Extremal structure in ultrapowers of Banach spaces
Resumen: Given a bounded convex subset C of a Banach space X and a free ultrafilter U, we study which points (xi)U are extreme points of the ultrapower CU in XU. In general, we obtain that when { xi} is made of extreme points (respectively denting points, strongly exposed points) and they satisfy some kind of uniformity, then (xi)U is an extreme point (respectively denting point, strongly exposed point) of CU. We also show that every extreme point of CU is strongly extreme, and that every point exposed by a functional in (X*)U is strongly exposed, provided that U is a countably incomplete ultrafilter. Finally, we analyse the extremal structure of CU in the case that C is a super weakly compact or uniformly convex set. © 2022, The Author(s).
Idioma: Inglés
DOI: 10.1007/s13398-022-01311-8
Año: 2022
Publicado en: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 116, 4 (2022), 161 [25 pp]
ISSN: 1578-7303

Factor impacto JCR: 2.9 (2022)
Categ. JCR: MATHEMATICS rank: 15 / 329 = 0.046 (2022) - Q1 - T1
Factor impacto CITESCORE: 4.9 - Mathematics (Q1)

Factor impacto SCIMAGO: 0.933 - Algebra and Number Theory (Q1) - Analysis (Q1) - Geometry and Topology (Q1) - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/AEI-FEDER/ MTM2017-83262-C2-2-P
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-03-18-14:23:51)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-10-06, última modificación el 2024-03-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)