Prediction and identification of physical systems by means of physically-guided neural networks with meaningful internal layers
Resumen: Substitution of well-grounded theoretical models by data-driven predictions is not as simple in engineering and sciences as it is in social and economic fields. Scientific problems suffer many times from paucity of data, while they may involve a large number of variables and parameters that interact in complex and non-stationary ways, obeying certain physical laws. Moreover, a physically-based model is not only useful for making predictions, but to gain knowledge by the interpretation of its structure, parameters, and mathematical properties. The solution to these shortcomings seems to be the seamless blending of the tremendous predictive power of the data-driven approach with the scientific consistency and interpretability of physically-based models. We use here the concept of Physically-Guided Neural Networks (PGNN) to predict the input-output relation in a physical system, while, at the same time, fulfilling the physical constraints. With this goal, the internal hidden state variables of the system are associated with a set of internal neuron layers, whose values are constrained by known physical relations, as well as any additional knowledge on the system. Furthermore, when having enough data, it is possible to infer knowledge about the internal structure of the system and, if parameterized, to predict the state parameters for a particular input-output relation. We show that this approach, besides getting physically-based predictions, accelerates the training process, reduces the amount of data required to get similar accuracy, partly filters the intrinsic noise in the experimental data and improves its extrapolation capacity. (C) 2021 ElsevierB.V. All rights reserved.
Idioma: Inglés
DOI: 10.1016/j.cma.2021.113816
Año: 2021
Publicado en: Computer Methods in Applied Mechanics and Engineering 381 (2021), 113816 [33 pp]
ISSN: 0045-7825

Factor impacto JCR: 6.588 (2021)
Categ. JCR: ENGINEERING, MULTIDISCIPLINARY rank: 8 / 92 = 0.087 (2021) - Q1 - T1
Categ. JCR: MECHANICS rank: 9 / 138 = 0.065 (2021) - Q1 - T1
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 4 / 108 = 0.037 (2021) - Q1 - T1

Factor impacto CITESCORE: 10.3 - Engineering (Q1) - Computer Science (Q1) - Physics and Astronomy (Q1)

Factor impacto SCIMAGO: 2.179 - Computational Mechanics (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Mechanics of Materials (Q1) - Computer Science Applications (Q1)

Financiación: info:eu-repo/grantAgreement/ES/ISCIII/CIBER-BBN
Financiación: info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-097257-B-C31
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2023-05-18-13:36:03)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-10-06, última modificación el 2023-05-19


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)