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a b s t r a c t

Solid tumour growth depends on a host of factors which affect the cell life cycle and extracellular matrix
vascularization that leads to a favourable environment. The whole solid tumour can either grow or wither
in response to the action of the immune system and therapeutics. A personalised mathematical model of
such behaviour must consider both the intra- and inter-cellular dynamics and the mechanics of the solid
tumour and its microenvironment. However, such wide range of spatial and temporal scales can hardly
be modelled in a single model, and require the so-called multiscale models, defined as orchestrations of
single-scale component models, connected by relation models that transform the data for one scale to
another. While multiscale models are becoming common, there is a well-established engineering
approach to the definition of the scale separation, e.g., how the spatiotemporal continuum is split in
the various component models. In most studies scale separation is defined as natural, linked to anatom-
ical concepts such as organ, tissue, or cell; but these do not provide reliable definition of scales: for exam-
ples skeletal organs can be as large as 500 mm (femur), or as small as 3 mm (stapes). Here we apply a
recently proposed scale-separation approach based on the actual experimental and computational limi-
tations to a patient-specific model of the growth of neuroblastoma. The resulting multiscale model can be
properly informed with the available experimental data and solved in a reasonable timeframe with the
available computational resources.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Cancer’s rising prominence as the second leading cause of death
partly reflects the declining mortality rates of stroke and coronary
heart disease, relative to cancer, in many countries. There were an
estimated 19.3 million new cases and 10 million cancer deaths
worldwide in 2020 (Sung, 2021). Therefore, cancer has a significant
impact in all human societies. It is a complex and heterogeneous
disease due to the variety of biological and mechanical factors at
different scales: tumour, stroma, cellular, and subcellular/molecu-
lar. In solid tumours the stroma includes connective tissue and
blood vessels (Connolly et al., 2021). The occurrence and develop-
ment of cancer are highly regulated by the biomechanical proper-
ties and cellular composition of the tissue microenvironment (Liu
et al., 2020). Therefore, it is essential to understand the biomechan-
ical cues that favour the development of a primary tumour from
isolated or clustered cancer cells.

Solid tumours in vivo exist in three main stages: the avascular,
vascular, and metastatic phases. In the initial phase, namely the
avascular stage, the primary mass grows quite rapidly due to cellu-
lar replication and the production of extracellular matrix. Beyond a
certain size, it starts to compress surrounding tissues and organs.
This primary tumour mass can achieve a few millimetres in diam-
eter and its growth is strongly dependent on the mechanical prop-
erties of the extracellular microenvironment (Gonçalves and
Garcia-Aznar, 2021; Plou et al., 2018). As the tumour grows, the
cells at its centre undergo cell death due to a lack of nutrients,
forming a necrotic core. However, beyond a certain stage, the
tumour can develop its own vasculature by a process of angiogen-
esis. During this vascular phase, new blood vessels supply the
tumour with nutrients and thus, enable rapid tumour growth. Dur-
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ing the metastatic phase, some cancer cells migrate from the pri-
mary tumour, penetrate blood vessels, and ultimately, colonise dis-
tant sites (Escribano, 2019).

Cancer cells can give rise to the above phenomena as an emer-
gent outcome of a number of cellular phenotypic changes, or hall-
marks: sustained proliferative signalling and evasion of growth
suppressors, resistance to cell death, secretion of molecules induc-
ing angiogenesis, replicative immortality, and their metastatic
potential (Hanahan and Weinberg, 2011). For example, many cell
cycle proteins such as D-type and E-type cyclins are overexpressed
or overactive in cancer cells, leading to uncontrolled proliferation
(Otto and Sicinski, 2017). The p53 tumour suppressor that triggers
apoptosis in transformed cells is frequently mutated and subverted
in cancer cells (Mantovani et al., 2019). Various telomere mainte-
nance mechanisms are associated with aggressive cancer types (in-
cluding high-risk neuroblastoma) (Ackermann, 2018). High
expression of angiogenic factors by the cells in the tumour
microenvironment is also common (Jiang, 2020).

If the tumour is left untreated, it grows with a rate dependent
on the genetic makeup of the tumour cells, the cell-to-tissue vol-
ume ratio (cellularity), and the extent of vascularisation. When
treated with chemotherapy or radiotherapy, both the replication
rates and cell death rates are altered by the treatment, to an extent
that again, depends on the above factors and the actual pharma-
cokinetics (drug delivery in each part of tumour mass) (Pastor
and Mousa, 2019).

Computational models simulating biological processes are
widely used to better understand the underlying mechanisms of
biological phenomena, including cancer progression (Altrock
et al., 2015). There are diverse approaches to model tumour
growth, including discrete methods, continuous models, and
hybrid models. Discrete models, such as agent-based or Cellular
Potts-based approaches, follow the fate of each single cell or each
cohort of cells over time. Due to the computational costs associated
with implementing these models, they cannot capture aspects of
tissue mechanics effectively and they can only model subdomains
of the whole tumour (Metzcar et al., 2019). Continuous models
describe cancerous tissues as domains composed of multiple
phases interacting with each other. Finally, hybrid models incorpo-
rate different aspects of discrete and continuous models (Rejniak
and Anderson, 2011). Tumour models range from macroscopic
models that describe volumetric tumour growth to others that
enable simulation of important molecular processes. In this case,
a cell’s proliferation and death rates are modulated by its genotype
and phenotype, and by the therapeutics that reach the tumour
cells. The modulation of cell proliferation and death rates by
chemotherapeutic agents is best described in term of signalling
pathways within a single cell, e.g., by intracellular models
(Kozłowska et al., 2020). The effects of paracrine signalling, cell-
to-cell physical interactions, and the local metabolic conditions
(most importantly, oxygenation) are best described by multi-
cellular models that represent the collective behaviour of a large
cellular population (Metzcar et al., 2019). Finally, the biomechani-
cal interactions of the growing tumour with other organs, and the
diffusion–reaction of metabolites are best represented at the
whole-tumour scale. While in theory, it is possible to describe this
entire process with a single mathematical model, in practice, there
are limitations due to the resolution of the data used to parame-
terise the model and the computational power available to solve
it numerically. Therefore, such a brute-force approach is impossi-
ble, unless the single-scale cancer model is extremely idealised
(Bekisz and Geris, 2020). Thus, most models of tumour growth
comprise multiple component models, each describing the phe-
nomenon at a specific space–time scale (Vavourakis et al., 2017;
Peng et al., 2017; Pourhasanzade and Sabzpoushan, 2021). In this
work, we shift our attention from multiscale models to
2

continuum-based models; a detailed review of cancer models can
be found here (Deisboeck et al., 2011; Lowengrub, 2010). Continu-
ous models have the potential to absorb patient-specific data, such
as those coming from anatomical magnetic resonance imaging, dif-
fusion tensor imaging and perfusion imaging (Angeli et al., 2018).
Also, as multiple treatment protocols are made available, it is
important to develop so-called Digital Twins, patient-specific com-
puter models capable of predicting how a patient’s tumour will
respond to different treatments, thereby enabling the possibility
of informing personalised treatment plans.

One major unresolved issue in developing such multiscale mod-
els concerns scale separation: how we split a multiscale model of a
complex phenomenon into multiple models, each representing the
phenomenon at a specific space–time scale. This critical decision is
frequently neglected, and a scale separation is frequently adopted
without justification, assuming a ‘‘natural” scale separation based
on vague and qualitative anatomical concepts (cell, tissue,
tumour). To the best of the authors’ knowledge, the first paper to
raise the issue of scale separation in this context is (Evans, 2008).
More recently, a theoretical framework was proposed, but for a
much narrower problem (Chakraborty et al., 2014). One of the
authors introduced the problem in (Bhattacharya and Viceconti,
2017), and proposed a general approach in (Bhattacharya et al.,
2021). This paper uses a similar theoretical approach to analyse
the scale separation of a tumour growth model (Norton et al.,
2019).

This study aims to explore the scale separation of a new multi-
scale tumour growth model being developed in the PRIMAGE pro-
ject (Martí-Bonmatí, 2020) to personalise the treatment of
neuroblastoma patients, with the objectives of minimising the
model complexity and respecting the experimental resolution
and computational constraints that limit scale ranges.
2. Materials and methods

2.1. Scale separation

In the following, a scale is defined in terms of grain and extent.
The grain is the largest value between the lower limit of spatial/
temporal resolution allowed by the instrumentation, and the
smallest/fastest feature of interest to be observed. Similarly, the
extent is the smallest value between the upper limit of spatial/
temporal resolution (i.e., the region of interest in a four-
dimensional space) and the size of the largest/slowest feature of
interest to be observed. The resolution is the smallest interval of
a measured quantity that can still cause a change in the measure-
ment result (Bhattacharya and Viceconti, 2017).

Generally speaking, the mechanistic description of tumour
growth spans a dimensional extent that goes from the molecular
scale (10�10 m) to the whole-tumour scale (10�1 m), and tempo-
rally from fast chemical reactions (10�3 s) to the clinical follow-
up (5 years, 108 s). Since no experimental method has enough res-
olution to provide this spatiotemporal grain over such a large spa-
tiotemporal extent, and since in any case, no computer has enough
computational power to solve such a model, tumour growth mod-
els are almost always (explicitly or implicitly) multiscale models or
macroscopic continuum models.

In a way, even single-scale models are (implicitly) multiscale.
Single-scale models typically describe only a portion of the extent
with a grain larger than the smallest necessary grain. Everything
beyond the extent considered is lumped into boundary conditions,
and everything below the grain considered is lumped into consti-
tutive equations. However, these lumping operations can be
grossly inaccurate, and they hide some key elements of the process
(all those above and below the scale of the model) that we might
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need to predict. The alternative is the use of explicitly multiscale
models, which are orchestrations of single-scale models (compo-
nent models) linked together by data transformation services (rela-
tion models) that transform the quantities at one scale to those at
another scale (sometimes referred to as homogenization, when they
transform from a small scale to a large one, and particularization,
when they transform in the opposite direction).

When designing a multiscale model, a key decision concerns
scale separation, e.g., the grain and extent that each component
model represents. In much of the literature, this operation is
defined in terms of abstract, qualitative concepts rooted in anat-
omy or histology (tumour scale, tissue scale, etc). However,
space–time is a continuum, and the decision to partition it into
separate scales must be made based on the model’s purpose, the
resolution of the instrumentation used to inform and validate the
model, and the computational power available. The approach we
propose to define scale separation, first described in
(Bhattacharya et al., 2021), requires as the first step, the definition
of a mathematical model that provides the infinite resolution ide-
alisation of the multiscale model being developed.

2.2. Idealisation of tumour growth: macroscopic continuum model

Neuroblastoma tumours comprise a large variety of cells. We
assume that a cell’s type i in this case, is binary: cells originating
from the neural crest (i = s) and those from radial glial cells
(i = n). Following the theory of cancer stem cells (Clarke, 2006),
we will consider the first group cancer Schwann cells, and the sec-
ond cancer Neuroblast cells.

The probability that a cell k in an untreated tumour changes its
internal state ck to replication or death pck , is a function of the cell’s
type (Ik), its differentiation level (ak), and the local concentration of
the chemical species of interest (Sj):

pck ðkðXÞ; tÞ ¼ pck Ik;ak; sk; S1; � � � ; SJ; t
� � ð1Þ

The probability that the cell proliferates or dies depends on the
internal state of the cell and the chemical signals encoded by the
concentration dynamics of specific chemical species Sj in the region
of the cell. These chemical species (Sj) are supplied to the tumour
volume and consumed by the tumour cells:

_Sj X; tð Þ ¼
XN2dVX

k

vj
k Ik;ak; ck; sk; tð Þ þ

XN2dVX

k

rj
k Ik;ak; ck; sk; tð Þ ð2Þ

where:

- X is a generic point within the tumour,
- t is the time,

- _Sj is the rate of change of chemical species j at point X of the
tumour at time t,

- vj
k is the rate of consumption of the chemical species j by cell k,

- rj
k is the rate of supply of the chemical species j by cell k,

- Ik is the type of cell k,
- ak is the level of differentiation of cell k, from fully undifferen-
tiated stem cells (a = 0), to fully differentiated cells (a = 1),

- ck is the internal state of cell k,
- sk is the telomerase state of cell k, and
- N is the number of cells inside the infinitesimal neighbourhood
of point X (see definition below).

The difference between the proliferation rate of cells of type i

and differentiation state a, f i;ap , and the rate of cell death, f i;ad , repre-
sents the rate of change of the number of cells of type i in the vol-
ume dVX:
3

rdVX
i ðX; tÞ ¼ f i;ap ðX; tÞ � f i;ad ðX; tÞ ¼ dCdVx

i ðX; tÞ
dt

ð3Þ

The proliferation rate of cells of type i located within the
infinitesimal volume dVX associated with point X at time t is:

rdVX ðX;tÞ
i ¼ dCdVx

i X; S1; � � � ; SJ ; t
� �

dt
ð4Þ

Ci represents the concentration of cells of type i, regardless of their
differentiation level. Thus, the conservation of mass for the cells of
type i can be written as:

@CdVX
i ðX; tÞ
@t

þr � CdVX
i ðX; tÞ @uðX; tÞ

@t

� �
¼ rdVX

i ð5Þ

where dVX is its infinitesimal neighbourhood, u is the displacement
of the extracellular matrix caused by the growth of the tumour and
by its deformation against the surrounding tissues and organs at
that point and at that time.

The total volume of the tumour V at any point in time is due to
the sum of the cellular volume and Extra-Cellular Matrix (ECM)
volume. However, for a given level of cellularity, the ECM volume
will change proportionally to the cellular volume. Since every cell
has a similar volume, the cellular volume is proportional to the
number of cells in the volume V, CV. Thus, we can write:

@V
@t

¼ kia
@CV

@t

 !
¼ kia

@CV
S

@t
þ @CV

n

@t

 !
ð6Þ

in which i represents the cell type and a the differentiation state.
If W is a topological space that represents the tumour volume,

and X is a point in W, we will define dVX as an infinitesimal neigh-
bourhood of X, which is any subset of W that includes an open set
containing X and whose volume tends to zero. Thus, while contin-
uous variables such as the concentration of a chemical species are
associated with a generic point X, discrete variables like the num-
ber of cells are associated with the infinitesimal neighbourhood of
X, dVX.

Until now, we were considering tumour growth in the absence
of treatment. Once a tumour is diagnosed, the oncologist can usu-
ally choose from a small number of alternative options for treat-
ment. In theory, each of those treatments should slow down, or
even reverse the tumour’s growth. In practice, this largely depends
on the genetic makeup of the tumour. Considering this, the proba-
bility for cell k to change its internal state can be written as:

p�
ck

k Xð Þ; Tl; tð Þ ¼ pck Ik;ak; sk; S1; . . . ; SJ; t
� � � ptreat

ck
Tlð Þ; ð7Þ

where
p�
ck
is the cumulative probability of internal state change for cell

k and Tl l = 1, L is the treatment type, in a scenario where multiple
treatment options are available.

Assembling all these equations, the mathematical model that
describes the growth of the tumour defined above can be written
as the equations below.

p�
ck

k Xð Þ; Tl; tð Þ ¼ pck Ik;ak; sk; S1; . . . ; SJ ; t
� � � ptreat

ck
Tlð Þ

rdVX
i X; tð Þ ¼ dCdVx

i
X;S1 ;...;SJ ;tð Þ
dt

_Sj X; tð Þ ¼PN2dVX
k vj

k Ik;ak; ck; sk; tð Þ þPN2dVX
k rj

k Ik;ak; ck; sk; tð Þ
rdVX
i X; tð Þ ¼ f i;ap X; tð Þ � f i;ad X; tð Þ ¼ dCdVx

i X;tð Þ
dt

@C
dVX
i

X;tð Þ
@t þr � CdVX

i X; tð Þ @u X;tð Þ
@t

� �
¼ rdVX

i

@V
@t ¼ kia @CV

@t

� �
¼ kia @CV

s
@t þ @cVn

@t

� �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð8Þ
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2.3. A multiscale framework for modelling growth of solid tumours

In our multiscale framework, we divide the spatial domain of
the tumour into three levels using a hybrid numerical approach
(see Fig. 1). On the one hand, using patient-specific images of the
geometry and the corresponding DTI-MRI biomarkers, we propose
to develop a patient-specific Finite Element Model (FEM) of the
whole tumour. From the extent of vascularisation, the spatiotem-
poral distribution of nutrients and oxygen in the tumour are com-
puted. Through particularisation this information is used at the
tissue scale to evaluate how cells behave according to different
levels of oxygen and nutrients, regulating cell proliferation, differ-
entiation, hypoxia, and matrix formation. For this purpose, we pro-
pose to use an agent-based model (ABM) to describe these
behaviours, taking into consideration cell–cell and cell-matrix
interactions. Each cell agent is evaluated individually to update cell
state reflecting behaviours such as proliferation and apoptosis/
necrosis according to the current cell state (including genetic/-
molecular factors) and the current condition of the local microen-
vironment (e.g., concentration of oxygen, chemotherapeutics
drugs, cell crowding). Cell proliferation/death and matrix forma-
tion both influence emergent tumour growth. The growth of the
reference volume explicitly simulated using this agent-based
approach is incompatible with the other reference volumes in
the model, inducing the mechanical residual strains/stresses char-
acteristic of solid tumours (Stylianopoulos, 2017). By means of an
iterative process, we guarantee the compatibility between differ-
ent regions of the tumour. Consequently, the new spatial configu-
ration of the matrix and the cell population will be computed by
means of homogenization, which links the ABM to the macroscopic
scale.

2.4. Example of application: neuroblastoma

Neuroblastoma (NB) is the most common extra-cranial paedi-
atric solid tumour, accounting for 7% of childhood malignancies.
Contrary to most other paediatric malignancies, high-risk NB is
fatal in almost half of the patients diagnosed. NB arises from the
primordial neural crest cells that form the sympathetic nervous
system and is usually found around the adrenal glands (Maris
and Matthay, 1999). Approximately, 60–70% of the cases are meta-
static at presentation. NB is a strongly heterogeneous cancer, with
strikingly different clinical outcomes. These characteristics are
shared with many other cancer types, and hence NB can be consid-
ered a paradigm of the general cancer disease and an excellent con-
text in which to validate novel developments aiming to be
applicable in a large variety of cancers. The International Neurob-
Fig. 1. Scale separation map for multiscale tumour growth model.

4

lastoma Pathology Classification (INPC) classifies NB patients into
those with favourable or unfavourable post-surgical histology.
Depending on the Schwannian stroma development, tumours can
be classified as Schwannian stroma–rich or poor. Three finer diag-
nostic categories of the former category are mature ganglioneu-
roma, intermixed ganglioneuroblastoma, and nodular
ganglioneuroblastoma. Three categories of Schwannian stroma–
poor neuroblastoma are: differentiated, poorly differentiated, and
undifferentiated. As tumour aggressiveness is linked to the INPC
histological features, in clinical practice, treatments for cases with
different neuroblastic grades are quite different.

2.5. Initial dimensional analysis

Neuroblastomas can be as large as 800 cc (around 100 mm in
diameter, assuming a spherical shape), or so small as to be barely
segmented in an abdominal MRI (1.0 cc, 10 mm in diameter).
The effect of chemotherapy on neuroblastoma cells can be mod-
elled at the single-cell scale, so the extent here is around 10 mm.
The grain should be that of the therapeutic molecule (assuming a
molecular weight of 500 Da, the molecule size is around
5�10 nm). Therefore, the infinite resolution model would need to
model a spatial extent up to 10�1 m with a grain of 10�8 m.

The definition of the temporal extent is more complex. Neurob-
lastoma patients typically receive up to three chemotherapy cycles,
every eight weeks, so if the model is used to simulate the whole
duration of the therapy, the temporal extent will be 24 weeks
(107 s). The temporal grain is defined by the time required by
specific biochemical reactions; while it is very difficult to be speci-
fic, these are usually of the order of 10�2 s.

So, the hypothetical infinite resolution model would span nine
orders of magnitude both in time and space. This is clearly intract-
able, so a multiscale model is necessary.

2.6. Limits to scale separation

The upper and lower limits in space and time are dictated by
the problem itself, as defined in the infinite resolution model. Thus,
the spatial extent of the tumour model is set by the size of the solid
tumour. The spatial grain of the tumour model is limited by the
resolution of the medical imaging instrumentation that is used to
define the 3D geometry of the tumour; assuming the modality is
an MRI, the typical image resolution is 1–2 mm. The grain is also
limited by the number of degrees of freedom (NDOF) that the finite
element method can reasonably solve. Assuming the NDOF’s upper
limit is 106, the average element size is around 1.5 mm.

The temporal extent of the tumour model is the duration of the
chemotherapy: up to 24 weeks. The experimental limitation on the
grain is the minimum distance between two successive imaging
controls; if we assume a CT scan is performed before each new
chemotherapy cycle, a scan will be performed once every 1–
3 months. The evolution of the tumour growth, as predicted by
the model, show be provided, to be clinically relevant, with a gran-
ularity of at least two weeks.

The extent of the tissue model is conveniently set at the same
size as the grain of the tumour model (Table 1). Note that here
we refer to a model of behaviour and interactions between the
microenvironment of the stroma and cells, or intercellular interac-
tions, including cells that are native (e.g., Schwann cells) and non-
native (i.e., potentially cancerous). This way we can avoid the need
for a relation model here. However, a relation model remains nec-
essary to interpolate between initial conditions. A tumour model
with 300,000 elements requires the tissue model to run 300,000
times at each time step of the tumour model.

Within the context of the PRIMAGE project, the tissue model is
an ABM which needs to be implemented on a GPU node, and the



Table 1
Space-time grain and extent for the presented multiscale model.

Space Time

Nickname Extent Grain Extent Grain

Tumour Upper limit
10^�1 m

CT resolution
10^�3 m

Upper limit
10^7 s

Imaging controls 10^5 s

Solvable NDOF
10^�3 m

Time steps
10^5 s

Tissue From tumour 10^�3 m cell size
10^�5 m

From tumour 10^5 s Cultures controls 10^3 s

Solvable agents
5*10^�5 m

Time steps
10^4 s

Cell From
tissue
10^�5 m

Lower limit
10^�8 m

From
Tissue
10^5 s

Lower limit
10^�2 s
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available HPC system allows the simultaneous use of 100 nodes
with such configurations. Thus, we consider, for simplification, that
we can afford to run 100 tissue models for each tumour time step.

The relation model should partition the range of initial condi-
tions into an appropriate number of bins. Similarly, we need a rela-
tion model that, when given the 100 predictions from the tissue
model, can interpolate them to the 300,000 values required by
the tumour model.

The spatial extent of the tissue model is equal to the spatial
grain of the tumour model. The grain of the tissue model is limited
experimentally by the average cell size, and computationally by
the number of autonomous agents the model can handle simulta-
neously. In a cube measuring 2 mm in each dimension, there are 8
million cells with a diameter of 10 lm, but assuming that cells
occupy only 80% of the tissue volume in neuroblastoma, we need
6.400,000 agents.

The temporal extent of the tissue model is equal to the temporal
grain of the tumour model. The temporal grain of the tissue model
is limited computationally by the maximum time step that ensures
an acceptable discretisation error for the tissue model.

The spatial and temporal extents of the tissue model are respec-
tively equal to the spatial and temporal grain of the tumour model.
The probabilistic and phenomenological nature of the cell model
does not require mechanistic modelling of molecules; thus, this
model has no grain, strictly speaking. The cell model is not coupled
to the tissue model. It is run once, separately, taking as its inputs
the genetic markers of the tumour and the list of chemotherapeutic
options, and returning the probability with which each drug will
amplify or suppress each cellular pathway. In particular, in the tis-
sue model, the rates of cellular events such as replication or cell
death will be altered according to the probabilities that the cell
model predicts for the relevant pathways.

Based on this analysis, the presented neuroblastoma multiscale
model can be summarised with a scale separation map (Fig. 1).

The main variables that are exchanged between the scales are
illustrated by Fig. 1. The concentrations of chemical species,
_Sj X; tð Þ, are sampled and interpolated between the tissue and
tumour scales. The volume (V) is sampled from Tumour to tissue
and the variation of volume over time (@V

@t ) is interpolated back from
tissue to Tumour. The Cell scale provides the tissue scale with the
probability of an agent changing its internal state depending on the
therapeutic option chosen (p�

ck
).

3. Discussion

The aim of this study was to find the scale separation of a new
multiscale tumour growth model that minimises the modelling
complexity, while respecting the experimental resolution and
5

computational constraints that limit the scale ranges. To this end,
we used an approach first proposed in (Bhattacharya et al.,
2021), which tackles the problem by considering a multiscale
model as an engineering construct, optimised on the basis of the
experimental and computational limitations imposed by the avail-
able methods, rather than on the basis of abstract mathematical
considerations.

To evaluate the difference in expected accuracy between the
approach presented herein for the scale separation and the ide-
alised model we would have to solve the latter at least once, which
is currently impractical. It is possible, however, to calculate the
error introduced by the particularisation step, by solving at least
once the whole multiscale model without using any binning strat-
egy for particularisation, assuming that one instance of the ABM
will be run for each Finite Element in the Tumour scale model
and then comparing the outcome to a simulation that includes
fewer ABM instances using a binning strategy for interpolation of
the results back to the Tumour scale model. The details of the
quantification of the error resulting from the particularisation step
fall outside of the scope of this paper and are described in (Varella
et al., xxxx). It is reasonable to expect that this step is the most crit-
ical in terms of predictive accuracy. For a large volume, the reduc-
tion of hundreds of thousands of finite elements into only a
hundred ABMs is surely a major simplification; while more sophis-
ticated sampling and interpolation techniques can reduce the
impact on accuracy, the particularisation step becomes, for large
tumours, so brutal that large predictive errors are unavoidable. In
this sense, the race for exascale computing is helpful: the pre-
exascale Summit supercomputer at Oak Ridge National Laboratory
(USA) has 27,648 NVIDIA Tesla GPUs; by contrast, in Europe, the
pre-exascale Leonardo supercomputer, to be installed at CINECA
(Italy) before the end of 2021, will offer 13,824 NVIDIA A100 GPUs;
these new GPUs are expected to be at least two to three times fas-
ter than the Tesla GPUs.

The main limitation of the multiscale cancer model we
described is that, at the moment, it lacks a single-cell component
model that can use the genomic data obtained from a tumour
biopsy to predict the replication and apoptotic rates for the various
cell types, as well as the effects of different chemotherapeutic
drugs on these rates. Another limitation is that we are not consid-
ering metastasis which is the spread of cancer cells to other tissues
and organs (Martin et al., 2013). However, the scale separation
approach, which is the main focus of this paper, is effective for
designing multiscale models of solid tumour growth.

Every paper that describes a multiscale model should provide a
justification for its scale separation based on the resolution of the
experimental methods available to inform the model, and the com-
putational power available for its solution.
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