting

experienced scuba divers has to be taken into account. In fact, in other hyperbaric

studies this problem is recurrent: 10 subjects or less in [1, 12, 13, 16, 17]. Another
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possible limitation is the fact that divers in the uncontrolled immersion spent only a

limited time below 15 m, and because of this, the length of the selected segment for

the analysis was restricted. As future studies, the recording of more scuba divers,

the recording of a new immersion dataset with more time to be analyzed and the

recording of deeper immersions, recording the PPG signal in all of them, should be

done.

5.6 Conclusion

The main outcome of this Chapter is the comparison of three different hyperbaric

environments, taking into account the effect of pressure, cold water and physical

activity during the immersion among other variables. To do that, OSP and PDM

methods were used to overcome the limitations of classic PSD frequency domain

parameters when the respiratory rate fell in the LF band and in the account of linear

and non-linear properties. Results show that the respiratory component does not

have a great impact on the heart rate variability, so the effect of other factors could

explain the differences between the responses of the two branches of the ANS. The

effect of pressure can cause an increase in the parasympathetic activity, although this

trend is not always found and differences between stages are not always significant.

On the other hand, the effect of cold water, together with an environment with

low visibility and physical activity during the immersion, may cause an increase in

sympathetic activity. Finally, the effect of breathing through a scuba mask may

cause an increase in the heart rate, but also an increase in the parasympathetic

activity.





Chapter 6

Conclusions and future work

6.1 Summary and conclusions

The main aim of this dissertation is the non-invasive assessment of ANS activity and

the response of the cardio-respiratory system in hyperbaric environments. For this

purpose, this thesis was divided in four different parts. In the first one, a study to

corroborate that PRV signal is a surrogate measurement of HRV signal in a hyper-

baric chamber was performed. In the second one, the capability of extracting the

respiratory rate from the PPG signal was tested, in order to evaluate the possibility

of only use this signal to evaluate the ANS response. In Chapter 4, a new algorithm

capable to extract parameters related to PPG morphology that are able to distin-

guish changes in its waveform, at least in hyperbaric environments, was presented.

Finally, a study of the ANS response in three different hyperbaric environments, one

in a hyperbaric chamber and two in real immersions, where some factors, as the pres-

sure, the physical activity or the way of breathing varied, was performed with two

different methods that allow us to overcome the limitations of the classic frequency

domain analysis.

For the first purpose, ECG and PPG signals were recorded in subjects inside a

hyperbaric chamber with five different stages where the pressure varied (from 1 atm

increasing to 3 and 5 atm and then decreasing to 3 and 1 atm). The main goal

of Chapter 2 was to corroborate if PRV signal extracted from the PPG provided

the same information as the HRV signal extracted from the ECG, in terms of ANS
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response. To that end, an analysis of time and frequency domain parameters obtained

from the HRV and PRV signals was performed. Respiratory information was included

in the frequency domain parameters combining the estimations of respiratory rate

extracted from ECG and PPG signals. The correlation and statistical measurements

of parameters extracted from both signals showed that PRV signal could be used as

a surrogate measurement of HRV signal in hyperbaric environments. This, together

with the fact that PPG sensor is an cheaper device which is easier to locate in any

part of the body and with PPG providing some useful information as the oxygen

saturation that ECG does not, made PPG a suitable tool to extract ANS information

only by itself. Apart from this, also a characterization of how the ANS reacted to

pressure changes and the time spent in the hyperbaric environment was done with

this dataset. The principal conclusion of the ANS response was that PHF , which

is related with the parasympathetic activity, increased in those stages when the

atmospheric pressure was high, and the heart rate and the sympathetic markers

(PLFn and RLF/HF ) decreased as more time was spent inside the chamber.

Respiratory information could alter the spectral content of the frequency domain

parameters, therefore it is important to include the respiratory information in the

study of the ANS response. In Chapter 2, this information was included combining

algorithms that extracted respiratory rate from ECG and PPG signals. If only the

PPG signal wants to be used, since the main conclusion of Chapter 2 was that PRV

can be used to evaluate ANS response, a study of how reliable is the respiratory

information extracted from the PPG is needed. This is the reason why, in Chap-

ter 3, an evaluation of how the location of the PPG sensor affects the respiratory

rate estimation and which PDR signals are more appropriated to this purpose was

performed. PPG signals were recorded on finger and forehead from subjects breath-

ing spontaneously and at different controlled respiratory rates. 4 PDR signals (PRV,

PAV, PWV and RIIV) were extracted from both locations of the PPG signals, ob-

taining one respiratory rate estimation per PDR signal and also from all the possible

combinations of them. The estimations were compared with the respiratory rate es-

timated from chest-band, which was taken as reference. The respiratory estimation

were considered accurate if it differ less than 0.05 Hz (0.3 bpm) from the reference,

based on the errors reported in previous works [73]. The success rate and the relative
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error of the estimated respiratory rate from both locations were presented, as well

as a confusion matrix for each PDR signal to evaluate their performance, and the

power distribution of the respiratory information in the averaged spectrum. A better

performance in the low frequencies was observed, in particular when the sensor was

located in the finger. Therefore, one of the main conclusions of this Chapter was

that finger is a best place to locate the PPG sensor than forehead, although the

global results was not as good as we thought. Talking about each individual PDR

signal, RIIV showed a poor performance and it affected negatively to the accuracy

of the estimation when it was combined with other PDR signals; PRV in finger ob-

tained good results in lower frequencies; PAV in finger also obtained good results

at lower frequencies and the best results at higher frequencies; PWV was the one

with less differences between finger and forehead. Therefore, another conclusion of

this Chapter was to discard RIIV as a proper PDR signal to obtain respiratory rate

estimations and to analyze the inclusion of the rest of PDR signals in the fusion al-

gorithm depending on the final application, considering both the subject population

and the breathing pattern.

In Chapter 2, the main conclusion was that PRV is a surrogate measurement

of HRV signal to measure ANS activity, but not only PRV contains information

about the ANS response. Also, PPG morphology can provide a great amount of

information about vascular assessment or arterial compliance, since pulse pressure

propagation in arteries causes alterations in blood volume and therefore changes in

the PPG pulse shape. Therefore, in Chapter 4, changes in PPG morphology due

to the pressure were analyzed using the hyperbaric chamber dataset. In fact, to

obtain these parameters related to the PPG morphology, a new methodology to

decompose the PPG pulse into two waves related with the systolic and the diastolic

peaks was presented. The first wave was obtained concatenating the up-slope from

the beginning to the first maximum with itself flipped horizontally. The second

wave was modelled by a lognormal curve, adjusting its maximum to the diastolic

peak (this happened only if the temporal location of the maximum is higher than

the 35% of the pulse wave duration) and varying µ and σ in order to minimize

the difference between the lognormal wave and the resulting pulse waveform. From

these two waves, the amplitude, the time of their maximum, the width and the area
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under these curves were calculated, together with some ratios and other parameters

extracted from the literature as the large artery stiffness index, to find out if there

were changes in these parameters due to the pressure. Results of the time and width

of the wave related with the systolic peak pointed out to a vasoconstriction when

the pressure increased and results of the time and width of the wave related with

the diastolic peak reflected the vasoconstriction but also a dependency with the

pulse-to-pulse interval. Therefore this methodology offers an alternative to extract

parameters related to PPG morphology that are able to distinguish changes in its

waveform, at least in hyperbaric environments.

In Chapter 2, the ANS response inside a hyperbaric chamber, where only the

pressure changed, was analyzed. However, in a real immersion more factors as the

physical activity, the cold water or the way of breathing, could alter the ANS re-

sponse. Therefore, in Chapter 5 a study of the ANS response in three different

hyperbaric datasets was analyzed: inside the hyperbaric chamber, where only the

pressure varied; during a controlled dive in the sea, where the pressure changed

but the effects of other factors were minimized; and during an uncontrolled dive in

a reservoir, where more factors differed from baseline to immersion stage, such as

the low visibility environment, the physical activity, the position of the diver and

breathing through a scuba mask. Another issue with results in Chapter 2 were the

limitations of classic PSD frequency domain parameters: i) PSD is a linear tech-

nique, so it fails to account for non-linear properties of HRV; ii) PSD depends on

the respiration, overestimating the power in LF band when respiratory rate falls into

this band. Therefore two new methods were presented in Chapter 5 to overcome the

limitations of PSD methods: i) PDM method, which is able to extract and separate

sympathetic and parasympathetic dynamics and handles linear and non-linear rela-

tionships; ii) OSP method, which is able to separate the linearly related respiratory

influences from the HRV. With the use of these methods, it was concluded that

the respiratory component did not have a great impact on the heart rate variability,

so the effect of other factors could explain the differences between the responses of

the two branches of the ANS. Coming back to the study of the three hyperbaric

datasets, the effect of different factors that alter the ANS response were considered.

For example, the effect of pressure caused an increase in the parasympathetic activ-
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ity, although this trend was not always found and differences between stages were

not always significant. On the other hand, the effect of cold water, together with

an environment with low visibility and physical activity during the immersion, may

caused an increase in sympathetic activity. Finally, the effect of breathing through

a scuba mask may caused an increase in the heart rate, but also an increase in the

parasympathetic activity.

6.2 Future work

• Create and validate a new PPG sensor compatible with the dive, capable of

recording good quality signal without breaking the seal of the scuba diving dry

suit.

• Corroborate if results in a humid hyperbaric chamber differ from the ones ob-

tained in a dry hyperbaric chamber. The main difference among these two

types of chambers lies in the fact that the humid one is filled with water, sim-

ulating a real immersion. With the humid chamber, the effect of the water,

apart from the pressure, can be characterized. Factors as the hydrostatic pres-

sure that shifts the body circulation, the fact of having the face immersed in

the water, and the water temperature could modify the ANS response.

• Increase the number of subjects during an uncontrolled diving, increasing also

the time spent in the maximum depth. If we want to analyze the ANS response

properly, the more subjects we have, the better this response could be analyzed.

Apart from increasing the number of subjects, it would be necessary to increase

the time spent in the maximum depth, since not all the responses the body

creates to maintain the homeostasis are instantaneous, some of them could

need some time to appear and modify the ANS response.

• Characterize the safety ranges of all the possible parameters analyzed during

an exposure to hyperbaric environments. If we are able to characterize the

normal ANS response maybe we could find the ranges of the parameters that

indicates how secure is the diving activity and therefore increase the divers

safety by continuous monitoring.
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• Be able of extract physiological and morphological parameters from the ECG

and/or the PPG in real time during the exposure to hyperbaric environments.

This part, together with the characterization of the safety ranges during the

diving, could inform the divers in real time about the security of their activity,

increasing the safety of the dive.





Scientific contributions

Journal publications
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• C. Pérez, M.D. Peláez-Coca, A. Hernando, E. Gil and C. Sánchez, “Mul-

tivariable Relationships between Autonomic Nervous System Related Indices

in Hyperbaric Environments”, 41st Annual International Conference of the

IEEE Engineering in Medicine & Biology Society (EMBC), Berĺın, Germany,
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R Bailón. Photoplethysmographic waveform analysis for autonomic reactiv-

ity assessment in depression. IEEE Transactions on Biomedical Engineering,

68(4):1273–1281, 2021.
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