000118825 001__ 118825
000118825 005__ 20240319081007.0
000118825 0247_ $$2doi$$a10.1021/acs.inorgchem.2c01441
000118825 0248_ $$2sideral$$a130025
000118825 037__ $$aART-2022-130025
000118825 041__ $$aeng
000118825 100__ $$0(orcid)0000-0002-0283-9307$$aArnal Vallés, L.$$uUniversidad de Zaragoza
000118825 245__ $$aHigh-Valent Pyrazolate-Bridged Platinum Complexes: A Joint Experimental and Theoretical Study
000118825 260__ $$c2022
000118825 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118825 5203_ $$aComplexes {Pt(C^C*)(µ-pz)}2] (HC^C*A= 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene 1a, HC^C*B= 1-phenyl-3-methyl-1H-imidazol-2-ylidene 1b) react with methyl iodide (MeI) at room temperature in the dark to give compounds {PtIV(C^C*)Me(µ-pz)}2(µ-I)]I (C^C*A2a, C^C*B2b). The reaction of 1a with benzyl bromide (BnBr) in the same conditions afforded Br(C^C*A)PtIII(µ-pz)2PtIII(C^C*A)Bn] (5a), which by heating in BnBr(l) became {PtIV(C^C*A)Bn(µ-pz)}2(µ-Br)]Br (6a). Experimental investigations and density functional theory (DFT) calculations on the mechanisms of these reactions from 1a revealed that they follow a SN2 pathway in the two steps of the double oxidative addition (OA). Based on the DFT investigations, species such as (C^C*A)PtIII(µ-pz)2PtIII(C^C*A)R]X (RX = MeI Int-Me, BnBr Int-Bn) and (C^C*A)PtII(µ-pz)2PtIV(C^C*A)(R)X] (RX = MeI Int'-Me, BnBr Int'-Bn) were proposed as intermediates for the first and the second OA reactions, respectively. In order to put the mechanisms on firmer grounds, Int-Me was prepared as (C^C*A)PtIII(µ-pz)2PtIII(C^C*A)Me]BF4(3a') and used to get I(C^C*A)PtIII(µ-pz)2PtIII(C^C*A)Me](4a), (C^C*A)PtII(µ-pz)2PtIV(C^C*A)(Me)I](Int'-Me), and {PtIV(C^C*)Me(µ-pz)}2(µ-I)]BF4(2a'). The single-crystal X-ray structures of 2a, 2b, 3a', and 5a along with the mono- and bi-dimensional 1H and 195Pt{1H} NMR spectra of all the named species allowed us to compare structural and spectroscopic data for high-valent complexes with the same core {Pt(C^C*)(µ-pz)}2] but different oxidation states. © 2022 American Chemical Society. All rights reserved.
000118825 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E17-20R$$9info:eu-repo/grantAgreement/ES/MICIU-FEDER/PGC2018-094749-B-I00
000118825 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118825 590__ $$a4.6$$b2022
000118825 592__ $$a0.997$$b2022
000118825 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b5 / 42 = 0.119$$c2022$$dQ1$$eT1
000118825 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000118825 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ1
000118825 593__ $$aInorganic Chemistry$$c2022$$dQ1
000118825 594__ $$a8.0$$b2022
000118825 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118825 700__ $$aEscudero, D.
000118825 700__ $$0(orcid)0000-0003-1812-3175$$aFuertes Lorda, S.
000118825 700__ $$aMartin, A.
000118825 700__ $$0(orcid)0000-0002-0257-0483$$aSicilia Martínez, V.$$uUniversidad de Zaragoza
000118825 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000118825 773__ $$g61, 32 (2022), 12559-12569$$pInorg. chem.$$tInorganic Chemistry$$x0020-1669
000118825 8564_ $$s4780595$$uhttps://zaguan.unizar.es/record/118825/files/texto_completo.pdf$$yVersión publicada
000118825 8564_ $$s3201451$$uhttps://zaguan.unizar.es/record/118825/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118825 909CO $$ooai:zaguan.unizar.es:118825$$particulos$$pdriver
000118825 951__ $$a2024-03-18-14:45:04
000118825 980__ $$aARTICLE