000118883 001__ 118883
000118883 005__ 20240104111819.0
000118883 0247_ $$2doi$$a10.1016/j.solidstatesciences.2021.106732
000118883 0248_ $$2sideral$$a126858
000118883 037__ $$aART-2021-126858
000118883 041__ $$aeng
000118883 100__ $$0(orcid)0000-0002-8100-6417$$aÖzçelik, C.
000118883 245__ $$aTuning thermoelectric properties of Bi2Ca2Co2Oy through K doping and laser floating zone processing
000118883 260__ $$c2021
000118883 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118883 5203_ $$aIn the present study, thermoelectric Bi2Ca2-xKxCo2Oy ceramic materials (x = 0.0, 0.05, 0.075, 0.10, and 0.125) in different forms (called bulk, as-grown and annealed fibers) have been manufactured via a classical solid-state method and textured using the laser floating zone (LFZ) technique. The identification and characteristics of undoped and doped samples were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns of all samples have shown great similarity, and the major peaks can be assigned to the Bi2Sr2Co2Oy thermoelectric phase, independently of the processing technique and K-doping. SEM-EDS have indicated the randomly oriented plate like grains of different sizes in bulk sample, evolving to longer and well-oriented grain structure through K-doping and LFZ. Because of the incongruent melting properties of compound, the high number of secondary phases formed in the as-grown samples. In order to reduce it, an annealing and K-doping process have been applied. The microstructural evolution is reflected on the electrical properties, and the lowest resistivity values are found in the annealed K-doped fibers. Seebeck coefficient is positive in all cases, pointing out to p-type conduction mechanism. These modifications led to PF values up to 0.162 mW/(K2m), obtained in 0.10 K-doped annealed fibers at 650 °C. © 2021 Elsevier Masson SAS
000118883 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T54-20R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-82183-C3-1-R
000118883 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000118883 590__ $$a3.752$$b2021
000118883 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b13 / 46 = 0.283$$c2021$$dQ2$$eT1
000118883 591__ $$aPHYSICS, CONDENSED MATTER$$b27 / 69 = 0.391$$c2021$$dQ2$$eT2
000118883 591__ $$aCHEMISTRY, PHYSICAL$$b84 / 165 = 0.509$$c2021$$dQ3$$eT2
000118883 592__ $$a0.557$$b2021
000118883 593__ $$aCondensed Matter Physics$$c2021$$dQ2
000118883 593__ $$aChemistry (miscellaneous)$$c2021$$dQ2
000118883 594__ $$a5.2$$b2021
000118883 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000118883 700__ $$aDepci, T.
000118883 700__ $$aGürsul, M.
000118883 700__ $$aÇetin, G.
000118883 700__ $$aÖzçelik, B.
000118883 700__ $$0(orcid)0000-0003-3995-5763$$aTorres, M.A.$$uUniversidad de Zaragoza
000118883 700__ $$0(orcid)0000-0002-0794-3998$$aMadre, M.A.$$uUniversidad de Zaragoza
000118883 700__ $$0(orcid)0000-0001-7056-0546$$aSotelo, A.$$uUniversidad de Zaragoza
000118883 7102_ $$15002$$2305$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Expresión Gráfica en Ing.
000118883 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000118883 773__ $$g120 (2021), 106732 [9 pp.]$$pSolid state sci.$$tSOLID STATE SCIENCES$$x1293-2558
000118883 8564_ $$s1286910$$uhttps://zaguan.unizar.es/record/118883/files/texto_completo.pdf$$yPostprint
000118883 8564_ $$s1621293$$uhttps://zaguan.unizar.es/record/118883/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000118883 909CO $$ooai:zaguan.unizar.es:118883$$particulos$$pdriver
000118883 951__ $$a2024-01-04-11:07:34
000118883 980__ $$aARTICLE