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QT interval Adaptation to Heart Rate Changes
in Atrial Fibrillation as a Predictor of

Sudden Cardiac Death
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Abstract— Objective: The clinical significance of QT in-
terval adaptation to heart rate changes has been poorly
investigated in atrial fibrillation (AF), since QT delineation
in the presence of f-waves is challenging. Therefore, the
objective of the present study is to investigate new tech-
niques for QT adaptation estimation in permanent AF. Meth-
ods: A multilead strategy based on generalized periodic
component analysis is proposed for QT delineation, involv-
ing a spatial, linear transformation which emphasizes T-
wave periodicity and attenuates f-waves. QT adaptation is
modeled by a linear, time-invariant filter, whose impulse
response describes the dependence between the current
QT interval and the preceding RR intervals, followed by
a memoryless, possibly nonlinear, function. The QT adap-
tation time lag is determined from the estimated impulse
response. Results: Using simulated ECGs in permanent AF,
the transformed lead was found to offer more accurate QT
delineation and time lag estimation than did the original
ECG leads for a wide range of f-wave amplitudes (the time
lag estimation error was found to be -0.2±0.6 s for SNR
= 12 dB). In a population with chronic heart failure and
permanent AF, the time lag estimated from the transformed
lead was found to have the strongest, statistically signifi-
cant association with sudden cardiac death (SCD) (hazard
ratio = 3.49), whereas none of the original, orthogonal leads
had any such association. Conclusions: Periodic compo-
nent analysis provides more accurate QT delineation and
improves time lag estimation in AF. A prolonged adaptation
time of the QT interval to heart rate changes is associ-
ated with a high risk for SCD. Significance: This study
demonstrates that SCD risk markers, originally developed
for sinus rhythm, can also be used in AF, provided that T-
wave periodicity is emphasized. The time lag is a potentially
useful marker for identifying patients at high risk for SCD,
guiding clinicians in adopting effective therapeutic deci-
sions.
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I. INTRODUCTION

THE clinical significance of impaired adaptation of the
QT interval to changes in heart rate (HR) has been

demonstrated in patients with myocardial infarction and is-
chemia as well as in those with long QT syndrome [1]– [6]. It
is well-known that the adaptation is faster during HR acceler-
ation than during deceleration (“hysteresis”) and composed of
two phases: a fast, initial phase extending a few RR intervals
and a slow phase extending several minutes. The larger the
change in HR the more pronounced is the hysteresis phe-
nomenon and the longer extend the two phases [7]. In healthy
subjects, it has been shown that the intrasubject variability of
the QT-RR relation is low, whereas the intersubject variability
is substantial, thus motivating subject-specific analysis [8].

The problem of how to quantify QT adaptation has been
addressed by assuming that the dependence of the current
QT interval on the preceding RR intervals can be modeled
by a linear, time-invariant filter followed by a nonlinear,
memoryless function [9]– [14]. This particular model structure
was introduced in a much earlier study for the purpose of
analyzing the QT-RR relation during exercise testing [15].
However, and most importantly, in that study the model
parameters accounted only for the fast phase and were held
fixed for all subjects, whereas, in [9]– [14], the model pa-
rameters were estimated from the observed RR intervals in
each subject. The linear, time-invariant filter was defined by
either a finite impulse response [9] or an infinite impulse
response of a first-order system [12], [13]. From a large set
of physiologically plausible nonlinear functions, the function
providing the best fit to the QT-RR data was selected. The
well-known Bazett’s and Fridericia’s formulas for QT interval
correction were found inadequate as nonlinear functions [16],
especially at low and high HRs. Various tailored approaches
have been proposed for parameter estimation, based on, e.g.,
an unscented Kalman filter [10] or a cost function designed to
minimize the fluctuations of the corrected QT intervals [12].

Parameter estimation is preferably performed in situations
when the HR changes abruptly, e.g., during exercise testing,
pacing at different rates, or changes in orthostatic position, as
such situations help trigger both the fast and the slow phases.
In unprovoked situations, several hours of ambulatory ECG
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recordings may be needed to ensure a reasonably broad range
of RR intervals so that accurate parameter estimates can be
produced. For an increasingly broader range of RR intervals,
the QT-RR relation becomes increasingly nonlinear [12].

A few studies have investigated QT adaptation in AF, in-
volving either semi-automated or automated QT measurements
obtained from 24-h Holter recordings. Some of these studies
adopted the analysis pioneered in [15], i.e., using a filter
with fixed coefficients to model cardiac memory [17], [18],
while others confined the analysis to using Bazett’s formula
on the immediately preceding RR interval [19]. It should be
emphasized that none of these AF-focused studies employed
subject-specific analysis.

Due to the presence of f-waves in certain ECG leads,
especially V1 and V2, delineation of the QT interval in AF
recordings may be a challenging problem [20]. Most clinical
studies have bypassed this challenge by simply analyzing
a lead with negligible f-wave presence. When more than
one lead is available, a multilead strategy based on periodic
component analysis (πCA) [21], [22] may be used, taking
advantage of the spatial redundancy among the different leads
and the quasi-periodic structure of the ECG signal. This
technique searches for the lead transformation maximizing
the desired periodicity, while attenuating components with
other periodicities, including f-waves. While this technique
has been successfully applied to T-wave alternans detection
[23] and quantification of T-wave morphological markers in
sinus rhythm [24], it remains to be demonstrated whether the
analysis of QT adaptation in AF patients benefits from πCA.

A novelty of the present study is the exploration of a
generalized variant of πCA to achieve robust estimation of the
adaptation time lag. Other novelties relates to the evaluation
of performance: a simulation model to generate ECG signals
in AF is used to evaluate the errors associated with QT
delineation and time lag estimation, and a population with
chronic heart failure (CHF) and permanent AF [25] is used to
assess the prognostic value of the time lag used for predicting
sudden cardiac death (SCD).

The paper is organized as follows. Section II describes the
multilead strategy used to robustify QT delineation and QT
adaptation. Section III describes the ECG simulator and the
MUSIC database, and Sec. IV presents the results, notably on
the prediction of SCD. Section V discusses the results and
Sec. VI provides the main conclusions.

II. METHODS

A. Multilead ECG enhancement using πCA
A multilead strategy based on πCA is employed for the pur-

pose of improving QT delineation and, ultimately, QT adap-
tation. The strategy involves a spatial linear transformation
designed to emphasize T-wave periodicity, and, consequently,
to attenuate f-waves, by exploiting spatial and temporal infor-
mation in the ECG. In mathematical terms, the transformation
is given by

y(n) = wTx(n), (1)

where the vector x(n) =
[
x1(n) · · · xL(n)

]T
contains the

ECG samples observed at time n in L leads subjected to band-

pass filtering to remove baseline wander and attenuate muscle
noise (cutoff frequencies at 0.5 and 35 Hz). The weights
w =

[
w1 · · · wL

]T
are determined by a generalized variant

of πCA, and the transformed lead y(n) is used for delineation.
While the transformation in (1) is applied to every sample of

the ECG signal, w is determined from a data matrix containing
only the samples of the T-wave interval, starting D samples
after the k-th QRS fiducial point nQRS,k and lasting for M
samples in a selecting learning period (D and M are set to
80 and 350 ms, respectively). By restricting the data matrix to
containing T-waves only, the periodic property of the T-wave
is emphasized. The inclusion of other waves in the learning
phase, i.e., the P-wave and/or the QRS complex, could go
against the periodicity criterion, since the periodicity of the
P-wave and the QRS complex can present spatial directions
other than those related to the T-wave periodicity. If this is
the case, πCA will result in an intermediate spatial direction,
not necessarily the one which is the optimal for the T-wave
spatial structure.

For the k-th T-wave interval, the M samples of the L leads
are contained in the L×M data matrix

Xk =
[
xk(0) · · · xk(M − 1)

]
, (2)

where

xk(m) =

x1(nQRS,k +D +m)
...

xL(nQRS,k +D +m)

 , m = 0, . . . ,M − 1.

(3)
Starting at the q-th T-wave, an ensemble of B consecutive
T-waves is contained in the L×MB ensemble data matrix

Xq =
[
Xq · · · Xq+B−1

]
. (4)

Thus, the l-th row of Xq contains B concatenated T-waves of
the l-th lead.

The proposed approach to T-wave enhancement builds on
the fact that the T-wave is 1-to-P -beat periodic, meaning that
it is 1-2-· · · -P beat periodic. In the following, this approach is
referred to as generalized πCA (GπCAP ), where 1-to-P -beat
periodic components are projected onto the transformed lead
y(n), while components with other periodicities, e.g., f-waves,
or without any obvious periodicity, e.g., muscle noise, are
not. To maximize the 1-to-P -beat periodicity, the generalized
Rayleigh quotient is minimized with respect to w:

εP (w) =

∑P
p=1 ‖wTXq+p −wTXq‖2

‖wTXq‖2

=
wTRP

∆Xqw

wTRXqw
, (5)

where RP
∆Xq is a generalized spatial correlation matrix char-

acterizing the 1-to-P -beat periodicity, defined by

RP
∆Xq =

1

PBM

P∑
p=1

∆Xp,q ∆XTp,q, P ≥ 1, (6)

∆Xp,q = Xq+p − Xq, (7)
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Fig. 1: Example of standard ECG leads (V1–V6, I, II), and
transformed leads obtained using GπCAP , P = 1, 2, 3, and
PCA (B = 64).

and RXq is the spatial correlation of Xq , defined by

RXq =
1

BM
XqXTq . (8)

The generalized Rayleigh quotient is minimized by the
eigenvector with the smallest eigenvalue that results from
solving the generalized eigenvalue problem, given by

RP
∆Xqw

∗ = λRXqw
∗. (9)

Consequently, the optimal weights in (1) are given by that
particular eigenvector, denoted w∗. When processing an entire
recording, a selected set, starting at beat q, of B consecutive
T-waves from beats with dominant morphology are used for
learning w∗. Then, the remaining part of the recording is
analyzed using w∗.

For comparison, the spatial version of principal component
analysis (PCA) is implemented, where the optimal weights are
given by the eigenvector of RXq corresponding to the largest
eigenvalue [26].

Figure 1 illustrates the lead transformation when either
GπCAP or PCA is applied to the standard ECG leads. While
residual f-waves are present in the PCA-transformed lead, they
are completely removed in the GπCA-transformed leads. The
differences among the GπCA-transformed leads are negligible.

B. QT delineation
A single-lead, wavelet-based algorithm [27] is employed for

QRS detection as well as for QT delineation of original and
transformed leads. For the k-th QRS complex, the following
points in time are determined: QRS fiducial point nQRS,k,
QRS onset nQRSo,k, and T-wave end nTe,k. It should be noted
that the fiducial point nQRS,k is subject to refinement using
crosscorrelation-based time alignment.

+

Fig. 2: Block diagram describing the relation between QT and
RR intervals. The model is composed of an FIR filter with
impulse response h(n), followed by a memoryless function
gf (·; a0, a1). Adapted from [9].

Both the RR interval series (nQRS,k−nQRS,k−1) and the QT
interval series (nTe,k−nQRSo,k) are evenly resampled at a rate
of 4 Hz, resulting in xRR(n) and xQT(n), respectively. Before
resampling, outliers in the QT interval series are excluded
using the median absolute deviation. The two series are then
lowpass filtered with a cutoff frequency of 0.25 Hz.

C. QT adaptation to heart rate changes

The relation between RR intervals xRR(n) and observed
QT intervals xQT(n) is modeled by the system displayed in
Fig. 2, composed of an FIR filter followed by a memoryless
function and additive noise [9]. The FIR filter, of length N
with impulse response h(n), n = 0, . . . , N − 1, describes
how the current QT interval depends on the preceding RR
intervals (“QT memory”); N is set to 1200, i.e., 300 s. The
function gf (·; a0, a1) accounts for the memoryless, possibly
nonlinear relation between the filter output dRR(n) and the
QT intervals dQT(n). This function is given by one of the
functions f contained in the set Ωf ≡ {linear, hyperbolic,
parabolic, logarithmic, shifted logarithmic, exponential, arcus
tangent, hyperbolic tangent, arcus hyperbolic sine, and arcus
hyperbolic cosine}, all parametrized by a0 and a1 [9]. After
adding the noise term v(n), accounting for delineation and
modeling errors, the observed QT intervals are modeled by

xQT(n) = dQT(n) + v(n)

= gf (dRR(n); a0, a1) + v(n), (10)

where
dRR(n) = xRR(n) ∗ h(n). (11)

For each patient, the model parameters are determined by
minimizing the regularized least squares criterion, using a
global optimization algorithm based on the direct method [28].
Since this is an inverse “ill-posed” problem, the regularization
includes a priori information of the solution to produce more
accurate estimates [29]. The regularized least squares estimator
is given by [9], [30]:

{ĥ, f̂ , â0, â1} = arg min
{h,f,a0,a1}

J(h, f, a0, a1), (12)

where

J(h, f, a0, a1) = ‖dQT–xQT‖2 + β2‖Dh‖2, (13)

dQT =

 dQT(N)
...

dQT(NT − 1)

 , (14)
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xQT =

 xQT(N)
...

xQT(NT − 1)

 , (15)

NT the total number of samples in the QT-RR series, and
h =

[
h(0) · · · h(N − 1)

]T
.

Before estimation can take place, the Tikhonov matrix D
and β2, defining the regularization, need to be determined.
The matrix D is designed to enforce an exponential decay of
h(n):

h̃(n) =
(1− α)

(1− αN )
αn, n = 0, . . . , N − 1, (16)

where h̃(n) has unit gain at zero frequency and 0 < α < 1.
Deviations from the exponential decay are penalized by the
following matrix structure:

D =


α −1 0 0 . . . 0 0
0 α −1 0 . . . 0 0
...

. . . 0
0 0 0 0 . . . α −1

 . (17)

Note that for h(n) = h̃(n), ‖Dh‖ = 0. The parameter α is
estimated as the exponential decay that best fits h(n) using
f = ’linear’. Once α has been estimated, β2 is determined
from (13) with f = ’linear’ and using the “L-curve” criterion
[31]. It controls the weight assigned to the regularization
energy ‖Dh‖2 relative to the residual energy ‖dQT − xQT‖2,
being the energy of v(n).

D. Risk markers
Two parameters are considered for risk stratification, both

describing QT adaptation. Based on h(n), the parameter L90

is defined to cover 90% of the total memory. Thus, the highest
sample index for which the cumulative sum

H(j) =

N−1∑
k=j

h(k), j = 0, . . . , N − 1, (18)

exceeds η = 0.1 is identified and denoted L90 (expressed in
seconds) [9].

Since h̃(n) is a first-order system, it is fully characterized
by the time lag

τ = − 1

ln(α)
. (19)

The advantage of using τ over L90 is computational efficiency,
as neither β2 nor f have to be determined.

E. Statistical analysis of results from real ECGs
Data are presented as mean±standard deviation for contin-

uous variables, unless otherwise specified. Two-tailed Mann–
Whitney and Fisher exact tests were used for univariate
comparison of quantitative and categorical data, respectively,
between SCD and non-SCD groups. Survival analysis was
performed using the Kaplan–Meier estimator and comparison
of cumulative events by the log-rank test. The prognostic
value of τ and L90 in predicting SCD was determined with
univariate and multivariate Cox proportional hazards analysis.
For all tests, the null hypothesis was rejected for p ≤ 0.05.

III. MATERIALS

A. Simulated data

QT delineation performance was evaluated standard leads
(V1–V6, I, II) and orthogonal leads (X, Y, Z) generated by the
AF simulator in [32]. The simulator accounts for important
characteristics such as switching between sinus rhythm and
AF, varying P-wave morphology, repetition rate of f-waves,
and various types of noise. In the present study, however, the
simulated signals were always in AF (permanent AF), and thus
no switching takes place.

Since the simulator does not account for QT adaptation, it
was updated so that QT intervals are nonlinearly resampled
according to the hyperbolic model. In addition, the updated
simulator accounts for morphological variability of QRST
complexes due to respiration as proposed in [33].

The QRS-to-f-wave signal-to-noise ratio (SNR) is defined
in lead l as

SNRl = 20 · log10

(
AQRS,l

Af,l

)
, (20)

where AQRS,l is the peak-to-peak amplitude of the ensemble
averaged QRS of lead l (determined in a 100-ms interval
centered around nQRS,k) and Af,l is the peak-to-peak f-wave
amplitude of lead l, computed as the mean of the difference
between the upper and the lower envelope of the f-waves [33].
Real noise with 20µV RMS was added to make the simulated
ECG more realistic [32].

To evaluate the influence of f-wave amplitude on QT
delineation and estimation of τ , 15 1-h ECGs were generated.
The performance was evaluated at different SNRs (15, 18, 21,
and 24 dB) by rescaling the f-wave amplitude. The global SNR
was determined by the lead with lowest SNR. The exponential
profile was defined by setting α = e

1
τ and τ = 25 s [34].

The reference beat-to-beat QT series xrQT(k) was obtained
from delineation before f-waves and noise are added. Thus,
the QT delineation error in lead l was computed before
interpolation of the series as

eQT,l(k) = xQT,l(k)− xrQT,l(k). (21)

Each reference series was also used for computation of the
reference τ r. The error in the time lag τ in lead l was

eτ,l = τ̂l − τ̂ rl . (22)

The number of T-waves was set to B = 64 and q = 1.

B. Real ECG data

The proposed method was also evaluated on ambulatory
ECG recordings (24-h Holter) acquired from patients with
chronic heart failure (CHF) with permanent AF, recruited
for the prospective multicenter MUSIC (MUerte Súbita en
Insuficiencia Cardiaca) study [25]. Out of the original cohort
of 992 consecutive patients with symptomatic CHF, belonging
to functional classes II and III of the New York Heart
Association (NYHA) classification, 171 patients (43 females,
68.9±10.4 years old) were selected for the present study.



MARTIN-YEBRA et al.: QT INTERVAL ADAPTATION TO HEART RATE CHANGES IN ATRIAL FIBRILLATION AS A PREDICTOR OF SUDDEN CARDIAC DEATH 5

Data for demographic and clinical characteristics and medi-
cation were collected at the time of enrolment. In the AF sub-
group, 71.3% were classified as NYHA class II with average
left ventricular ejection fraction (LVEF) of 39.4±15.7%, and
50.9% of them had reduced LVEF (≤35%). Ischemic etiology
of CHF was present in 26.9% of patients and intraventricular
conduction delay (QRS duration >0.12 s) in 41.5% of patients.
The main patient characteristics of the study group are sum-
marized in Table I. The orthogonal leads were acquired at a
sampling rate of 200 Hz using SpiderView recorders (ELA
Medical, Sorin Group, France).

A follow-up period was conducted for an average of 48
months, including periodic visits every 6 months. At the end
of the follow-up period, the study group included 19 SCDs,
24 deaths due to a different cardiac origin, 20 non-cardiac
deaths and 108 survivors. SCD was defined by the study’s
end point committee. The study protocol was approved by the
institutional ethical boards and all patients signed an informed
consent [25].

The time lag parameters τ and L90 were estimated in 1-h
windows, after which the median was computed to character-
ize each patient. The number of T-waves was set to B = 128.
In order to obtain reliable parameter estimates, at least 90%
of the B beats needed to: i) be labelled as normal beats by the
Aristotle software [35]; and ii) have a difference in baseline
voltage between two successive beats less than 300 µV [36].
The index q was determined by the first segment within the
recording fulfilling these two criteria.

TABLE I: Clinical characteristics of the study population.
Data are expressed as mean±standard deviation for continuous
variables and as absolute number (percentage) for categorical
variables.

Overall population SCD Non-SCD
(n = 171) (n = 19) (n = 152)

Age (years) 68.9±10.4 69.2±10.5 68.9±10.4
Gender (males) 128 (74.8%) 16 (84.2%) 112 (73.7%)
LVEF ≤ 35% 87 (50.9%) 14 (73.7%) 73* (48.0%)
NYHA class III 49 (28.6%) 5 (26.3%) 44 (28.9%)
Diabetes 50 (29.2%) 6 (31.6%) 44 (28.9%)
Beta blockers 100 (58.5%) 9 (47.3%) 91 (59.9%)
Amiodarone 25 (14.6%) 2 (10.5%) 23 (15.1%)
Digoxin 106 (62.0%) 11 (57.9%) 95 (62.5%)
QRSd ≥ 120 ms 71 (41.5%) 11 (57.9%) 60 (39.5%)
QTc ≥ 450 ms 76 (44.4%) 5 (26.3%) 71 (46.7%)

*p ≤ 0.05 SCD vs. non-SCD
LVEF: Left ventricular ejection fraction; NYHA: New York Heart Association
QRSd: QRS duration; QTc: corrected QT interval.

IV. RESULTS

A. QT delineation and adaptation performance

With the goal to determine P , the errors eQT and eτ
were evaluated for different values of P when computing the
GπCA-transformed lead. The results in Fig. 3.(a) show that
eQT does not differ much for P =1, 2, and 3, decreasing from
eQT,GπCA1 = 1.8 ± 2.7 ms to eQT,GπCA3 = 1.4 ± 2.3 ms for
SNR=24 dB. Similar results are obtained for eτ , see Fig. 3.(b),
where the variance is reduced from 0.58 s in GπCA1 to 0.41 s
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Fig. 3: (a) QT delineation error eQT and (b) time lag esti-
mation error eτ for the GπCA-transformed lead (P = 1, 2, 3)
using the standard leads.

in GπCA2, and 0.45 s in GπCA3, for SNR=12 dB. Therefore,
in the following, P = 1 is always used as this choice is less
computationally demanding.

Figure 4 shows eQT,l for the original and transformed leads
at different SNRs. The performance is evaluated for standard
leads, orthogonal leads, and related transformed leads. In
general, the delineation of the original leads is worse than
that of the GπCA-transformed lead. The standard leads and
PCA-transformed lead exhibits a marked decreasing trend
in the variance as the SNR increases, while the GπCA1-
transformed lead is much more robust at low SNRs. Only
eQT,V6 is comparable to GπCA1, though a slightly higher
variance is obtained at a low SNR. The PCA-transformed lead
computed from the standard leads performs worse than does
GπCA1; however, this advantage becomes less obvious when
using the orthogonal leads.

Figure 5 shows eτ,l of the original and transformed leads at
different SNRs. Similar to the results in Fig. 4, the GπCA1-
transformed lead outperforms the standard leads as well as the
PCA-transformed lead for all SNRs except for the case of V5
and V6, for which the error variance is smaller at high SNRs
(21 and 24 dB). Leads V1, V2, V3, I, and II present larger
f-waves, and, therefore, the associated eτ,l are also larger;
only eτ,V6 is comparable to that of the GπCA1-transformed
lead (eτ,V6 = −0.1 ± 0.7 s). Using the orthogonal leads, the
estimation error of the PCA-transformed lead is lower than
that of the GπCA1-transformed lead. For the lowest SNR,
the corresponding errors are eτ,GπCA1 = −0.03 ± 0.84 s and
eτ,PCA = −0.14± 0.47 s.

QT delineation is illustrated in Fig. 6. Comparing nQRSo
and nTe with their respective reference times, a considerable
disagreement is noted in V1 and V2 due to large f-waves, as
well as for PCA-transformed lead, while the disagreement is
smaller in the GπCA1-transformed lead.
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Fig. 4: Delineation error eQT (mean ± standard deviation) in (a) standard leads and (b) orthogonal leads, together with
transformed leads obtained by GπCA1 and PCA.
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Fig. 5: Estimation error eτ (mean ± standard deviation) in (a) standard leads and (b) orthogonal leads, together with transformed
leads obtained by GπCA1 and PCA.

B. Prognostic value of QT adaptation

Among the 10 functions in Ωf , the linear

gl(dRR(n); a0, a1) = a0 + a1dRR(n) (23)

and the hyperbolic

gh(dRR(n); a0, a1) = a0 +
a1

dRR(n)
(24)

are the ones that best fitted the data, divided into 32.4%
and 64.7% of the whole population, respectively. Looking at
the distribution within the non-SCD group, the corresponding
percentages remain essentially the same (29.8% and 67.6%),
while, in the SCD group, the corresponding percentages are
52.6% and 47.4%.

The distributions of τ and L90 for the non-SCD and SCD
groups are presented in Fig. 7. SCD is associated with larger
τ and L90. However, the prolongation is only significant for
GπCA1 (τGπCA1 = 50±24.5 s vs. τGπCA1 = 67.1±35.9 s for
non-SCD and SCD, respectively, p = 0.021, and L90,GπCA1 =
111.2±43.7 s vs. L90,GπCA1

= 136.7±46.7 s for non-SCD and
SCD, respectively, p = 0.028).

The predictive value of τ is assessed using a risk threshold
set to the 75th percentile of the total distribution of τl for
the whole population, i.e., the group at risk, denoted as τl(+),
is composed of the 25% of patients with the largest τl. This
dichotomization is also done for L90.

Univariate Cox proportional analysis demonstrates that the
time lag τGπCA1 leads to the highest hazard ratio (3.49-fold
increased risk in the τGπCA1 (+) group), followed by τPCA,
see Table II. The parameter L90 offers the same stratifica-
tion performance as τGπCA1

and similar for τPCA. None of
the orthogonal leads are associated with SCD. LVEF is the
only clinical variable associated with SCD, with a hazard
ratio of 3.11. The criterion QTc≥450 ms, being the most
well-established ECG-based marker in clinical routine, is not
predictive of SCD.

The Kaplan–Meier curves for τGπCA1
are shown on Fig. 8.

The survival probability rate is significantly lower for patients
at high risk (τGπCA1 (+)) than for patients at low risk (τGπCA1 (-
)) at the end of the follow-up period.

A multivariate Cox model is constructed by adjusting for
significant clinical covariates: age, gender, NYHA class III,
LVEF≤35%, and the use of antiarrhythmic drugs (beta block-
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ers, amiodarone, and digoxin). After adjustment, τGπCA1
and

L90,GπCA1 are the most significant variables with the highest
hazard ratio associated with SCD, see Table II.

Fig. 9 illustrates how the QT intervals adapt to RR interval
changes for a patient in the MUSIC database.

V. DISCUSSION

The present study addresses the problem of QT interval
delineation in the presence of f-waves by proposing a novel
multilead strategy based on periodic component analysis to
enhance T-waves over f-waves. The results from a simulation
study show that the proposed method provides more accurate
QT delineation and time lag estimation than does the single-
lead approach. The prognostic value of the QT adaptation time
lag has been assessed in a CHF population and permanent AF,
where a prolonged adaptation time of the QT interval to heart
rate changes has been associated with a high risk for SCD.

Since the focus is the estimation of τ , the SNR was defined
by the QRS- and f-wave amplitudes, cf. (20), rather than by
the f-wave amplitude and the noise level. Since the noise level
was held fixed at 20 µV for all simulations, a future study
may investigate how performance is influenced by higher noise
levels. It should be noted though that the spatial definition of
πCA has been found robust in the presence of noise and body
position changes [24].

TABLE II: Univariate and multivariate Cox models for sudden
cardiac death in AF patients for τ determined in individual
leads, together with corrected QT interval (QTc) and left
ventricular ejection fraction (LVEF).

Univariate Multivariate*
Risk HaR

p-value HaR
p-valuethreshold (95% CI) (95% CI)

τX 61.9 s 1.7 0.283 2.36 0.099(0.65,4.48) (0.85,6.54)

τY 60.1 s 1.27 0.651 1.27 0.658(0.46,3.52) (0.44,3.68)

τZ 61.9 s 1.57 0.364 1.71 0.295(0.59,4.13) (0.63,4.64)

τPCA 60.1 s 2.65 0.037 2.74 0.036(1.06,6.60) (1.07,7.01)

τGπCA1
60.9 s 3.49 0.007 3.46 0.009(1.72,8.62) (1.37,8.74)

L90,PCA 137 s 3.28 0.010 3.45 0.011(1.32,8.08) (1.33,8.94)

L90,GπCA1
138.6 s 3.49 0.007 3.51 0.012(1.72,8.62) (1.31,9.35)

QTc 450 ms 0.44 0.116 0.41 0.094(0.16,1.23) (0.14,1.16)

LVEF ≤35% 3.11 0.030 3.18 0.034(1.12,8.64) (1.09,9.23)
HaR: Hazard ratio
*Multivariate includes age, gender, New York Heart Association class III,
LVEF ≤35%, beta blockers, amiodarone, and digoxin.

The potential of GπCA in separating beat-periodic com-
ponents from f-waves and noise depends on the number of
leads available for analysis. The results from the simulation
study were obtained using either the standard leads or the
orthogonal leads. The results show that the orthogonal leads
are associated with larger QT delineation and time lag errors
compared to those of the standard leads. Only leads V5 and
V6, which are the most distal to the atria, provide better
performance (lower variance) than GπCA1 at high SNRs. Still,
at low SNRs (15 dB) the benefit in terms of variance is more
evident. Nonetheless, the benefit of using lead V5 or V6 may
still be compromised by the signal quality along the whole
recording, i.e., the presence of motion artifacts and muscle
noise, or electrode unattachment. Another factor of practical
importance is that very few Holter devices record the standard
12-lead ECG. Provided that more than one lead is available,
multilead πCA will overcome this limitation by combining the
set of available leads, maximizing the periodic components
over any other sources of noise, without needing any a priori
lead selection.

Both bias and variance of eQT,GπCA1
remain essentially the

same for all SNRs, see Fig. 4. For the transformed leads, the
reference QT series is obtained from delineation of the trans-
formed clean ECG signal, before adding f-waves and noise.
On the other hand, the QT series obtained from delineation
of the transformed noisy signal is obtained from transforming
the noisy leads, not the clean leads. Consequently, w∗ differs
slightly between these two cases, implying that a certain bias
is introduced since the T-wave morphology may differ slightly.
In any case, the mean error is less than 2 ms, which is about the
same as the error between expert cardiologists [37]. It should
be noted that the estimation of τ is invariant to bias in the QT
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a close-up of the red zones, (b) and (d), where the time lag
between the two series is indicated.

interval delineation.
The generalized variant of πCA was introduced with the aim

to improve the quality of the spatial correlation matrix RP
∆Xq

in (6) by using more data. However, the simulation results
suggest that QT delineation does not significantly improve for
P > 1, probably due to the large number of beats used for
estimating RP

∆Xq . Had much fewer beats been used, it is likely
that the quality of RP

∆Xq would have improved as more terms
are added to the sum in (6).

Due to the irregular rhythm in AF, the location of the T-wave
interval will vary from beat to beat as will its onset relative
to the QRS fiducial point. Such variation is undesirable when
estimating w∗, and, therefore, the results were also computed
following alignment of the T-wave intervals before forming
Xq , using the location of the T-wave peak as fiducial point.
However, the alignment did not contribute to reducing the
delineation errors and therefore the results are not presented.

Despite evidence that AF is associated with risk for SCD,
being proarrhythmic in the ventricles [38], most of the ECG-
based risk indices of ventricular repolarization heterogeneity
have required sinus rhythm for proper assessment. There-
fore, this study is crucial as it demonstrates the prognostic
value of QT adaptation in CHF-AF patients as quantified by
L90 and τ . In contrast to the analysis of the leads X, Y,
and Z individually, only τ estimated from using all three
leads transformed with either PCA or GπCA1 was associated
with SCD, see Fig. 8. The best stratification performance is
achieved by using GπCA1, where the risk group has 3.49
times increased risk than the low-risk group (hazard ratio 1.32
times higher than the one obtained by PCA). Since the ECG
has a quasi-periodic structure, the enhancement of the T-wave
before QT delineation, particularly the T-wave end, using a
periodicity criteria is shown to outperform PCA, also in terms
of predictive value.

The predictive value of τ and L90 is shown to be identical
for the study population. This is expected as both parameters
quantify the time lag either using the exponential approxima-
tion h̃(n) or the estimated impulse response ĥ(n), respectively,
with the advantage that τ̂ comes with much less computations,
cf. Sec. II-D. Both parameters are highly correlated (Pearson’s
and Spearman’s correlation coefficients r2 = 0.92 and ρ2 =
0.99, respectively). Although there is a clear linear relationship
between both parameters, see Fig. 10, the non-linear trend
observed for large values of τ̂ indicates better robustness of
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L̂90 to outliers.
Although LVEF is known to be unspecific in SCD pre-

diction, low LVEF is associated with high risk for SCD
overall. Among the most relevant clinical and pharmacological
available data, only LVEF≤35% was associated with SCD
outcome in our study population. However, hazard ratios in
univariate and multivariate analysis were lower than the ones
obtained for the proposed time lag parameters.

A limitation of the present study is the imbalance of SCD
events (n = 19) and non-SCD events (n = 152) in the study
population. Although the prognostic value of τ and L90 has
been demonstrated, prospective studies are still needed in order
to corroborate the clinical value of τ and L90.

In contrast to sinus rhythm studies, scarce data on SCD
stratification in AF is available, particularly when based on the
assessment of ventricular repolarization instability. A previous
study in the same cohort of patients showed that enhanced
ventricular repolarization beat-to-beat variability of the ST-T
complex, based on an instantaneous local alternans measure-
ment, was associated with a higher SCD incidence [39]. The
prognostic value of the indices proposed in [39] (hazard ratios
between 2.66 and 3.76) is comparable to the ones reported for
τ and L90. However, while the approach presented in [39]
requires that consecutive beats preceded by a similar RR
interval are subject to bin selection, challenging in AF, the
computation of τ and L90 is straightforward, and likely more
stable.

It is well-known that other factors than HR contribute QT
modulation, including the autonomic nervous system (ANS).
Elucidation of the direct and indirect effects of ANS activity
on the QT interval may also help assessing arrhythmia sus-
ceptibility [40]. In sinus rhythm, direct ANS influence on the
ventricles is usually assessed through QT variability (QTV)
analysis, adjusted by HRV. However, ventricular rate lacks
ANS modulation during. Therefore, QTV analysis in AF may
be a tool to directly assess any ANS effect on ventricular

repolarization. In such cases, the use of πCA need to be
further studied. Indeed, it is tempting to believe that πCA
is disadvantageous to use as non-periodic components are
attenuated. However, beat-to-beat variations in the QT interval
will be emphasized or attenuated in the πCA-transformed
lead depending on how these non-periodic QTV components
project onto the spatial direction of the transformed lead.
This could happen even if the transformation is designed to
emphasize periodicity.

VI. CONCLUSIONS

This study shows that a multilead strategy based on πCA
outperforms the standard leads and PCA-transformed lead
when delineating QT intervals in the presence of f-waves.
Moreover, it is shown that the time lag τGπCA1

of the QT
adaptation to HR is associated with SCD in a population
of CHF patients with permanent atrial fibrillation, being the
best predictor among other classical ECG-derived (QTc) and
clinical variables. Therefore, it is concluded that this strategy
is useful to assess QT adaptation in permanent AF, indicating
that SCD risk markers developed for sinus rhythm are equally
suitable for AF.
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