000118913 001__ 118913
000118913 005__ 20240319081007.0
000118913 0247_ $$2doi$$a10.1021/acs.chemmater.2c01481
000118913 0248_ $$2sideral$$a130030
000118913 037__ $$aART-2022-130030
000118913 041__ $$aeng
000118913 100__ $$aVasile, R. L.
000118913 245__ $$aInfluence of the synthesis and crystallization processes on the cation distribution in a series of multivariate rare-earth metal-organic frameworks and their magnetic characterization
000118913 260__ $$c2022
000118913 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118913 5203_ $$aThe incorporation of multiple metal atoms in multivariate metal-organic frameworks is typically carried out through a one-pot synthesis procedure that involves the simultaneous reaction of the selected elements with the organic linkers. In order to attain control over the distribution of the elements and to be able to produce materials with controllable metal combinations, it is required to understand the synthetic and crystallization processes. In this work, we have completed a study with the RPF-4 MOF family, which is made of various rare-earth elements, to investigate and determine how the different initial combinations of metal cations result in different atomic distributions in the obtained materials. Thus, we have found that for equimolar combinations involving lanthanum and another rare-earth element, such as ytterbium, gadolinium, or dysprosium, a compositional segregation takes place in the products, resulting in crystals with different compositions. On the contrary, binary combinations of ytterbium, gadolinium, erbium, and dysprosium result in homogeneous distributions. This dissimilar behavior is ascribed to differences in the crystallization pathways through which the MOF is formed. Along with the synthetic and crystallization study and considering the structural features of this MOF family, we also disclose here a comprehensive characterization of the magnetic properties of the compounds and the heat capacity behavior under different external magnetic fields.
000118913 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CTQ2017-87262-R$$9info:eu-repo/grantAgreement/ES/AEI/PID2019-107675RB-I00$$9info:eu-repo/grantAgreement/ES/AEI/PID2021-122770B-I00$$9info:eu-repo/grantAgreement/ES/MCIN/PLEC2021-007906$$9info:eu-repo/grantAgreement/ES/MCIN/PRE2018-086059$$9info:eu-repo/grantAgreement/ES/MINECO/PID2019--106315RB-I00
000118913 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118913 590__ $$a8.6$$b2022
000118913 592__ $$a2.869$$b2022
000118913 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b63 / 343 = 0.184$$c2022$$dQ1$$eT1
000118913 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000118913 591__ $$aCHEMISTRY, PHYSICAL$$b38 / 161 = 0.236$$c2022$$dQ1$$eT1
000118913 593__ $$aMaterials Chemistry$$c2022$$dQ1
000118913 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000118913 594__ $$a15.9$$b2022
000118913 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118913 700__ $$aGodoy, A. A.
000118913 700__ $$0(orcid)0000-0001-8224-329X$$aPuente Orench, I.
000118913 700__ $$aNemes, N. M.
000118913 700__ $$aPeña O''Shea, V. A. de la
000118913 700__ $$aGutiérrez-Puebla, E.
000118913 700__ $$aMartínez, J. L.
000118913 700__ $$aMonge, M. Á.
000118913 700__ $$aGándara, F.
000118913 773__ $$g34, 15 (2022), 7029-7041$$pChem. mater.$$tChemistry of materials$$x0897-4756
000118913 8564_ $$s9466231$$uhttps://zaguan.unizar.es/record/118913/files/texto_completo.pdf$$yVersión publicada
000118913 8564_ $$s3241453$$uhttps://zaguan.unizar.es/record/118913/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118913 909CO $$ooai:zaguan.unizar.es:118913$$particulos$$pdriver
000118913 951__ $$a2024-03-18-14:45:31
000118913 980__ $$aARTICLE