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Abstract. This document describes the application of multi-
objective genetic algorithms as techniques and tools to optimize
generation and distribution in small microgrids. In this way,
genetic algorithms have been used for the allocation of distributed
generation to reduce losses and improve the voltage profile. The
IEEE14 network has been taken as a study and analysis model.
This smart grid has 14 nodes and integrates several generation
units, both conventional and renewable, transformers, and multiple
loads. In this way, a multi-objective metaheuristic algorithm is
proposed with the purpose of planning the power distribution grid
based on a series of conditions such as the optimal generation
configuration, the minimization of power losses in the lines, power
transfer capacity, the reduction of CO: emissions, and the
optimization of the benefits obtained in renewable generation. The
overall purpose is the development of an intelligent microgrid
management system that is capable of determining the optimal
configuration, by estimating demand, energy costs, and operating
costs.
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1. Introduction

In this last decade, one of the main objectives of the energy
sector is the integration of renewable energies in distributed
generation systems. Renewable energy sources have
experienced great growth, especially wind turbines and
photovoltaic panels, so the need has arisen to find a precise
method to analyze their impact on power distribution
networks [1], [2]. However, small microgrids based on
renewable energy, as the only source of power supply, have
several associated drawbacks such as randomness and
stability.

A microgrid is a small power system that contains
distributed generation, energy storage devices, loads,
protection devices, and control systems The intermittency
and randomness of these renewable energy sources can
easily cause fluctuations in the power system, causing a
strong negative impact on microgrid stability [3]. Battery
energy storage systems (BESS) can suppress these
fluctuations in the distributed power supply. Thus, for
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example, in [4] a hybrid energy storage system is
described to stabilize a system based on a wind turbine or
photovoltaic panels.

Power optimization in these microgrids is a multiobjective
and non-linear optimization problem [5]. It is also possible
to include different constraints [6]. As a consequence of
the detailed analysis of the impact of renewable energy
sources, there is a need to implement new tools that help
optimizing these distributed power generation systems [7].
This type of optimization tool has been discussed in the
literature by numerous authors [8], [9]. Thus, different
methods have been proposed, such as nature inspired
techniques [10], [11], hybrid intelligent algorithms [12],
society inspired algorithms [13], linear programming [14],
robust optimization [15], analytical methods [16], etc.

In this paper, an optimization tool based on genetic
algorithms is proposed. Genetic algorithms are often used
to optimize complex functions that have different local
maxima and minima, and therefore require a large number
of iterations to reach the global maximum and minimum
of the objective function. For the implementation of the
genetic algorithm, the Python language has been used, as
well as several of its libraries.

H
Fig. 1. Representation of the IEEE-14 microgrid.

2. Problem Formulation

Initially, a small microgrid has been proposed, up to
10MW, with 14 nodes (IEEE14 network model) that will
use distributed generation, instead of being supplied from
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the supply network. This microgrid will include several
distributed power generation systems (DG) and energy
storage units (ST). In microgrids based on distributed
generation, the interaction between three agents often takes
place [17], the power producer (generally the owner of the
power generation units), the network operator, and the
consumer. It should be noted that each of these agents has a
different interest [18].

In this way, the power producer seeks to maximize its
economic benefits through the sale of energy to the network
operator. Thus, in order to maximize its economic benefits,
the power producer must consider several parameters, such
as the contract price of the power generation units, their
investment costs, as well as the operating costs required for
their installation [19].

Equation (1) describes, in a simplified way, the calculation
of the producer's benefits, which is the first objective
function that has been considered for the application of the
genetic algorithm.

B = (Cpc + Cp) — CO — Clpg (€9)

where, B is the benefit obtained by the energy producer
(who in turn is the owner of the installation), Cpc are the
costs derived from the power sale contract prices, Cp; are
the costs of the power losses produced in the distribution
lines, CO is the operating cost of the power generation units,
ClIpg are the investment costs that the energy producer will
have to bear.

Each of these parameters has to be studied and calculated
separately. In addition, all these parameters will depend on
the power flows in the different power distribution lines.
This document analyzes the interest of a single agent, the
power producer. Therefore, the first objective function is
represented in equation (1). Thus, in this case, the purpose
of the genetic algorithm is the maximization of the benefits
of the power producer (the agent studied). The three
indicators that will be evaluated in the implemented
algorithm are the following:

e Optimal location. The solution will have an
optimal location for all the DG units to be installed
on the microgrid. Both the number of generation
units and the node in which they should be located
will be determined.

e Optimum size. The size of the installed unit will
also be evaluated, with size being understood as
the capacity measured in installed power. The
installed power will be different depending on the
type of unit, whether it is photovoltaic panels, a
wind turbine, or a small internal combustion
engine.

e Contract Price. This parameter will be calculated
through a predetermined price value per generated
MWh and evaluating the power demand over a
specified period of time.

A. Contract price costs

The benefit that the energy producer obtains from the sale
of the MWh depends on the values reached in the prices of
the sales contracts (PC) that the same producer must
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establish. Each power generating unit has a different PC,
depending on the type of DG unit in question. Table I
shows the PCs considered for the different DG units to be
analyzed.

Table I. The contract price of each type of DG unit.

DG unit PC (€MW sold)
Photovoltaic (PV) 95
Wind Turbine (WT) 90
Internal Combustion Engine (ICE) 90
Battery Energy Storage System (ST) 95

In this way, the costs are calculated as the product of the
contract price (€/MW) by the MW generated by each type
of unit. In equation (2) you can see the value of Crc,

n
Coc = ) (PC X Pagn) @
=1

where, Cpc are the costs derived from the power sales
contract prices, PC is the energy sale contract price, and
Pgey, j is the power generated in each DG unit; where
j=1{1, 2,.., n} represents the number of generator
included in the microgrid.

B.  Power loss costs

Another parameter that appears in the calculation of the
benefits of the power producer is the costs associated with
the power losses of the power distribution lines. This
economic cost is assumed by the network operator, which
is the agent directly linked to the purchase of electricity.
The value of these power losses depends, among other
factors, on the lengths of the power distribution lines.
Therefore, the main objective is to calculate the optimal
location of the different power generators within the
microgrid. Thus, the costs associated with power losses
will be (3),

CpL = Z(CPL X PPL,i) 3)
i=1

where, Cpy is the total cost derived from power losses in
the microgrid, Ppy, ; is the value of the power losses (MW)
in each of the power distribution lines; where i = {1, 2, ...,
n} represents the number of power distribution line in the
microgrid. While cp;, is the unit cost €/ MW of power losses
per MW. This value of power losses in the different power
distribution lines is calculated by the simulation software
based on the location of the power generators and the
power flows in the different lines. It should also be noted
that this value of power losses refers to those that have
occurred during the 24 hours (simulation period).

Table I1. Investment costs of each type of DG unit.

DG unit cirL (EMW)
Photovoltaic (PV) 1.500.000
Wind Turbine (WT) 1.200.000
Internal Combustion Engine (ICE) 400.000
Battery Energy Storage System (ST) 1.300.00

C. Investment costs

The investment costs are the costs per installed MW
associated with the producer. These production costs
depend on the size and type of generator. In this case, it
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will be assumed that renewable generation is more
expensive than conventional generation. The investment
costs of the storage units are considered high, see table I1.
Thus, the investment costs are given in a simplified way by
equation (4),

n

Clpe = Z(CiPL X PINS,j)

=1

(4)

where, Clps represents the cost derived from the
investment, cipy, is the unit investment cost in €/MW, while
Pyys, j 1s the installed power inMW; where j = {1, 2,..., n}
represents the number of generator in the microgrid.

It should be noted that the cost per MW installed in the case
of the ICE (internal combustion engine) has been set well
below the other costs. His reason is that including CO,
emissions as a second objective function causes the
algorithm itself to tend to discard elements with ICE. In the
real world, it would be very difficult to implement a
microgrid that was only based on renewable energies. For
this reason, a balance has been sought between the value of
CO; emissions and benefits. This assumption is closer to
reality. The investment costs are divided over 20 years,
which is the amortization period considered to recover the
investment. In this case, economic inflation has not been
considered.

D. Operating costs

The operating costs are those costs related to the
exploitation of the elements of the microgrid. The most
frequent costs are associated with fuel and maintenance of
the installation. To simplify the calculation of this
parameter, it is considered that these costs are proportional
to the power generated in the installation.

n
Co = Z(Cop X Pggn,j)
j=1

where, CO are the operating costs of the installation, cop is
the unit operating cost per MW generated cop = 60€/MW,
and Pggy, ; 1s the power generated in each DG unit; where
Jj={1, 2,..., n} represents the number of generator.

)

E.  CO; Emissions

A current objective is the integration of renewable energies
in microgrids in order to reduce emissions caused by
generation using fossil fuels. For this reason, the
minimization of the value of CO, emissions has been
included as the second objective function of the genetic
algorithm.

In the case studied here, the emissions can only be produced
by the internal combustion generator. In this way, the
default algorithm tends to choose individuals that only have
renewable generation. The purpose is that the value of
emissions is zero. Thus, equation (6) presents the
calculation of emissions based on the energy generated at
all times.

n

ECO, = Z(fEM X PICE,j) (6)

=1
where, ECO:; is the total CO, emissions generated by the
internal combustion engines (kg CO»), Pick, ; is the power
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generated by each ICE; where j = {1, 2,..., n} represents
the number of generator in the microgrid. While £z, is the
unit emissions factor per MWh generated. Indicate that a
coefficient fz) = 0,8 kg CO/MWh has been considered.

F. Reactive power in the microgrid

The purpose of this objective function is to minimize the
power losses in the lines caused by the total reactive power
in the microgrid. To do this, the simulation software
previously calculates the reactive power in each of the
nodes and power flows in the different power distribution
lines (7).

n n

0r=)

i=1 j=

Qni ™
1

where, Or is the total reactive power of the microgrid and
Ow;, j 1s the reactive power corresponding to node; ; if i =
or to the distribution line; ; if i #j; where i = {1, 2,..., n},
j=1{1 2,..., n} represent the different coefficients.

G. Constraints

To solve the multi-objective optimization, it is necessary
to consider the microgrid operation restrictions. These
constraints indicate the state of operation, the range of the
optimization function, the limitations, etc. [6]. Thus, the
following restrictions have been considered.

e power balance constraints.

n
ZPGEN,j = Pioaa + Pross + Pst

®
=1
e distributed generation power constraints.
PN < Peenj < POEN; 9
PigE" < Picg,j < Pigg” (10)

Achieving effective use of storage systems in microgrids
is essential due to the high cost of stored energy compared
to other conventional sources. In this model, the
degradation of the battery and its self-discharge coefficient
has not been taken into account. The main restrictions
associated with the storage system are described below.

e  Dbattery energy storage system constraints.

PHM < Pgr ; < PO (11)
STE < Ssoc,j < S§HE; (12)
e discharge battery. Pgr;(t) = 0
Ssoc(®) = Ssoc(t — 1) — Per j(t) YIATi (13)
e charge battery. Pgr;(t) <0
Ssoc(t) = Ssoc(t —1) — Psr,j(t)nATI; (14)

where, Pj,qq 1s the total power demanded, Py, are the
power losses in the microgrid, PP and PTE are the lower
and upper power limits in the generation units. While PT"
and P are the lower and upper power limits of the
energy storage system, ngr is the performance of the
charge-discharge process of the storage system, STH® and

e are the lower and upper limits of the state of charge

of the battery.
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3. Codification methodology proposed

To study a microgrid by means of a genetic algorithm, it is
necessary to carry out a coding, structuring its data in a
chromosomal way. Thus, each element (individual) has
been defined as a vector formed by "1" and "0". The range
of the vector is given by the number of nodes that make up
the utility grid. In the analyzed case (IEEE-14 network) the
vector is made up of 14 nodes and each value (0 or 1) is
chosen randomly.

Thus, if a box takes the value "0", it means that there is no
generation in that node. If, on the other hand, the box takes
the value "1", it means that a power generator or an energy
storage unit is added to that node, see Fig. 2. In this case,
the genetic algorithm chooses the microgrid configuration
that represents the most benefits for the power producer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

[elofefelefefofefof e o]e]o]"]

Fig. 2. Example of vector encoded in the microgrid.

Likewise, Table III shows the capacity of the generation
units. This capacity value is optimized by the genetic
algorithm when assigning a generation unit to a node.

Table I1I. Generation unit capacity.

max min max

Unity

GEN GEN GEN
Photovoltaic Panels AMW | OMW +IMVAr
Wind Turbine 2MW | OMW +IMVAr
Internal Combustion Engine | SMW | OMW +1MVAr
Energy Storage System 2MW | OMW +2MVAr

4. Optimization Genetic Algorithm

For the definition of the genetic algorithm, the DEAP
library included in the Python programming software has
been used. The function that executes the genetic algorithm
needs two input parameters, the population and the number
of generations, which translate into the number of iterations
that it will carry out, see Fig. 3.

#a6 is defined
def main(poblacion, generacion):
random. seed(64)

#Creating individual population

pop = toolbox. population(n=poblacion)
#CXPB is the probability with which two individuals are crossed
#MUTPB is the mutation probability of
CXPB, MUTPB = ©

an individual

print("Beginning of evolution")

#Evaluating the entire population
fitnesses = list(map(evaluate, pop))

#Assigning each individual their fitness
for ind, fit in zip(pop, fitnesses):

ind.fitness.values = fit

print("Evaluated individuals ¥i" ¥ len(pop))

#A list of the fitness values from all individuals in the population is drawn
fits1 = [ind.fitness.values[a] for ind in pop]
fits2 = [ind.fitness.values[1] for ind in pop]

fits3 = [ind.fitness.values(2] for ind in pop]

#The variable that will record the number of generations is defined

g=0

Fig. 3. Genetic algorithm programming using Python language.

Two coefficients are also introduced that are used in the
genetic operators and that represent the crossover
probabilities of the individuals (CXPB) and the mutation in
one of them (MUTPB). Figure 3 shows the code where the
configuration of both parameters appears in the algorithm.
In addition, 3 variables are defined to store the values of the
objective functions in the different individuals.
Subsequently, the constraints of the genetic algorithm are
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indicated, as well as the different conditions for the loop
to continue executing until any of them is not met.

Once the evolution loop has started, the genetic operators
are applied to the population, selection, cloning, mutation,
with the previously defined probability constants, see Fig.
4. After applying the operators, the individuals are
evaluated and the values of the objective functions are
saved. Likewise, the data and information of the best
individuals of each generation are stored and the
population is replaced by the new offspring obtained.

#selecting the new population for the new generation
offspring = toolbox.select(pop, len(pop))

#Cloning selected individuals
offspring = list(map(toolbox.clone, offspring))

#Applying crossover and mutation in the offspring
for child1l, child2 in zip(offspring[::2], offspring[1::2]):

#Two individuals are crossed with probability CXPB
if random.random() < CXPB:
toolbox.mate(childl, child2)
#Fitness value of children
#will be recalculated later
del childi.fitness.values
del child2.fitness.values
for mutant in offspring:
#Two individuals with MUTPB probability are mutated
if random.random() < MUTPB:

toolbox.mutate (mutant)
del mutant.fitness.values

Fig. 4. Application of the different genetic operators on the
proposed algorithm.

As a solution, the algorithm returns the different values
corresponding to the objective functions and the optimal
location of the distributed generators in the microgrid.

5. Simulation Results

Next, the simulation results obtained during the
implementation of the genetic algorithm are presented.
The optimal solution is presented, analyzing the impact of
renewable energy within the microgrid and how its value
affects the objective function. In this way, the simulation
of the optimal microgrid for a period of 24 hours is shown,
at the same time that the simulation results obtained are
represented. The configuration of the optimal microgrid,
obtained as a result of the application of the genetic
algorithm, which includes the location and type of
generator in the different nodes, is shown in Table I'V.

Table 1V. Optimal configuration of the microgrid; Wind
Turbine (WT), Photovoltaic panels (PV), Internal Combustion
Engine (ICE), and Battery Energy Storage System (ST).

Node | 0 1 2 3 4 5 6

i 1 0 1 i 1 1
Type | ICE | WTI | — | ST | PV | PV | ICE
Node | 7 8 9 10 (11 12 |13
0 1 1 1 i 1 0
Type | ICE | — | ST | ST | PV | Wl | —
IH 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

B MWh Tatal MWh Fuel Cell MWh renewable energy MWh Storage

Fig. 5. Diagram with the power generated in the optimal
microgrid 24 hours a day.
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Meanwhile, Fig. 5 shows the generation of total power in
the microgrid studied during a period of 24 hours. This
power generation (MWh-total) has been divided into 3
types: MWh-ICE, MWh-renewable (WT+PV), and MWh-
ST. The average power values per node for the optimal
microgrid have also been calculated.

At the same time, Fig. 6 indicates the nodes that provide
energy to the microgrid and those nodes that demand power.
Those nodes where there are no loads, there are only energy
storage type units, can have negative power if they deliver
power to the microgrid or, conversely, positive power if
they absorb power from the microgrid. In the rest of the
nodes, the loads demand more power than that generated by
the power generators from renewable sources, due to their
capacity. In this way, the ICE units are activated.

node 13 2.83
node 12 s ] 61
node 11  m———— 3 07
node 10 ee——— 3 39
node 9 e———— ) 05
node 8 w— 1 46

-8.00

-8.00
node 5 s 1 09
node 4 s ] 26
node 3 ee—— 3 86
node 2 ——— 3 72
node 1 m— 1 82

-7.86

-8.00 -6.00 -4.00 -2.00 0.00 2.00 4.00

MWh
Fig. 6. Average power flow per node in the microgrid.

102 —e— Instance 15

—8— Instance 10

o 1 2 3 4 5 6 7 € 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time step (h)

Fig. 7. Comparison of power losses in the microgrid.

In Fig. 7 you can see the results obtained in the power losses
of the microgrid (third objective function) depending on the
number of elements that have been selected in the genetic
algorithm. The minimization of reactive power in the
microgrid is an effective resource to control the value of
power losses and therefore to calculate the optimal solution.
Power losses in power distribution lines are caused by
different factors such as the length of the line, the type of
conductor and its configuration, the imbalance of reactive
power flows, etc.

6. Impact of Renewable Energies
Another concept to analyze is the integration of renewable
energies in the microgrid. For this, different scenarios will
be studied. In all the cases studied, energy storage units are
available.

- scenario#1: without renewable energies.

- scenario#2: with renewable energies.

- scenario#3: only renewables energies.

Once the genetic algorithm has been applied, the following
results have been obtained, see table V.
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Table V. Comparison of simulation results. Data obtained in
the different scenarios.

scenarios Benefits Emissions
(M€/year) (tons CO,/year)

without renewables 105.1970 478.5616

with renewables 82.4521 303.2321

only renewables 18.9188 0

photovoltaic (PV) 15.8140 0

wind-turbine (WT) 8.6685 0

As can be seen in the table, a network made up of internal
combustion engines (ICE) and battery energy storage
systems (BESS) increases the benefits. This is because the
investment cost is lower than that made up of wind units
(WT) or photovoltaic panels (PV). Likewise, as a
consequence of the use of these power generation units,
the value of emissions (kg CO»/year) has also increased.
On the other hand, if microgrids composed of renewable
energy sources and storage units are studied, it is
concluded that it is more beneficial to integrate several
types of power generators in the installation to combine
capacities, investment costs, and power sales prices.

—e— With renevable energy

= Without renewiable energy

117 117

pl (MW)

A

“‘ 073
sy’ \ % ose 068 088

or 072
067
ﬁ \ 083 054 064 063
A, 456 056 035 053/ Npss 059
. \' A 053,

9 10 11 12 13 M 15 16 17 18 19 20 21 2 20

Time step (h)

Fig. 8. Comparison of power losses in distribution lines in the
IEEE-14 microgrid.

On the other hand, Fig. 8 presents the power losses in the
microgrid considering some of the study scenarios
described. Indicate that by configuring the genetic
algorithm so that it only incorporates power generation
through units based on fossil fuels, and considering the
minimum CO; emissions, the algorithm configures a
microgrid with a high number of energy storage units.

W With renewable energy

m Without renewable energy

\?F
106
& 06
104 104 104

104 104

104 104 104 04 104
K 03 103 A AN )

— o2 i 03 103 103 103 0
02 102 02 g2

R 01
K.
o 2 1 s ] 6 8 9 1 1 1 1 1

Node

vm (pu

Fig. 9. Average voltage in the different nodes of the microgrid.
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Fig. 10. CO: Emissions (kg CO>).

The integration of renewable energy sources also has an
impact on the voltage of the microgrid nodes. Fig. 9 shows
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the different voltages in each of the nodes of the microgrid.
In this case, the node voltages are higher for the microgrid
that does not integrate renewable energy sources. Logically,
it can be seen that emissions are significantly lower in the
case of generator units with renewable sources, since the
number of DG-ICE will be much lower, see Fig. 10.

7. Conclusions

In this document, the implementation of a genetic algorithm
has been presented with the purpose of optimizing a
microgrid of small size and capacity. This optimization
process has been based on 3 aspects: the location, the size,
and the optimal contract price of each power generation unit
(DQ). Several Python tools and libraries have been used for
its implementation. It has also been found that these genetic
algorithms (GA) perform worse with a low number of
iterations. Always keeping in mind that if the number of
iterations is insufficient, it is very possible that the GA
provides a local maximum/minimum as a result of the
optimization process. Although a high increase in the
number of iterations brings with it an increase in the
problem resolution time. Another aspect that affects the
efficiency of the algorithm is the weights of the objective
functions. In this case, the point of view of the power
producer has been considered. Likewise, the analysis
carried out could also be developed depending on the
network operator or the energy consumer itself.
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