000119008 001__ 119008
000119008 005__ 20241125101128.0
000119008 0247_ $$2doi$$a10.4153/S0008439522000406
000119008 0248_ $$2sideral$$a129649
000119008 037__ $$aART-2023-129649
000119008 041__ $$aeng
000119008 100__ $$0(orcid)0000-0001-8546-5883$$aOliva Maza, J.$$uUniversidad de Zaragoza
000119008 245__ $$aOn Hardy kernels as reproducing kernels
000119008 260__ $$c2023
000119008 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119008 5203_ $$aHardy kernels are a useful tool to define integral operators on Hilbertian spaces like L2 (R+) or H2 (C+). These kernels entail an algebraic L1-structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the H2 (R+) case turn out to be Hardy kernels as well. In the H2 (C+) scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley-Wiener type, and a connection with one-sided Hilbert transforms.
000119008 536__ $$9info:eu-repo/grantAgreement/ES/MICINN PID2019-105979GB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2017-081552
000119008 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000119008 590__ $$a0.5$$b2023
000119008 591__ $$aMATHEMATICS$$b326 / 490 = 0.665$$c2023$$dQ3$$eT3
000119008 594__ $$a1.3$$b2023
000119008 592__ $$a0.472$$b2023
000119008 593__ $$aMathematics (miscellaneous)$$c2023$$dQ2
000119008 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119008 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000119008 773__ $$g66, 2 (2023), 428-442$$pCan. math. bull.$$tCanadian Mathematical Bulletin$$x0008-4395
000119008 8564_ $$s416495$$uhttps://zaguan.unizar.es/record/119008/files/texto_completo.pdf$$yVersión publicada
000119008 8564_ $$s1530043$$uhttps://zaguan.unizar.es/record/119008/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119008 909CO $$ooai:zaguan.unizar.es:119008$$particulos$$pdriver
000119008 951__ $$a2024-11-22-11:58:07
000119008 980__ $$aARTICLE