000118932 001__ 118932
000118932 005__ 20240319081009.0
000118932 0247_ $$2doi$$a10.1016/j.redox.2022.102353
000118932 0248_ $$2sideral$$a130052
000118932 037__ $$aART-2022-130052
000118932 041__ $$aeng
000118932 100__ $$aGonzález-Franquesa, A.
000118932 245__ $$aRemission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue
000118932 260__ $$c2022
000118932 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118932 5203_ $$aMetabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.
000118932 536__ $$9info:eu-repo/grantAgreement/ES/AEI/RTI2018-093864-B-I00$$9info:eu-repo/grantAgreement/ES/AEI/SAF2017-83813-C3-1-R$$9info:eu-repo/grantAgreement/EC/H2020/675610/EU/Chromatin and Metabolism Chromatin-metabolism interactions as targets for healthy living/ChroMe$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 675610-ChroMe$$9info:eu-repo/grantAgreement/EC/H2020/725004/EU/ Decoding mitochondrial nutrient-sensing programs in POMC neurons as key determinants of metabolic health/MITOSENSING$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 725004-MITOSENSING$$9info:eu-repo/grantAgreement/ES/ISCIII/PI15-00701$$9info:eu-repo/grantAgreement/ES/MICINN/BFU2011-24679$$9info:eu-repo/grantAgreement/ES/MICINN-CIBERObn/CB06-03-0001$$9info:eu-repo/grantAgreement/ES/MICINN/RYC-2009-05158$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2013-062796$$9info:eu-repo/grantAgreement/ES/MINECO/SAF2013-45887-R
000118932 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000118932 590__ $$a11.4$$b2022
000118932 592__ $$a2.519$$b2022
000118932 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b20 / 285 = 0.07$$c2022$$dQ1$$eT1
000118932 593__ $$aBiochemistry$$c2022$$dQ1
000118932 593__ $$aOrganic Chemistry$$c2022$$dQ1
000118932 593__ $$aClinical Biochemistry$$c2022$$dQ1
000118932 594__ $$a18.3$$b2022
000118932 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118932 700__ $$aGama-Pérez, P.
000118932 700__ $$aKulis, M.
000118932 700__ $$aSzczepanowska, K.
000118932 700__ $$aDahdah, N.
000118932 700__ $$aMoreno-Gómez, S.
000118932 700__ $$0(orcid)0000-0002-4703-6620$$aLatorre Pellicer, A.$$uUniversidad de Zaragoza
000118932 700__ $$aFernández-Ruiz, R.
000118932 700__ $$aAguilar-Mogas, A.
000118932 700__ $$aHoffman, A.
000118932 700__ $$aMonelli, E.
000118932 700__ $$aSamino, S.
000118932 700__ $$aMiró-Blanch, J.
000118932 700__ $$aOemer, G.
000118932 700__ $$aDuran, X.
000118932 700__ $$aSánchez-Rebordelo, E.
000118932 700__ $$aSchneeberger, M.
000118932 700__ $$aObach, M.
000118932 700__ $$aMontane, J.
000118932 700__ $$aCastellano, G.
000118932 700__ $$aChapaprieta, V.
000118932 700__ $$aSun, W.
000118932 700__ $$aNavarro, L.
000118932 700__ $$aPrieto, I.
000118932 700__ $$aCastaño, C.
000118932 700__ $$aNovials, A.
000118932 700__ $$aGomis, R.
000118932 700__ $$aMonsalve, M.
000118932 700__ $$aClaret, M.
000118932 700__ $$aGraupera, M.
000118932 700__ $$aSoria, G.
000118932 700__ $$aWolfrum, C.
000118932 700__ $$aVendrell, J.
000118932 700__ $$aFernández-Veledo, S.
000118932 700__ $$aEnríquez, J. A.
000118932 700__ $$aCarracedo, A.
000118932 700__ $$aPerales, J. C.
000118932 700__ $$aNogueiras, R.
000118932 700__ $$aHerrero, L.
000118932 700__ $$aTrifunovic, A.
000118932 700__ $$aKeller, M. A.
000118932 700__ $$aYanes, O.
000118932 700__ $$aSales-Pardo, M.
000118932 700__ $$aGuimerà, R.
000118932 700__ $$aBlüher, M.
000118932 700__ $$aMartín-Subero, J. I.
000118932 700__ $$aGarcía-Roves, P.
000118932 7102_ $$11012$$2410$$aUniversidad de Zaragoza$$bDpto. Farmac.Fisiol.y Med.L.F.$$cÁrea Fisiología
000118932 773__ $$g54 (2022), 102353 [18 pp.]$$pRedox biol.$$tRedox Biology$$x2213-2317
000118932 8564_ $$s12937694$$uhttps://zaguan.unizar.es/record/118932/files/texto_completo.pdf$$yVersión publicada
000118932 8564_ $$s2707496$$uhttps://zaguan.unizar.es/record/118932/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118932 909CO $$ooai:zaguan.unizar.es:118932$$particulos$$pdriver
000118932 951__ $$a2024-03-18-14:55:18
000118932 980__ $$aARTICLE