Building large-scale unimolecular scaffolding for electronic devices

Escorihuela, E. (Universidad de Zaragoza) ; Concellón, A. (Universidad de Zaragoza) ; Marín, I. (Universidad de Zaragoza) ; Kumar, V.J. ; Herrer, L. ; Moggach, S.A. ; Vezzoli, A. ; Nichols, R.J. ; Low, P.J. ; Cea, P. (Universidad de Zaragoza) ; Serrano, J.L. (Universidad de Zaragoza) ; Martín, S. (Universidad de Zaragoza)
Building large-scale unimolecular scaffolding for electronic devices
Resumen: The fabrication of a future generation of (opto)electronic devices based on molecular components and materials will require careful chemical design, coupled with assembly methods that permit precise spatial orientation and arrangement of the functional molecules within device structures. Although unimolecular electronics are already a laboratory reality, the variation in the arrangement of the molecule within a molecular junction from measurement to measurement is considerable. Consequently, controlling the precise geometry at the molecule–metal contacts is a long-standing and largely unresolved challenge. Here, a strategy to fabricate uniform unimolecular junctions distributed in a regular pattern is reported. A monolayer of zinc metalloporphyrins, peripherally functionalised by bulky dendrons, is used to provide a well-defined array of molecular binding sites with precise spatial distribution. The dendrons are then photochemically cross-linked to form a robust base-layer. Parallel, uniformly-spaced unimolecular structures are subsequently assembled on these binding sites through a layer-by-layer (LbL) strategy. This LbL strategy proceeds through coordination of an α,ω-amino functionalised oligo(phenylene)ethynylene (OPE) molecule to the zinc ions of the metalloporphyrin template base-layer. The structure is then extended through alternating self-assembled layers of (cross-linked) zinc porphyrin and OPE. The coordination interaction between the zinc(II) sites and the bifunctional OPE wire ensures a high degree of registry between the layers and good electrical contact through the extended arrays and offer fine control over the chemical composition.
Idioma: Inglés
DOI: 10.1016/j.mtchem.2022.101067
Año: 2022
Publicado en: Materials Today Chemistry 26 (2022), 101067 [8 pp.]
ISSN: 2468-5194

Factor impacto JCR: 7.3 (2022)
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 40 / 178 = 0.225 (2022) - Q1 - T1
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 76 / 343 = 0.222 (2022) - Q1 - T1

Factor impacto CITESCORE: 7.6 - Chemical Engineering (Q1) - Materials Science (Q1)

Factor impacto SCIMAGO: 1.229 - Biomaterials (Q1) - Catalysis (Q1) - Polymers and Plastics (Q1) - Electronic, Optical and Magnetic Materials (Q1) - Materials Chemistry (Q1) - Colloid and Surface Chemistry (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E31-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA/E47-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-097583-B-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-105881RB-I00
Financiación: info:eu-repo/grantAgreement/ES/UZ-IBERCAJA-CAI/CB7-21
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Química Orgánica (Dpto. Química Orgánica)
Área (Departamento): Área Química Física (Dpto. Química Física)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-03-18-16:49:54)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-10-06, última modificación el 2024-03-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)