000118826 001__ 118826
000118826 005__ 20230914083524.0
000118826 0247_ $$2doi$$a10.1021/acsabm.2c00225
000118826 0248_ $$2sideral$$a130026
000118826 037__ $$aART-2022-130026
000118826 041__ $$aeng
000118826 100__ $$aBaumann, K. N.
000118826 245__ $$aDNA-Liposome Hybrid Carriers for Triggered Cargo Release
000118826 260__ $$c2022
000118826 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118826 5203_ $$aThe design of simple and versatile synthetic routes to accomplish triggered-release properties in carriers is of particular interest for drug delivery purposes. In this context, the programmability and adaptability of DNA nanoarchitectures in combination with liposomes have great potential to render biocompatible hybrid carriers for triggered cargo release. We present an approach to form a DNA mesh on large unilamellar liposomes incorporating a stimuli-responsive DNA building block. Upon incubation with a single-stranded DNA trigger sequence, a hairpin closes, and the DNA building block is allowed to self-contract. We demonstrate the actuation of this building block by single-molecule Förster resonance energy transfer (FRET), fluorescence recovery after photobleaching, and fluorescence quenching measurements. By triggering this process, we demonstrate the elevated release of the dye calcein from the DNA-liposome hybrid carriers. Interestingly, the incubation of the doxorubicin-laden active hybrid carrier with HEK293T cells suggests increased cytotoxicity relative to a control carrier without the triggered-release mechanism. In the future, the trigger could be provided by peritumoral nucleic acid sequences and lead to site-selective release of encapsulated chemotherapeutics. © 2022 American Chemical Society. All rights reserved.
000118826 536__ $$9info:eu-repo/grantAgreement/EC/FP7/337969/EU/Determining Physical Properties of Heterogeneous Protein Complexes in Small Volumes/PHYSPROT
000118826 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118826 592__ $$a0.855$$b2022
000118826 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000118826 593__ $$aBiomedical Engineering$$c2022$$dQ2
000118826 593__ $$aBiochemistry (medical)$$c2022$$dQ2
000118826 593__ $$aBiomaterials$$c2022$$dQ2
000118826 594__ $$a7.9$$b2022
000118826 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118826 700__ $$aSchröder, T.
000118826 700__ $$aCiryam, P. S.
000118826 700__ $$aMorzy, D.
000118826 700__ $$aTinnefeld, P.
000118826 700__ $$aKnowles, T. P. J.
000118826 700__ $$0(orcid)0000-0003-3109-4284$$aHernández-Ainsa, S.$$uUniversidad de Zaragoza
000118826 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000118826 773__ $$g5, 8 (2022), 3713-3721$$pACS appl. bio mater.$$tACS Applied Bio Materials$$x2576-6422
000118826 8564_ $$s4012466$$uhttps://zaguan.unizar.es/record/118826/files/texto_completo.pdf$$yVersión publicada
000118826 8564_ $$s3091985$$uhttps://zaguan.unizar.es/record/118826/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118826 909CO $$ooai:zaguan.unizar.es:118826$$particulos$$pdriver
000118826 951__ $$a2023-09-13-13:04:48
000118826 980__ $$aARTICLE