000118840 001__ 118840
000118840 005__ 20240319081011.0
000118840 0247_ $$2doi$$a10.1109/TIA.2022.3193107
000118840 0248_ $$2sideral$$a129808
000118840 037__ $$aART-2022-129808
000118840 041__ $$aeng
000118840 100__ $$0(orcid)0000-0002-5996-0474$$aPlumed, Emilio
000118840 245__ $$aDomestic induction heating system with standard primary inductor for reduced-size and high distance cookware
000118840 260__ $$c2022
000118840 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118840 5203_ $$aIn this work, a hybrid wireless power transfer system which combines induction heating (IH) and inductive power transfer (IPT) functionalities is proposed to improve the performance of a domestic induction heating application with small loads weakly coupled to distant inductors. Considering the basic single-inductor domestic IH application, the addition of a secondary inductor with series compensation capacitor directly attached to the small ferromagnetic cookware. This inductor allows to adapt the primary inductor to the load size, extending load distance while avoiding increased power losses and stress in electronic components. The extended distance can be used to implement the glassless induction concept, where the ceramic glass of typical cooktops is substituted by the kitchen surface itself. The design of the secondary coil is carried out by means of a combination of Finite Element simulations and electrical simulations. A design process including the housing of the resonant capacitors and the selection of the secondary winding number of turns and cabling is presented. As a result, a prototype is implemented and tested under working conditions up to 1500 W at several distances. Experimental results validate the electrical modelling and simulation. Moreover, thermal results confirm the feasibility of the proposal and validate the adopted strategies for the capacitor housing. IEEE
000118840 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/RTC-2017-5965-6$$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/PID2019-103939RB-I00
000118840 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000118840 590__ $$a4.4$$b2022
000118840 592__ $$a1.777$$b2022
000118840 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b23 / 90 = 0.256$$c2022$$dQ2$$eT1
000118840 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b84 / 274 = 0.307$$c2022$$dQ2$$eT1
000118840 593__ $$aControl and Systems Engineering$$c2022$$dQ1
000118840 593__ $$aIndustrial and Manufacturing Engineering$$c2022$$dQ1
000118840 593__ $$aElectrical and Electronic Engineering$$c2022$$dQ1
000118840 594__ $$a9.9$$b2022
000118840 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000118840 700__ $$0(orcid)0000-0003-4858-9734$$aLope, Ignacio$$uUniversidad de Zaragoza
000118840 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, Jesús$$uUniversidad de Zaragoza
000118840 700__ $$0(orcid)0000-0002-9655-5531$$aBurdío, José Miguel$$uUniversidad de Zaragoza
000118840 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000118840 7102_ $$12002$$2247$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Electromagnetismo
000118840 773__ $$g58, 6 (2022), 7562 - 7571$$pIEEE trans. ind. appl.$$tIEEE Transactions on Industry Applications$$x0093-9994
000118840 8564_ $$s10077330$$uhttps://zaguan.unizar.es/record/118840/files/texto_completo.pdf$$yPostprint
000118840 8564_ $$s3535714$$uhttps://zaguan.unizar.es/record/118840/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000118840 909CO $$ooai:zaguan.unizar.es:118840$$particulos$$pdriver
000118840 951__ $$a2024-03-18-15:06:06
000118840 980__ $$aARTICLE