000119005 001__ 119005
000119005 005__ 20240319081020.0
000119005 0247_ $$2doi$$a10.3390/membranes12060572
000119005 0248_ $$2sideral$$a129458
000119005 037__ $$aART-2022-129458
000119005 041__ $$aeng
000119005 100__ $$aSoto Herranz, María
000119005 245__ $$aEvaluation of different capture solutions for ammonia recovery in suspended gas permeable membrane systems
000119005 260__ $$c2022
000119005 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119005 5203_ $$aGas permeable membranes (GPM) are a promising technology for the capture and recovery of ammonia (NH3). The work presented herein assessed the impact of the capture solution and temperature on NH3 recovery for suspended GPM systems, evaluating at a laboratory scale the performance of eight different trapping solutions (water and sulfuric, phosphoric, nitric, carbonic, carbonic, acetic, citric, and maleic acids) at 25 and 2 °C. At 25 °C, the highest NH3 capture efficiency was achieved using strong acids (87% and 77% for sulfuric and nitric acid, respectively), followed by citric and phosphoric acid (65%) and water (62%). However, a remarkable improvement was observed for phosphoric acid (+15%), citric acid (+16%), maleic acid (+22%), and water (+12%) when the capture solution was at 2 °C. The economic analysis showed that water would be the cheapest option at any working temperature, with costs of 2.13 and 2.52 €/g N (vs. 3.33 and 3.43 €/g N for sulfuric acid) in the winter and summer scenarios, respectively. As for phosphoric and citric acid, they could be promising NH3 trapping solutions in the winter months, with associated costs of 3.20 and 3.96 €/g N, respectively. Based on capture performance and economic and environmental considerations, the reported findings support that water, phosphoric acid, and citric acid can be viable alternatives to the strong acids commonly used as NH3 adsorbents in these systems.
000119005 536__ $$9info:eu-repo/grantAgreement/EUR/LIFE20 ENV-ES-000858
000119005 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000119005 590__ $$a4.2$$b2022
000119005 592__ $$a0.489$$b2022
000119005 591__ $$aCHEMISTRY, PHYSICAL$$b70 / 161 = 0.435$$c2022$$dQ2$$eT2
000119005 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ2
000119005 591__ $$aPOLYMER SCIENCE$$b25 / 85 = 0.294$$c2022$$dQ2$$eT1
000119005 593__ $$aProcess Chemistry and Technology$$c2022$$dQ3
000119005 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b137 / 343 = 0.399$$c2022$$dQ2$$eT2
000119005 593__ $$aFiltration and Separation$$c2022$$dQ3
000119005 591__ $$aENGINEERING, CHEMICAL$$b48 / 141 = 0.34$$c2022$$dQ2$$eT2
000119005 594__ $$a4.4$$b2022
000119005 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119005 700__ $$aSánchez Báscones, Mercedes
000119005 700__ $$aAntolín Rodríguez, Juan Manuel
000119005 700__ $$0(orcid)0000-0003-2713-2786$$aMartín Ramos, Pablo$$uUniversidad de Zaragoza
000119005 7102_ $$15011$$2500$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cArea Ingeniería Agroforestal
000119005 773__ $$g12, 6 (2022), 572 [14 pp.]$$pMembranes$$tMembranes$$x2077-0375
000119005 8564_ $$s264046$$uhttps://zaguan.unizar.es/record/119005/files/texto_completo.pdf$$yVersión publicada
000119005 8564_ $$s2862006$$uhttps://zaguan.unizar.es/record/119005/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119005 909CO $$ooai:zaguan.unizar.es:119005$$particulos$$pdriver
000119005 951__ $$a2024-03-18-16:07:03
000119005 980__ $$aARTICLE