000118986 001__ 118986
000118986 005__ 20240319081013.0
000118986 0247_ $$2doi$$a10.3389/fchem.2022.976281
000118986 0248_ $$2sideral$$a130225
000118986 037__ $$aART-2022-130225
000118986 041__ $$adeu
000118986 100__ $$aFrecha, Esther
000118986 245__ $$aDesign of highly active Ni catalysts supported on carbon nanofibers for the hydrolytic hydrogenation of cellobiose
000118986 260__ $$c2022
000118986 5060_ $$aAccess copy available to the general public$$fUnrestricted
000118986 5203_ $$aThe direct transformation of cellulose into sugar alcohols (one-pot conversion) over supported nickel catalysts represents an attractive chemical route for biomass valorization, allowing the use of subcritical water in the hydrolysis step. The effectiveness of this process is substantially conditioned by the hydrogenation ability of the catalyst, determined by design parameters such as the active phase loading and particle size. Herein, mechanistic insights into catalyst design to produce superior activity were outlined using the hydrolytic hydrogenation of cellobiose as a model reaction. Variations in the impregnation technique (precipitation in basic media, incipient wetness impregnation, and the use of colloidal-deposition approaches) endowed carbon-nanofiber-supported catalysts within a wide range of Ni crystal sizes (5.8–20.4 nm) and loadings (5–14 wt%). The link between the properties of these catalysts and their reactivity has been established using characterization techniques such as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma-optical emission spectroscopy (ICP-OES). A fair compromise was found between the Ni surface area (3.89 m2/g) and its resistance against oxidation for intermediate crystallite sizes (∼11.3 nm) loaded at 10.7 wt%, affording the hydrogenation of 81.2% cellobiose to sorbitol after 3 h reaction at 190°C and 4.0 MPa H2 (measured at room temperature). The facile oxidation of smaller Ni particle sizes impeded the use of highly dispersed catalysts to reduce the metal content requirements.
000118986 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/Juan de la Cierva Program-IJC-2018-037110-I$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-115053RB-I00/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2017-83854-R
000118986 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000118986 590__ $$a5.5$$b2022
000118986 592__ $$a0.954$$b2022
000118986 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b55 / 178 = 0.309$$c2022$$dQ2$$eT1
000118986 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000118986 594__ $$a7.3$$b2022
000118986 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000118986 700__ $$0(orcid)0000-0003-3315-5933$$aRemón, Javier
000118986 700__ $$aTorres, Daniel
000118986 700__ $$aSuelves, Isabel
000118986 700__ $$0(orcid)0000-0002-8304-9656$$aPinilla, José Luis
000118986 773__ $$g10 (2022), 976281 [14 pp.]$$pFront. chem.$$tFrontiers in Chemistry$$x2296-2646
000118986 8564_ $$s2631268$$uhttps://zaguan.unizar.es/record/118986/files/texto_completo.pdf$$yVersión publicada
000118986 8564_ $$s1959753$$uhttps://zaguan.unizar.es/record/118986/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000118986 909CO $$ooai:zaguan.unizar.es:118986$$particulos$$pdriver
000118986 951__ $$a2024-03-18-15:19:33
000118986 980__ $$aARTICLE