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Abstract: This paper presents a new physiological signal acquisition multi-sensory platform for
emotion detection: Multi-sensor Wearable Headband (MsWH). The system is capable of recording
and analyzing five different physiological signals: skin temperature, blood oxygen saturation, heart
rate (and its variation), movement/position of the user (more specifically of his/her head) and
electrodermal activity/bioimpedance. The measurement system is complemented by a porthole
camera positioned in such a way that the viewing area remains constant. Thus, the user’s face will
remain centered regardless of its position and movement, increasing the accuracy of facial expression
recognition algorithms. This work specifies the technical characteristics of the developed device,
paying special attention to both the hardware used (sensors, conditioning, microprocessors, connec-
tions) and the software, which is optimized for accurate and massive data acquisition. Although
the information can be partially processed inside the device itself, the system is capable of sending
information via Wi-Fi, with a very high data transfer rate, in case external processing is required.
The most important features of the developed platform have been compared with those of a proven
wearable device, namely the Empatica E4 wristband, in those measurements in which this is possible.

Keywords: multi-sensory platform; sensoring; skin temperature; blood oxygen saturation; heart rate;
attitude and heading reference system; inertial measuring unit; electrodermal activity; bioimpedance;
wearable devices; emotions

1. Introduction

Physiological signal capturing devices have evolved rapidly in recent years. From
being a curiosity a decade ago, today, almost any electronic devices (mainly cell phones,
smart watches or wearable devices in general) have several electronic sensors capable of
recording the individual’s physical activity and registering physiological signals such as
body temperature or heart rate. The capture of physiological signals itself has been the sub-
ject of extensive study in recent years [1], and the variety and importance of its applications
has grown steadily throughout this time, especially after the COVID-19 pandemic [2].

The advent of all kind of non-invasive sensors has enabled the development of many
platforms for acquiring an increasingly wide range of physiological signals. Examples of
commonly measured physiological signals are electrocardiogram (ECG) [3–7], electromyo-
gram (EMG) [8–11], photoplethysmography (PPG) [12,13], including heart rate (HR) and
its variability (HRV) [14,15], body or skin temperature (ST) [16,17], skin conductance and
impedance [18–20], electrodermal activity (EDA) [21–23], oxygen saturation (SpO2) [24–26],
blood pressure (BP) [27], and respiration rate (RR) [28], among others.
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1.1. Signal Capturing and Wearables

Wearable devices are intelligent electronic platforms, incorporated into clothing or
worn on the body, generally in the form of accessories (forehead bands, bracelets, patches,
watches), which allow the collection of physiological data from the user and, in general, a
more or less detailed analysis of these data, with fewer restrictions compared to traditional
laboratory devices [29]. Today, the use of wearable devices has become widespread, as
have the signals that these devices are capable of recording and analyzing.

The first wearable device could be the pocket watch (16th century), which evolved
into the wristwatch (1904) and the first digital watches (1969). Today, in the space of a
wristwatch, almost all the capabilities of a cell phone can be integrated, including the ability
to send and receive calls and messages and the use of apps, as well as different types of
sensors that record everything from the subject’s physical activity to some of their basic
physiological signals. In addition to the wristwatch [30], other wearable devices have taken
the form of rings [17], earrings [31], forehead bands [32] and different clothing such as
gloves, shoes and others [33].

Some examples of successful wearable devices that are capable of storing, analyzing
and sending physiological signals are the Samsung Gear S3 Frontier watch (https://www.
samsung.com/es/wearables/gear-s3/highlights/ Accessed on 1 August 2022) (capable of
measuring position and motion and HR, and featuring barometer, GPS and light sensor),
the MUSE and MUSE 2 forehead bands (https://choosemuse.com/ Accessed on 1 August
2022) (which record and analyze EEG signal, as well as being able to measure HR, SpO2,
motion and position) and the Oura rings (https://ouraring.com/ Accessed on 1 August
2022) (with heart rate monitoring, activity detection and seven temperature sensors). For
reasons that will become evident later, it is necessary to mention one of the most successful
wearable devices on the market today, the Empatica E4 wristband (https://www.empatica.
com/en-eu/research/e4/ Accessed on 1 August 2022), which has four sensors: PPG sensor,
EDA sensor, a three-axis accelerometer and an optical thermometer for ST measurement.
This device has several working modes including data recording and transfer, streaming
mode for real-time data visualization and E4 connect mode, which visualizes and manages
physiological data (encrypted) in a cell phone app.

The development of platforms for recording, monitoring and analyzing physiological
signals has continued growing for more than a decade [1,34] and is now a very active
branch of sensor electronics [35–38]. The range of uses of captured physiological signals
has expanded proportionally to the spread of this technology, from the extraction of health-
related characteristics to the classification of emotions or moods. More specific applications
of physiological signals may include, among others, disease diagnosis [25,39], remote
healthcare [40–46], human–machine interaction (e.g., to increase the autonomy of people
with disabilities) [47,48], rehabilitation processes [49], stress detection [34,50,51], monitoring
of daily activity [52,53] and emotion detection [32,38,54–57].

This paper will detail the development of a platform for the acquisition of physiologi-
cal signals, which includes a total of five different biomedical signals: skin temperature
(ST), blood oxygen saturation (SpO2), heart rate monitoring (HR), movement/position of
user’s head (AHRS) and electrodermal activity (EDA). The sensors used for the different
measurements have been chosen among the most advanced ones available on the market,
trying to prioritize the accuracy of the measurements as well as their performance. For
example, the EDA sensor can also measure bioimpedance and allows different types of
measurement configuration, including AC and DC (unipolar and switched bipolar), which
improves the signal-to-noise ratio. As will be explained later, the accuracy of the system
has been improved by a measurement based on two-channel multiplexing. A complete
AHRS system has been implemented, including a three-axis accelerometer, gyroscope and
magnetometer. The sensor for measuring SpO2 and HR is also state-of-the-art, allowing
high-precision measurements. In addition, a fisheye camera is incorporated for the study
of facial expression. Although the present work focuses on the electronic part of the design,
the main objective is to use the Multi-sensory Wearable Headband (MsWH) platform for
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emotion recognition. Indeed, in emotion recognition, valence and arousal (among other
emotional parameters) can be obtained through the selected physiological signals [58,59]
and facial expression [55,60–62]. However, this device also has the potential to be used to
detect and discriminate acute psychological stress and the performance of different physical
activities occurring at different times or concurrently [50,63].

1.2. Aims of This Paper

As mentioned above, this paper will detail the development of the Multi-sensory
Wearable Headband (MsWH) platform, which is capable of recording and analyzing five
different physiological signals (ST, SpO2, HR, IMU and EDA), in addition to capturing the
user’s facial expression using a fisheye camera. The MsHW platform integrates sensors
already calibrated by the manufacturers (ST, HR, SpO2 and IMU). For this reason, aspects
such as device consumption, EDA signal reading and response time of the temperature
sensors are dealt with in greater depth in this work. In these measurements, the tests have
been performed with accurate measurement systems on test bench. On the other hand, as a
validation of results, the available compatible signals such as EDA, ST and HR have been
compared against the Empatica E4 wristband data.

In the following section (Section 1.1), the technological differences of the developed
platform compared to similar devices will be detailed. The present work focuses basically
on the electronics required to capture the different signals, first treated in a descriptive way
(Section 1.1). The necessary power supplies, the conditioning stages and the connection to
and between the different integrated circuits capable of recording and analyzing (totally
or partially) the raw signals are described and detailed in Section 3. In Section 4, there
is a brief description of the software required to receive and interpret these signals. The
results obtained in the capture of these signals are shown in Section 5, in which the data
obtained by the device presented are compared with those obtained through the Empatica
E4 wristband when possible. Finally, some conclusions and the future work are presented
in Section 6.

1.3. Related Works

This section will briefly detail some works on devices similar in one or more aspects
to the one detailed here in order to highlight the differences of the proposed platform with
respect to other pre-existing ones.

There is a wide variability of integrated circuits capable of performing accurate ST
measurement. In [32], the authors use the LMT70 integrated contact temperature sensor,
which is suitable for portable devices and has an error as low as 0.05 ºC. In [23,37], the
MLX90614 chip is used. This integrated sensor uses infrared technology, presents an
error in the ST measurement of 0.5 ºC, communicates by SMBus and has a library for use
with Arduino. As will be seen in Section 3.1, the MAX30205 has been used in the MsHW
platform, with an accuracy of 0.1 ºC in the range of 37 to 39 ºC and sends data via an
I2C-compatible interface.

As will be seen in Section 3.2, for HR and SpO2 measurement, we have used the
MAX30101 integrated unit, which is a similar but more modern version than, for example,
the MAX30100 integrated unit used in [23].

The most significant advantage in terms of user motion measurement in the present
work (Section 3.3) is that MsHW is provided with a complete AHRS system. Indeed, the
BNO055 has a three-axis accelerometer, gyroscope and magnetometer, unlike other [55]
platforms, where the latter does not exist. Thus, a complete inertial system is available that
is capable of recording relative position and movements with high accuracy.

The EDA measure is currently one of the most widespread and active in research.
Most devices present a solution for EDA measurement based on conventional analog
circuitry (in the sense of circuitry built basically from amplifiers). For example, in [31]
a three-level amplifier stage (3CA) has been designed: a first unity gain stage with an
AD8244, a preamplifier stage with an AD8222 and a 24-bit low-noise ADC (ADS1299), plus
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a final adaptive amplifier stage with an MSP432. In [32], a direct impedance measurement is
performed with a circuit where 2 low-power MCP6422 amplifiers are used. In [22], a single
AD8603 is used, while a solution more similar to the one presented here is given in [37],
with a double impedance measurement system through two MPC6004, plus a second stage
that adjusts the output voltage to that of the ADC range used for signal processing.

In this work, a more compact solution has been chosen. The AD5941 is a measurement
system that can be used, among other applications, for electrochemical measurements,
battery impedance, glucose monitoring and bioimpedance measurements. It includes
the analog inputs for the corresponding sensors, the conditioning of the input signals
(amplifying, filtering), the generator of the excitation signals, and the converters and the
microcontroller required for the calculation of the variable to be measured.

In conclusion, in the MsHW platform, we have tried to use state-of-the-art technologies
in the precision measurement of the corresponding signals, with the idea of having highly
accurate data that will be used later for emotion recognition. In this sense, it is known [64]
that multimodal emotional detection systems tend to be more accurate than unimodal
ones. As concluded in [65], the combination of methods for recording and analyzing
physiological variables (especially if it is a combination of several signals) with deep
learning algorithms can be an extremely powerful tool in the detection of emotional states
in any of its applications.

2. Platform Overview

As mentioned in the previous section, the present work will detail the development
of a platform that includes a total of five different physiological signals: skin temperature
(ST), blood oxygen saturation (SpO2), heart rate (HR) monitoring, user movement/position
(IMU) and electrodermal activity/bioimpedance (EDA). In addition, a fisheye camera is
incorporated for facial recognition and facial expression study. The device is attached to
the subject’s head by means of an elastic band and to the earlobe by means of a clip.In this
sense, the developed platform is “wearable”, but it has been developed for data collection
in the laboratory or under controlled conditions, and it is not for everyday use in free living
or physical activity. On the forehead, on the same bracket that holds the camera, are located
the power and communications control system (Wi-Fi, Bluetooth, and a serial-USB port),
the main microcontroller, the chip for EDA, the gyroscope and accelerometers (IMU), and
the LIPO battery that powers all the electronics. The platform is completed with a second
board (oximeter) that is placed in the earlobe. The information from all these sensors can
be preprocessed inside the device itself (ST, EDA, IMU, HR, SpO2) or the raw data can be
sent to a microcontroller capable of analyzing it and extracting high-level characteristics.

The complete system can be seen in Figure 1. The developed platform is divided
into two main subsystems or PCBs. Figure 1a shows a side view of the platform, which
is attached to the subject’s forehead by means of an elastic strap. The image also re-
flects the approximate view area of the camera. Figure 1b shows the electrodes of the
EDA/bioimpedance subsystem. These electrodes (the silver brackets attached to the fore-
head and perfectly static by means of a strip of ethyl–vinyl acetate or EVA foam). In green,
the temperature sensor can be seen. Figure 1c shows an identical view to the previous one
with the electrodes placed in their final position and fixed by means of the EVA foam. This
way, they will be in contact with the subject’s forehead and always separated at the same
distance. The second PCB, attached to the ear by means of a clamp, is shown in Figure 1d.
This PCB contains the SpO2 and HR measure systems, as well as the fastening system (in
pink). In these images, we can be mainly see a (1) microcontroller, (2) camera, (3) LIPO
battery, (4) EDA electrode, (5) pulse oximeter, (6) temperature sensor.

Each of these subsystems has its own power supply as well as the signal conditioning
stages necessary for its correct operation. In addition, both modules have a microprocessor
(ESP32) capable of analyzing in situ the signals from the different sensors and extracting
the most notable characteristics from them, although if necessary, both devices can, in turn,
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dump the data in raw format to an external computer for further processing via Bluetooth
and Wi-Fi connection.

Figure 1. Final design of the platform and fastening system. (a) Side view of the platform. (b) Elec-
trodes of the EDA/bioimpedance subsystem. (c) View with the electrodes placed in their final
position and fixed by means of the EVA foam. (d) PCB with SpO2 and HR measure systems and
fastening system in pink. (1) Microcontroller, (2) camera, (3) LIPO battery, (4) EDA electrode, (5) pulse
oximeter, (6) temperature sensor.

The total weight of the platform is 168 grams, 96 grams of which correspond to the
head attachment system. The PCBs of both subsystems can be seen in Figure 2. On the left
side, Figure 2a,b show the top and bottom views of the PCB containing the RS232 system,
the camera connection port (bottom view), the main microcontroller (wich includes Wi-Fi),
the communication and battery control, the switched-mode power supplies that generate
the supply voltages for the different sensors and their conditioning, and a USB port (on the
right side of the board, top view). The size of this PCB is 38 mm × 124 mm. Figure 2b,d, on
the right, show the top and bottom faces of the PCB corresponding to the pulse oximeter,
which is attached to the subject’s earlobe by means of a clamp, as shown in Figure 1d. The
size of this PCB is 18 mm × 20 mm. There is a third very simple PCB, which contains
only the ST sensor and must be separated from the others since the sensor used needs to
be in thermal contact with the subject’s forehead. This small PCB can be partially seen in
Figure 1b,c, number (6).

Figure 2. PCBs of the platform. (a) Top view of the main PCB, attached to the front of the device by
means of a lightweight plastic bracket. It contains the power and communications control system
(RS232 and Bluetooth, plus a USB port), the main microcontroller, the chip for EDA, the gyroscope
and accelerometers (IMU) and the LIPO battery (including its charger) that powers all the electronics.
(b) Bottom view of the same PCB, where the camera connection port and its power sources are located
(left and center, respectively). The size of this PCB is 38 mm × 124 mm. (c) Top view of the pulse
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oximeter PCB, where the microcontroller and most of the components associated with the device can
be seen. (d) Bottom view of the pulse oximeter PCB, where the corresponding microprocessor stands
out. The size of this PCB is 18 mm × 20 mm.

The following section will detail the measurement devices for each of the physiological
signals implemented in the platform that has been developed.

3. Hardware Description

In this section, we detail the proposed platform design in terms of hardware and signal
acquisition. The block diagram of the platform is shown in Figure 3.

Figure 3. Block diagram of the complete sensoring and processing system.

As can be seen in this figure, the platform is powered by lithium–polymer batteries
with output voltages of 5.0 V and 3.3 V for the different devices. The EDA sensor, the IMU
and digital camera are located inside the forehead board. The temperature sensor and pulse
oximeter are located in the earlobe subcircuit. These two devices and the IMU communicate
with the main microcontroller via I2C, while the EDA sensor sends its measurements via SPI
and the camera uses the parallel port. The main microcontroller can, in turn, communicate
with external devices via Wi-Fi or Bluetooth. The approximate battery life, with all sensors
and camera at full power, is about 2 h. In this time, the amount of data collected, analyzed
and sent can be massive.

Some characteristics of the different sensors and devices included in the platform are
shown in Table 1. Each subsystem will be detailed in the following sections.

3.1. Skin Temperature (ST)

Attached to the earlobe, the device contains the MAX30205 (https://datasheets.
maximintegrated.com/en/ds/MAX30205.pdf, accessed on 14 June 2022) skin temperature
sensor, which, as advanced before, has a 16-bit (0.00390625 °C) temperature resolution,
and a final clinical grade accuracy of 0.1 °C from 37 to 39 °C. This device converts analog
temperature measurements to the corresponding digital data via a high-resolution sigma-
delta analog-to-digital converter (ADC). The measurements obtained can be sent via a
lockup-protected I2C-compatible two-wire serial interface. The sensor has a supply voltage
range of 2.7 to 3.3 V and a low supply current of 600 µA.

The main difficulty in measuring temperature using a wearable device is making sure
that the sensor is measuring the body temperature and not the temperature of the device
itself, or whether the measurement is excessively influenced by the ambient temperature.
These objectives can be achieved by maximizing skin contact, minimizing the thermal mass
of the circuit (including the PCB), and minimizing the thermal exchange between the device

https://datasheets.maximintegrated.com/en/ds/MAX30205.pdf
https://datasheets.maximintegrated.com/en/ds/MAX30205.pdf
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and its enclosure with the environment. Figure 4 depicts the detailed circuit diagram of
the MAX30205.

Table 1. Sensors and main characteristics. N.L.→Nonlinearity. S.R.→Sample rate. Acc.→Accuracy.
The sample rate of the AD5941 is 800 ksps. Data are filtered and downsampled in order to obtain a
final data sequence at only 4 Hz, which is enough to register EDA activity.

Sensor Device/Measure Range Resolution
(#bits)

Bandwidth
(Hz) Other

Accelerometer ±2 g/±4 g
±8 g/±16 g 14 8, 16, 31, 63

125, 250, 500, 1000 N.L.: 0.5%FS

BNO055 Gyroscope ±125, ±250, ±500
±1000, ±2000 (º/s) 16 12, 23, 32, 64

47, 116, 230, 523 N.L.: ±0.05%FS

Magnetometer ±1300 µT X, Y axis
±2500 µT Z axis 13/13/15 2, 6, 8, 10

15, 20, 25, 30 N.L.: 1%

MAX30205 ST 0 ºC to +50 ºC 16 20 (max.) Acc.: 0.1 ºC
(37–39 ºC)

MAX30101 SpO2 + HR 640–980 nm 18 50–3200 -

AD5941 EDA 100 kΩ–10 MΩ
10–0.1 µS 16 4 S.R.: 800 ksps, Acc.: 1%

Figure 4. Circuit diagram for the ST sensor. This figure has been generated with KiCAD (https:
//www.kicad.org, accessed on 14 June 2022). The names in green are the names of the Integrated
Circuits. In red are the pin numbers of the ICs.

3.2. Blood Oxygen Saturation (SpO2) and Heart Rate (HR) Monitoring

The block diagram of the pulse oximeter and heart rate monitoring are shown in
Figure 5. The monitored data are sent to a MAX32664 (https://datasheets.maximintegrated.
com/en/ds/MAX32664.pdf, accessed on 14 June 2022) micro-controller. It is a sensor hub
family with integrated firmware and world-class algorithms for wearables. The MAX32664
seamlessly enables any desired sensor functionality and includes communication with
Maxim’s optical sensors. It can deliver raw or already processed data to the outside world
through a fast-mode slave I2C interface. A firmware bootloader is also provided.

Figure 5. Block diagram of the blood oxygen saturation and heart rate monitoring subsystem.

https://www.kicad.org
https://www.kicad.org
https://datasheets.maximintegrated.com/en/ds/MAX32664.pdf
https://datasheets.maximintegrated.com/en/ds/MAX32664.pdf
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The MAX32664 firmware version for the developed platform is the so-called Version
C. It supports the MAX30101 high-sensitivity pulse oximeter and heart-rate sensor for
wearable health. It also supports estimated blood pressure monitoring. The MAX30101 is an
integrated module that includes internal LEDs (red and IR for sensing and green for ambient
light cancellation), photodetectors, and other optical elements, with low-noise electronics.
The MAX30101 provides a complete system solution to ease the design-in process for mobile
and portable devices. As shown in Figure 5, it requires a 1.8 V power supply (provided by
a SPX3809), plus a separate 5.0 V power supply for the internal LEDs (obtained using a
Buck-Boost REG71050 DC-DC regulator). As previously advanced, communication with
the MAX32664 is performed through a standard I2C interface. The module can be shut
down by software with zero standby current, which allows energy saving.

The complete circuit diagram of the pulse oximeter is shown in Figure 6. The connec-
tions between the different integrated circuits, as well as other external elements necessary
for their correct operation, can be observed.

Figure 6. Circuit diagram for the SpO2 and HR monitoring subsystem. This figure has been generated
with KiCAD (https://www.kicad.org, accessed on 14 June 2022). The names in green are the names
of the Integrated Circuits. In red are the pin numbers of the ICs.

3.3. Attitude and Heading Reference System (AHRS)

The subject’s orientation, position and movement (Attitude and Heading Reference Sys-
tem, AHRS) are monitored by the Inertial Measuring Unit (IMU) BNO055 (https://www.bosch-
sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf, accessed
on 14 June 2022), which is an absolute orientation sensor. It is a System in Package (SiP),
integrating a 14-bit three-axis accelerometer, a 16-bit three-axis gyroscope (with a range of
±2000 degrees per second), and a three-axis magnetometer. These three sensors commu-
nicate via SPI with a 32-bit Cortex M0+ microcontroller running Bosch Sensortec sensor
fusion software. The BNO055 includes internal algorithms to constantly calibrate the
gyroscope, accelerometer and magnetometer inside the device. The BNO055 is equipped
with bidirectional I2C and UART interfaces. Once programmed to run with the HID-I2C
protocol, it turns into a plug-and-play sensor hub solution. The corresponding circuit
diagram is shown in Figure 7.

https://www.kicad.org
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
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Figure 7. Circuit diagram for the IMU sensor. This figure has been generated with KiCAD (https:
//www.kicad.org, accessed on 14 June 2022). The names in green are the names of the Integrated
Circuits. In red are the pin numbers of the ICs.

The final image size is 640 × 480 pixels. In addition, the OV2640 module performs
on-chip JPEG encoding, converting the pixels into a machine-readable format without
additional computing from the MCU. The camera works at 12.5 frames per second.

3.4. Face and Gesture Recognition

To perform gesture and face recognition, which is a very important characteristic in
emotion detection and classification, the OV2640 (https://www.uctronics.com/download/
cam_module/OV2640DS.pdf, accessed on 14 June 2022) camera module was chosen for
its high sampling rate and variable pixel resolution. As mentioned above, the camera is
fixed on a very light plastic support, which protrudes from the subject’s forehead (see
Figure 1). Thus, the viewing area remains approximately constant, regardless of the user’s
movements, which is expected to increase the accuracy of the results of the facial expression
recognition algorithms.

3.5. Electro Dermal Activity (EDA) and Bioimpedance

Human skin puts up a certain resistance to the flow of electric current, and there-
fore, it has an associated electric impedance that can be experimentally measured. The
bioimpedance depends on multiple variables both prior to the measurement (such as the
separation between the electrodes) and dependent on external stimuli (such as the dermal
response to variations in body temperature or perspiration).

As advanced in Section 1.1, the Electro-Dermal Activity is obtained through the inte-
grated circuit AD5941 (https://www.analog.com/media/en/technical-documentation/
data-sheets/ad5940-5941.pdf, Acessed on 1 August 2022). This integrated contains the
complete EDA/bioimpedance measurement system that will be detailed below.

3.5.1. Electrodes Selection and Configuration

The bioimpedance measurement process is carried out by means of electrodes (from
two to four) that can be placed on different parts of the body, separated by a certain

https://www.kicad.org
https://www.kicad.org
https://www.uctronics.com/download/cam_module/OV2640DS.pdf
https://www.uctronics.com/download/cam_module/OV2640DS.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad5940-5941.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad5940-5941.pdf


Sensors 2022, 22, 5775 10 of 25

distance. In turn, electrodes can be divided into two broad categories: dry and wet. The
measurement procedure is different in each case. To make it user-friendly, dry electrodes
have been chosen for the developed platform, while the electrical excitation of the skin is
carried out by means of a low-voltage sinusoidal signal at 100 Hz frequency, which the
integrated circuit itself is capable of generating. As can be seen in Figure 1, the electrodes
are placed on the forehead, close to the measuring device itself, located in the main PCB.
This location of the electrodes has two advantages: firstly, the forehead is one of the areas of
greatest electrodermal activity [66], making measurements in this area particularly sensitive
and/or accurate. Secondly, the electrodes remain in a more stable position with respect
to, for example, the wrist, thus reducing the risk of electrical noise and unwanted signal
variations, which cloud the final quality of the captured data.

In any case, the bioimpedance measurement must meet the IEC 60601 standard, which
limits the current that can flow through the human body to a maximum of 10 µA for
frequencies below 1 kHz. According to this standard, the sensors must be isolated by
a decoupling capacitor CISOx (where x is the wire number) which guarantees that no
DC current penetrates the body. The input current is limited by a resistor RLIMITx. The
connection and the final result of the electrode impedance are shown in Figure 8.

Figure 8. Connection of the electrodes for the three measurement modes, 2, 3 and 4 electrodes.
Limiting/isolation resistors are included. This figure has been generated with KiCAD (https://
www.kicad.org, accessed on 14 June 2022). See the text for an explanation of the two, three and four
wire connection.

As can be seen in Figure 8, there are three main different ways to measure skin
bioimpedance, depending on the type of measurement required in each case: through
a two-wire, three-wire or four-wire connection. The values of the different decoupling
capacitors (C26 to C30) and limiting resistors (R16 to R19) for both connections can be seen
in the figure. In all measurement cases, the bioimpedance is essentially located between
the electrodes connected to the CEO and AIN1 terminals of the measuring device (see
Figure 9, below), which are decoupled in Figure 8 by capacitors C26 and C30, respectively.
In the four-wire measurement, the remaining electrodes are connected in the proximity of
the previous ones, so that the detected impedance is essentially the same.

Although the two-wire and four-wire measurements mentioned above are the most
commonly used, in our case, a three-wire connection has been chosen. In this case, a
reference electrode is taken, while the skin impedance measurement is obtained between
the reference electrode and one of the two additional ones, all of them placed on the
individual’s forehead (see Figure 1). Given the short distance between the electrodes, two
similar but slightly different impedances (ZU1 and ZU2) will be measured, whose value
is multiplexed and analyzed in the microprocessor, seeking to take full advantage of the
device’s capabilities (e.g., improving the data accuracy and its signal-to-noise ratio). The
measurement process will be detailed in the next section.

3.5.2. Bioimpedance Measurement Process

As mentioned above, the bioimpedance measurement is carried out by the AD5941
integrated circuit. The AD5941 is a high-precision, low-power analog front end, which is

https://www.kicad.org
https://www.kicad.org
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specifically designed for portable applications that require high-precision, electrochemical-
based measurement techniques, such as current, voltage or impedance measurements. It
has been designed for skin and body impedance measurements, and it works as a complete
bioelectric or biopotential measurement system.

EDA is measured by voltammetry. To measure an unknown impedance, an excitation
signal VEX is applied across this impedance. First, the voltage across the terminals of the
unknown impedance is measured. In a second stage, the current flow through the unknown
impedance is measured. This current is converted to a voltage via a Trans-Impedance
Amplifier (TIA), and this voltage is measured by an Analog to Digital Converter (ADC).
In a first stage of analysis, a Discrete Fourier Transform (DFT) is performed on the data
measured by the ADC for the current and voltage values, thus obtaining the real and
imaginary parts of VZU1,2

and IZU1,2
. Although there are other methods to perform this

calculus, DFT has been chosen since it is implemented in the AD5941 itself, and therefore,
no additional operation or programming is required.

As advanced in the previous section, in our case, the bioimpedance measurement
is carried out by means of a three-wire connection detailed in Figure 9. In this case, the
electrode connected to input CEO (ELEC.]1) is used as the reference electrode, while a
selector (taken from the matrix of selectors of the integrated unit) selects the other point of
the skin among the two remaining electrodes (ELEC.]2 and ELEC.]3 in the figure, which
are connected to inputs AIN1 and AIN3, respectively) to obtain two different impedance
measurements using the procedure described above.

Figure 9. Block diagram for the measurement system. Observe the 3-electrode multiplexed configu-
ration (see text).

Under these circumstances, the module of both measured impedances can be obtained
through the expression:

|ZU1,2 | =
|VZU1,2

|
|IZU1,2

| =
|VEX |
|VOTIA |

RTIA (1)

The excitation signal, VEX, is a sinusoidal wave of 1.1 V amplitude, oscillating at a
frequency of 100 Hz. The use of an AC signal improves the overall characteristics of the
recorded signal compared to that obtained with a DC or a switched DC measurement.
Knowing the characteristics of the excitation signal, it is possible to calculate the isolation
capacitors necessary for the correct connection of the electrodes (Figure 8). For this purpose,
a limiting resistor per channel is taken as follows:

RLIMIT = 1 kΩ (2)

In order to match the body impedance analysis measurement, the return path capacitor
CISO2 for EDA must have a value of:
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CISO2 = 470 nF (3)

With these values for RLIMIT and CISO2, the isolation capacitor CISO1 is calculated by
means of the expression:

XC1 <

√√√√( V2
EXCRMS

I2
ACRMSLIMIT

− R2
LIMIT

)
− XC2 ⇒ CISO1 = 15 nF (4)

where:

• XCi = 1/2π f Ci is the module of the impedance of capacitors CISO1 and CISO2.
• VEXCRMS = 0.778 is the RMS value of a sinusoidal signal of 1.1 V amplitude.
• IACRMSLIMIT is the maximum allowed AC current in the human body (IEC 60601).
• fEXC = 100 Hz is the frequency of the excitation signal.

The complete EDA measurement process can be seen in Figure 10. As advanced, the
excitation signal is a sinusoid of 1.1 V amplitude and 100 Hz frequency. As can be seen
in the figure, the complete process takes 250 ms. During the first approximately 100 ms,
with the system clock working at 16 MHz, the multiplexed reading of the two channels
takes place. The rest of the time the system remains hibernated. Specifically, during the
first 50 ms (five full signal periods), the excitation and impedance reading is carried out
through the left channel (blue in the figure). Then, by changing the switch mode in the
switch matrix of the device (see Figure 9), the excitation and reading of the right channel
(in orange in Figure 10) is performed. Then, the device hibernates until the next lecture
cycle, about 150 ms later. During the hibernation period, the clock works at 32 MHz. The
collected data (which include the FFT of the multiplexed read signals) are stored in a FIFO
memory, which has a certain size (a user-defined threshold). When the FIFO buffer is full,
the system sends a warning signal to the microprocessor (FIFO interrupt). Before the next
read cycle, the MCU must find the time to receive the data, which is an event it will mark
with a new interrupt. In this way, the FIFO buffer remains empty for a new storage cycle.

Figure 10. EDA measurement process. A complete cycle, including multiplexing and reading of
the left (blue) and right (orange) channels, is completed in 250 ms–150 ms of which, approximately,
the system remains hibernated. See text for further details. The interrupt signals correspond to the
reaching of the FIFO memory threshold and the time at which the MCU receives the stored data.

Finally, the detailed circuit of connections and external elements connected to the
AD5941 can be seen in Figure 11.
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Figure 11. Circuit diagram for the EDA measurement unit, AD5941.

One of the main advantages of this subsystem is the possibility of measuring both
EDA and bioimpedance. On the other hand, the multiplexing of the measured impedances,
ZU1 and ZU2 , leads to an increase in the performance of the device.

4. Software Description

The software has been developed in the official framework for ESP32, the Espressif
IoT Development Framework ESP-IDF (https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/, accessed on 14 June 2022). It has been programmed using both the Applica-
tion Programming Interfaces (API’s) and the FreeRTOS operating system (https://www.
freertos.org/, accessed on 14 June 2022), which are included in the same framework.

The design of the application can be seen in Figure 12. It works on a producer–
consumer basis, connected by queues that act as temporary buffers for discontinuities,
caused in the Wi-Fi interface due to connection quality or performance changes in the data
transfer rate.

Figure 12. General description of the software and firmware of the developed platform.

As can be seen in Figure 12, the thread producers are camera capture and signal
acquisition. Both work asynchronously but with the same time reference (timestamp).
The camera capture thread uses the ESP32-camera driver (https://github.com/espressif/
esp32-camera, accessed on 14 June 2022). As advanced in Section 3.4, the capture rate is
12.5 frames per second in continuous mode for VGA resolution. For each frame, dynamic

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://www.freertos.org/
https://www.freertos.org/
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
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memory is reserved, and the pointer is queued. The thread consumer (video streaming in
Figure 12) pulls the data out of the queue and sends them over the UDP socket to the target
host. Finally, the memory is freed.

The second producer thread is the signal acquisition. This thread synchronizes and
acquires signals from all the sensors of the platform. For this purpose, a synchronous
acquisition start trigger is performed, and then, the transfers are attended with their
different intervals based on the configuration of their internal buffers. In the case of the
AD5941, the transfer is controlled by interruption every second with a buffer containing
four samples. For the MAX30205 temperature, an acquisition is performed by polling every
250 ms. These two sensors are queued together in one structure, since they are acquired at
the same sampling rate. In the same task, also by polling, the internal buffer of the SpO2
implemented in the MAX32664 processor is checked and the data are placed in a specific
queue. The same operation is performed with the data obtained from the AHRS, BMO055.
For each of the queues, a consumer thread is associated to send the data over UDP sockets
on consecutive ports with respect to the base port to the IP address of the destination host.

The processor load is balanced between two cores. On Core 0, the video tasks are
executed, and on Core 1, the acquisition threads are executed. The network threads are
also configured in Core 1. This load balancing and the use of UDP sockets ensure a correct
latency of the application. It should be noted that the application performance degrades if
the TCP socket is used, not reaching 8 FPS compared to the stable performance of 12.5 FPS
when using the UDP socket. In our UDP protocol, the timestamp and frame counter are
included in the same way as in RTP (Real-time Transport Protocol), and the receiver must
use them to detect packet loss and to accommodate out-of-service delivery.

In general, the platform is in the same local network as the server and the use of UDP
does not require specific configuration in the routers.

Finally, there is a control command shell accessible via the TCP socket. These com-
mands allow to start or stop the different data streams and to parameterize some addi-
tional configurations.

5. Experimental Results

In this section, the raw data from the different sensors and devices included in the
developed platform are shown. Where possible, the equivalent results sampled by means
of the Empatica E4 wristband are additionally shown. This comparison is of particular
relevance for EDA, heart rate and body temperature. Although the Empatica has a three-
axis accelerometer, it does not have a complete AHRS system. It is also unable to record
facial expressions, so a comparison of results in the corresponding MsWH subsystems is
not possible or relevant.

5.1. Power Consumption

This section provides the power consumption data for the different devices of the
platform. The results are summarized in Table 2, in which the experimental measurements
of power consumption are detailed in addition to their theoretical values, which are
extracted from the data sheets.

5.2. Sensors and Calibration

As mentioned above, the ST (MAX30205), HR and SpO2 (MAX30101-MAX32664) and
IMU (BNO055) sensors are factory calibrated, with measurement accuracy guaranteed by
the manufacturer. The same is true for the OV2640 that controls the fisheye camera.

The facial recognition camera can work with 66° and 160° (fisheye) lenses. The distance
between the camera lens and the individual’s forehead is 170 mm. Optical distortion
can be corrected easily, since the distance to the plane remains constant throughout the
recording. However, if necessary, a calibration standard can be used to more accurately
correct for lens distortion. The frames acquired by the camera have been analyzed with
the Amazon Rekognition Emotion API (https://docs.aws.amazon.com/rekognition/index.

https://docs.aws.amazon.com/rekognition/index.html
https://docs.aws.amazon.com/rekognition/index.html
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html, accessed on 14 June 2022), interpreting emotional expressions such as happiness,
sadness and surprise with satisfactory results.

In the case of the ST and AHRS (IMU) measurements, the calibration process is
included in the documentation detailed respectively in Sections 3.1 and 3.3.

On the other hand, oxygen saturation measurement is calculated based on inter-
nal algorithms implemented in the MAX32664C sensor-hub, which is factory calibrated
by default without optical shielding (https://www.maximintegrated.com/en/design/
technical-documents/app-notes/6/6845.html, accessed on 14 June 2022) as used in the
MsHW platform.

In the case of ST, HR and EDA, the signals obtained by the MsHW platform can be
compared with those obtained by the Empatica E4 wristband. The results are shown in the
following sections.

Table 2. Sensors and main power consumption characteristics.

Device/Sensor Theoretical Measured Sample Rate
(mA) (fps)

MAX30205 (ST) 600 µA 0.604 4

MAX30101 + MAX32664 (SpO2 + HR) - 9.8 to 19.5 100

AD5941 (EDA) - 1.4 4

ESP32-WROVER-IE 500 mA 100 -

OV2640 42.7mA 53.2 12.5

BNO055 12.3 mA 12.3 20

5.3. The Empatica E4 Wristband

The Empatica E4 wristband is a wearable wireless device designed for comfortable,
continuous, real-time data acquisition in daily life. It contains four sensors:

• Photoplethysmography (PPG) to provide blood volume pulse, from which heart rate,
heart rate variability, and other cardiovascular features may be derived.

• Electrodermal activity (EDA), used to measure sympathetic nervous system arousal
and to derive features related to stress, engagement, and excitement.

• Three-axis accelerometer, to capture motion-based activity (IMU).
• Infrared thermometer, reading skin temperature (ST).

5.4. Data Capture Comparison

The comparison of the experimental data will be carried out in three different ways.
Firstly, a comparison will be made in the measurement of skin temperature both from the
point of view of the experimental results obtained and the response time (a relevant data,
given the difference in the technologies used in both devices). Then, a comparison is made
by obtaining the HR (or interval between heartbeats) in both devices. Finally, the results are
obtained in EDA by measuring a set of resistances (or impedances) of known value, and
the (more appropriate) direct measurement on the skin of an individual will be compared.

It should be noted that although both the developed platform and the Empatica E4
wristband have accelerometers, the results of the measurements with these sensors cannot
be compared, since they are placed in different places on the body, and it is extremely
difficult to design an experiment in which the movements of both devices are compatible
and comparable.

5.4.1. Skin Temperature

For skin temperature measurement, the resolution of the E4 is of 0.02 ºC, while the
MsWH resolution is of only 0.0039 ºC. However, the accuracy of both systems turns out
to be similar (±0.2 ºC for the E4 and ±0.1 ºC for the MsWH, both within 36–39 °C). The
final difference in skin temperatures measured through E4 and MsWH differs by only

https://docs.aws.amazon.com/rekognition/index.html
https://docs.aws.amazon.com/rekognition/index.html
https://www.maximintegrated.com/en/design/technical-documents/app-notes/6/6845.html
https://www.maximintegrated.com/en/design/technical-documents/app-notes/6/6845.html
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0.1 ºC. This result was obtained by fixing the sensors of both devices against each other and
leaving them at rest in the laboratory, thus measuring the ambient temperature.

Another comparative variable of interest is the Step Response Time (SRT), i.e., the time
required to obtain an accurate measurement when faced with an abrupt variation of the
variable to be measured. Using the Matlab System Identification Toolbox, and through
the data obtained by both temperature sensors, the step response of each device has been
generated. These responses are shown in Figure 13a,b.

Figure 13. Step response of the body temperature measurement systems. (a) Empatica E4 wristband.
(b) MsWH. SRTE4 ≈ 1.9 s. SRTMsWH ≈ 59.59 s. Both subfigures have been obtained using the Matlab
System Identification Toolbox.

As can be seen by comparing both subfigures, the SRTs of the compared devices are
very different. This is due to the different technologies of the temperature sensors used in
each case. In the E4 wristband, an optical thermometer is used. The absence of skin contact
reduces the thermal inertia in the measurement, and therefore, the SRT is very low—less
than 2 s, as can be seen in Figure 13a. On the other hand, as mentioned in Section 3.1, the
MsWH uses a MAX30205, which requires direct contact with the skin and therefore has a
higher thermal inertia. In this case, the SRT is almost 1 min, as can be seen in Figure 13b.

Although very significant, this difference in response times is not important because it
is the measurement of skin temperature, and variations in skin temperature are not usually
significant over such short time intervals for system thermal inertia to be an issue.

Figure 14 shows a more detailed comparison of the time response between the Empat-
ica E4 wristband and our MsWH system in which the faster response of the Empatica E4
wristband can be clearly seen.

Figure 14. Time response comparison of the body temperature measurement systems. It can be
clearly seen that the time response of the Empatica E4 wristband is much faster than in the case of the
MsHW system. Horizontal axis: time in seconds. Vertical axis: Amplitude. Blue line: MsWH. Red
line: Empatica E4 wristband.
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5.4.2. Heart Rate

Previous studies [67] suggest that the Empatica E4 is potentially usable as a tool
for investigating HR and its variability (HRV), at least while the user/patient is at rest.
Nevertheless, the HR capture algorithms used in the case of the MAX32664 sensor hub and
the Empatica wristband are very different. In the first case, it is an algorithm implemented
within the device itself with a refresh rate of 100 Hz. In the case of the E4 wristband, the
output data are provided by the device itself, which are calculated through the E4 streaming
server software and sent through the Bluetooth connection. The Empatica captures the
Inter-Beat Interval (IBI), eliminating unclear minimums due to the presence of noise. The
remaining data are used to calculate the instantaneous heart rate and are sent via Bluetooth.

This makes signal comparison between these devices a complex process. The data
supplied by Empatica must be filtered and subsampled, and the phase difference between
the signals must be corrected before proceeding to a comparison of results.

The HR raw results are shown in Figure 15. The instantaneous heart rate of E4 (in red
in the figure) has a higher variability than the data provided by MsHW (blue). This is due
to the different calculation algorithms explained in the previous paragraph. Nevertheless,
both measurements are comparable in the module, and variations are similar.

After processing the E4 wristband data (as explained before, subsampling, filtering,
and synchronizing the E4 raw data), the HR measurement from both devices can be seen in
Figure 16, which represents a longer time sequence than that in Figure 15. As can be seen in
the figure, the measures of both systems are very similar, and the time delay is negligible.
In this figure, the HR measurement of the MsWH is extracted directly from the raw data.

Figure 15. Representation of the raw data of the RH measurement. Horizontal axis: frame number.
Vertical axis: Amplitude. Blue line: MsWH. Red line: Empatica E4 wristband.

Figure 16. HR synchronized signals. Horizontal axis: frame number. Vertical axis: Amplitude. Blue
line: MsWH. Red line: Empatica E4 wristband.

The difference between the MsWH and the E4 HR measurements can be calculated in
percentage and plotted as a histogram, as has been shown in Figure 17.
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Figure 17. Difference between MsWH and Empatica E4 HR signals. Histogram. Horizontal axis:
error (%). Vertical axis: Number of occurrences. Red line: Gaussian fit. The maximum is located
at −0.14%.

As can be seen in this figure, the Gaussian fit shows that the difference in the HR
measurement between these two devices is approximately of −0.14%, which can be used
to validate the HR measurement of our system, assuming that the measurement of the E4
wristband is also accurate.

5.4.3. Electro-Dermal Activity and Bioimpedance

The performance of the EDA and bioimpedance measurement systems has been
verified by means of two simple experiments: in the first one, the correct calibration of the
equipment is checked by measuring a set of seven precision resistors’ (250 kΩ, 500 kΩ,
1 MΩ, 2 MΩ, 3 MΩ, 4 MΩ and 5 MΩ), with a 0.1% tolerance, which is equivalent to
conductance values between 0.2 µS and 4 µS. In the second experiment, the measurements
are carried out over the skin of the same subject.

The results of the calibration check of both devices are shown in Table 3. As mentioned
above, we have a set of seven precision resistance values (or in other words, conductance
values). These values are shown in the table (columns Rtheo and Stheo) and will be taken as
merely informative. The complete calibration results are represented in Figure 18.

Table 3. EDA measurement. Conductance calibration. Experimental results. First column: Theoretical
value of the resistance set. Second: related conductance values. Third: high-precision measurement
of resistances. Fourth: related high-precision conductance values. Fifth and sixth: experimental
conductance measurements through the E4 wristband and MsWH, respectively. Seventh and nineth:
absolute and relative errors for the E4 wristband. Eighth and tenth: absolute and relative errors for
the MsWH.

Rtheo (Ω) Stheo (µS) RF (Ω) SF (µS) SE4 (µS) SMsW H (µS) AEE4 (µS) AEMsW H (µS) REE4 (%) REMsW H (%)

250,000 4.0 251,000 3.984064 3.88 3.987 0.1042 −0.0031 2.615 −0.079
500,000 2.0 500,001 1.999996 1.85 1.999 0.1484 0.00072 7.4188 0.036

1,000,000 1.0 1,006,000 0.994036 0.889 0.9968 0.1047 −0.0028 10.531 −0.276
2,000,000 0.5 2,000,500 0.499875 0.5188 0.499 −0.01897 0.00089 −3.795 0.178
3,000,000 0.33 3,001,100 0.333211 0.342 0.332 −0.0088 0.0012 −2.654 0.353
4,000,000 0.25 4,001,000 0.249938 0.2523 0.249 −0.0024 0.00096 −0.956 0.386
5,000,000 0.2 5,001,200 0.199952 0.1985 0.1988 0.0014 0.0011 0.689 0.563

First, the resistors were measured with a high-performance multimeter (Fluke) to
check their actual resistance and conductance values (columns RF and SF in Table 3). Next,
the conductance values were measured using first the E4 wristband and then with our
platform, MsWH. The results of these measurements are shown in the SE4 and SMsWH
columns. Based on the Fluke conductance results, we can easily calculate the absolute and
relative errors of both devices (columns AEE4 and AEMsWH for absolute errors and REE4
and REMsWH for relative errors).
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As can be seen both in Table 3 and Figure 18, the smallest error in the accuracy of the
measurement taken with the Empatica wristband is as large as the biggest error made with
the MsWH, which is better calibrated.

Figure 18. Conductance calibration. Experimental results. MsWH and E4.

Once this point is verified, we proceed to perform a set of simultaneous measurements
with both devices under equivalent measurement conditions and on the same individual.
For this purpose, the alternative electrodes of the E4 will be used to measure EDA on
the fingers. In a first experiment, the E4 is placed on the left hand and the MsWH is
placed on the right hand, and then, the experiment is repeated by reversing the positions.
By proceeding in this way, an attempt is made to minimize the effect of possible local
differences in conductance between the two hands. Changes in skin conductance turn
out to be very slow, so the duration of the experiment should be relatively long (just over
18 min).

The measurement processes of the two devices are different. As explained in Section 3.5.2,
the MsWH uses an AC excitation signal at a frequency of 100 Hz. On the other hand, the E4
wristband uses a DC signal whose polarity is reversed between successive measurements.
This is equivalent to saying that both devices measure skin conductance in different layers
and may partly explain the experimental differences obtained. Similarly, the capacitance of
the human body differs in measurements taken in DC and AC.

In Figure 19, the measurement results taken with the MsWH are shown. Being an AC
signal, the results can be shown both in modulus (clear blue) and in phase (orange). This
figure should be considered only as a sample of the raw results collected by the platform
since, in its state, it cannot be compared with the results of the E4 wristband.

Figure 19. MsWH conductance measurement. Raw data. Left axis: module (µS). Right axis: phase
(degrees).

The MsWH module and phase data are combined to obtain a single reading, which is
the real part of the signal obtained. This signal can be compared with that obtained with
the E4 wristband. The results are shown in Figure 20.
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Figure 20. Comparison of measurement of skin response conductance using MsWH and E4 over
the same subject. Blue line (left axis): E4 measurement (µS). Red line (right axis): MsWH measure-
ment (µS).

As can be seen in Figure 20, although the numerical results differ notably (in the figure,
the right and left axes differ in scale), their relative behavior (in terms of general trend and
more or less abrupt variations) is quite similar.

6. Conclusions and Future Work

In the present work, a new multi-sensory platform for the collection of physiological
signals, that will be used in emotion recognition, has been presented. The MsWH platform
has been developed using both sensors and complete state-of-the-art measurement systems,
seeking the highest precision in the measurement of physiological signals and the greatest
versatility in the measurement and analysis processes available on the market. It is a device
designed to record experimental data, so it is not intended as a commercial or wearable
device. Although bulky, the complete platform is very light (168 g), and the battery has an
autonomy of approximately 2 h with all the devices at full performance, which allows long-
term experiments to be carried out, in which the amount of data recorded and analyzed
are massive. Although the information can be partially analyzed within the system itself,
the device has a high transfer rate Wi-Fi connection (including raw data as well as image
and/or video), which allows the collected results to be sent to an external device for more
detailed analysis.

The platform is divided into two subsystems. The first of them is fixed to the subject’s
forehead with an elastic band. In it, the temperature of the skin, the EDA/bioimpedance
and the inertial system (in addition to the camera) are recorded. The second subsystem is
placed in the earlobe and measures blood oxygen saturation and heart rate. The situation of
all of these sensors is optimal for several reasons. The forehead is a sufficiently smooth and
flat surface to be able to fix the thermal sensor in almost permanent contact. In addition,
it is one of the areas of the body where the EDA appears with greater amplitude, thus
facilitating its measurement. In addition, the platform that supports the camera barely
moves, so the facial reactions of the subject are accurately recorded. With regard to the
earlobe, it is one of the most common areas for measuring oxygen saturation in the blood,
after the fingers. Although many of the registered variables can be obtained in a wristband
wearable system (more comfortable to wear and allowing the recording of, for example,
arm movements, perhaps more efficient for expressing emotions), the truth is that it is
usually more of a drawback than an advantage in the recording of other variables such as
temperature or EDA, where vibrations and the movement of sensors and electrodes can
be a source of significant noise. By placing these measure systems on the user’s forehead,
the electrical noise associated with movement is reduced, without losing the ability to
record movements and emotional reactions with our Attitude and Heading Reference
System. Extending the use of this platform to the measurement of physical parameters
with changes in intensity or physical activity will require appropriate sensor calibration
and sensor validation.
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Leaving aside the work of the porthole camera (whose vision area remains practically
fixed, with the advantages that this entails), there are five signals recorded in total. With
regard to skin temperature, a sensor has been used that requires thermal contact with
the subject. Although the precision achieved is practically identical to that of Empatica,
our measurement shows a high thermal inertia. The possibility of replacing the sensor
presented here with another one based on contactless IR technology, with similar precision
but faster response, has been assessed. Regarding the collection of EDA data, as has been
said, the position of the sensors offers advantages with respect to, for example, the wrist
(Empatica), since they are less sensitive to user movements. Multiplexing a dual analog
signal increases the accuracy and ability to calibrate the device, and the use of an AC
signal offers inherent advantages over DC or switched DC measurements. Furthermore, by
placing the inertial measuring unit on the user’s head, the aim is to prioritize all kinds of
gesticulations and movements that facilitate emotional classification in the future based on
the set of physiological signals that this device is capable of capturing.
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Abbreviations
The following abbreviations are used in this manuscript:

AHRS Attitude and Heading Reference System
API Application Programming Interface
BP Blood Pressure
DFT Discrete Fourier Transform
ECG Electrocardiogram
EDA Electro-Dermal Activity
EMG Electromiogram
ESP-IDF Espressif IoT Development Framework
EVA Ethyl–Vinyl Acetate
FIFO First In First Out Memory
GPS Global Positioning System
HID-I2C Human Interface Device over I2C protocol
HR Heart Rate
HRV Heart Rate Variability
IBI Inter-Beat Interval
IMU Inertial Measurement Unit
LIPO Lithium Polymer
MCU Micro-Controller Unit
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MsWH Multi-sensor Wearable Headband
PCB Printed Circuit Board
PPG Photoplethysmography
RR Respiration Rate
SiP System in Package
SPI Serial Peripheral Interface
SpO2 Oxygen Saturation
SRT Step Response Time
ST Skin Temperature
TIA Trans-Impedance Amplifier
TCP Transmission Control Protocol
UART Universal Asynchronous Receiver/Transmitter
UDP User Datagram Protocol
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