000118789 001__ 118789
000118789 005__ 20230519145519.0
000118789 0247_ $$2doi$$a10.1038/s41598-021-97075-z
000118789 0248_ $$2sideral$$a126395
000118789 037__ $$aART-2021-126395
000118789 041__ $$aeng
000118789 100__ $$0(orcid)0000-0002-6087-7467$$aOrus, P
000118789 245__ $$aCritical current modulation induced by an electric field in superconducting tungsten-carbon nanowires
000118789 260__ $$c2021
000118789 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118789 5203_ $$aThe critical current of a superconducting nanostructure can be suppressed by applying an electric field in its vicinity. This phenomenon is investigated throughout the fabrication and electrical characterization of superconducting tungsten-carbon (W-C) nanostructures grown by Ga+ focused ion beam induced deposition (FIBID). In a 45 nm-wide, 2.7 mu m-long W-C nanowire, an increasing side-gate voltage is found to progressively reduce the critical current of the device, down to a full suppression of the superconducting state below its critical temperature. This modulation is accounted for by the squeezing of the superconducting current by the electric field within a theoretical model based on the Ginzburg-Landau theory, in agreement with experimental data. Compared to electron beam lithography or sputtering, the single-step FIBID approach provides with enhanced patterning flexibility and yields nanodevices with figures of merit comparable to those retrieved in other superconducting materials, including Ti, Nb, and Al. Exhibiting a higher critical temperature than most of other superconductors, in which this phenomenon has been observed, as well as a reduced critical value of the gate voltage required to fully suppress superconductivity, W-C deposits are strong candidates for the fabrication of nanodevices based on the electric field-induced superconductivity modulation.
000118789 536__ $$9info:eu-repo/grantAgreement/EUR/COST-Action/CA16218-Nanocohybri$$9info:eu-repo/grantAgreement/ES/CSIC/PIE-202060E187$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E13-20R$$9info:eu-repo/grantAgreement/EC/H2020/892427/EU/Focused Ion Beam fabrication of superconducting scanning Probes/FIBsuperProbes$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 892427-FIBsuperProbes$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-2-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2018-102627-T
000118789 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118789 590__ $$a4.997$$b2021
000118789 591__ $$aMULTIDISCIPLINARY SCIENCES$$b19 / 74 = 0.257$$c2021$$dQ2$$eT1
000118789 592__ $$a1.005$$b2021
000118789 593__ $$aMultidisciplinary$$c2021$$dQ1
000118789 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118789 700__ $$aFomin, VM
000118789 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, JM$$uUniversidad de Zaragoza
000118789 700__ $$aCordoba, R
000118789 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000118789 773__ $$g11, 1 (2021), 17698 [9 pp.]$$pSci. rep. (Nat. Publ. Group)$$tScientific reports (Nature Publishing Group)$$x2045-2322
000118789 8564_ $$s1676843$$uhttps://zaguan.unizar.es/record/118789/files/texto_completo.pdf$$yVersión publicada
000118789 8564_ $$s2578275$$uhttps://zaguan.unizar.es/record/118789/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118789 909CO $$ooai:zaguan.unizar.es:118789$$particulos$$pdriver
000118789 951__ $$a2023-05-18-15:21:52
000118789 980__ $$aARTICLE