On Hardy kernels as reproducing kernels

Jesús Oliva-Maza

Abstract. Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like $L^2(\mathbb{R}^+)$ or $H^2(\mathbb{C}^+)$. These kernels entail an algebraic L^1-structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the $L^2(\mathbb{R}^+)$ case turn out to be Hardy kernels as well. In the $H^2(\mathbb{C}^+)$ scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley–Wiener type, and a connection with one-sided Hilbert transforms.

1 Introduction

Let $1 \leq p < \infty$, and let H be a Hardy kernel of index p, that is, a mapping $H : (0, \infty) \times (0, \infty) \to \mathbb{C}$ which is homogenous of degree -1 and satisfies $\int_0^\infty |H(1, s)| s^{-1/p} \, ds < \infty$ (see Definition 2.1). As a straightforward consequence of the celebrated Hardy’s inequality [9, Theorem 319], one obtains that H defines an operator A_H given by

\begin{equation}
(A_H f)(r) := \int_0^\infty H(r, s) f(s) \, ds, \quad r > 0, \ f \in L^p(\mathbb{R}^+),
\end{equation}

which is bounded on $L^p(\mathbb{R}^+)$, where $\mathbb{R}^+ := (0, \infty)$. Hardy’s inequality also allows us to define a bounded operator D_H on the Hardy spaces on the half plane $H^p(\mathbb{C}^+)$, where $\mathbb{C}^+ := \{ z \in \mathbb{C} \mid \Re z > 0 \}$, by

\begin{equation}
(D_H F)(z) := \int_0^\infty H(|z|, s) F^\theta(s) \, ds
\end{equation}

\begin{equation*}
= \int_0^\infty H(1, s) F(sz) \, ds, \quad z = |z| e^{i\theta} \in \mathbb{C}^+, \ F \in H^p(\mathbb{C}^+),
\end{equation*}

where $F^\theta(r) := F(re^{i\theta})$, for $r > 0$, $\theta \in (-\pi/2, \pi/2)$. Indeed, the last term in (1.2) shows that $D_H F$ is holomorphic (see, for example, [11]), and the boundedness of $D_H F$ follows by an application of Hardy’s inequality together with the realization of the norm of $H^p(\mathbb{C}^+)$ given in [19] by

\begin{equation}
\| F \|_{H^p} = \sup_{-\pi/2 < \theta < \pi/2} \left(\frac{1}{2\pi} \int_0^\infty |F^\theta(r)|^p \, dr \right)^{\frac{1}{p}}, \quad F \in H^p(\mathbb{C}^+).
\end{equation}
We will refer to these families of bounded operators on $L^p(\mathbb{R}^+)$ and $H^p(\mathbb{C}^+)$ as Hardy operators. These families have been actively studied, and are often labeled as Hausdorff operators due to its relation to the Hausdorff summability method through the function $\varphi(t) := H(t, 1)$ for $t > 0$ (see the survey articles [4, 15] for more details).

On the other hand, recall that a Hilbert space X of complex-valued functions with domain Ω is said to be a reproducing kernel Hilbert space (RKHS) if and only if point evaluations $L_x f := f(x)$ are continuous functionals for all $x \in \Omega$. Then, by the Riesz representation theorem, for each $x \in \Omega$, there exists a unique $K_x \in X$ such that $f(x) = L_x f = (f | K_x)$ for all $f \in X$, where $(\cdot | \cdot)$ denotes the inner product in X. Then the reproducing kernel $K : \Omega \times \Omega \to \mathbb{C}$ of X is defined by

$$K(x, y) := K_y(x) = (K_y | K_x), \quad x, y \in \Omega.$$

The kernel K determines the space X. More precisely, X can be recovered from K as the completion of span$\{K_x | x \in \Omega\}$ under the norm given by scalar product $(K_y | K_x) := K(x, y)$ (see the proof of the Moore–Aronszajn theorem [1]).

In this paper, we focus on the range spaces of Hardy operators in the Hilbertian case, that is, for $p = 2$. We show that these spaces are RKHSs and obtain their reproducing kernels. Our work is partly motivated by papers [7, 8], where the range spaces of generalized Cesàro operators C_{α} on $L^2(\mathbb{R}^+)$ and $H^2(\mathbb{C}^+)$ are analyzed as RKHSs. In this context, it is more appropriate to deal with Hardy operators using Hardy kernels H rather than one-dimensional functions φ associated with Hausdorff operators. Indeed, the set \mathfrak{H}_p of Hardy kernels of index p is naturally endowed with a structure of convolution (see [2, 6, 13]). More precisely, \mathfrak{H}_p is a Banach algebra with multiplication \bullet given by

$$\langle H \bullet G \rangle(r, s) = \int_{0}^{\infty} H(r, t) G(t, s) \, dt$$

(see Section 2).

In the setting of Hardy operators on $L^2(\mathbb{R}^+)$, our main result is that, for a Hardy kernel H of index 2, the range space $\mathcal{A}(H) = A_H(L^2(\mathbb{R}^+))$ becomes an RKHS (continuously included in $L^2(\mathbb{R}^+)$) if and only if H belongs to a certain ideal of \mathfrak{H}_2 (see Theorem 3.3). In this case, the reproducing kernel K_H of $\mathcal{A}(H)$ is itself another Hardy kernel, given by

$$K_H = H \bullet H^*,$$

where H^* is the adjoint kernel of H (see Definition 2.2).

In the setting of Hardy spaces on the half plane, we prove in Theorem 4.3 that, for a given Hardy kernel H, the range space $\mathcal{D}(H)$ of a Hardy operator D_H is an RKHS, continuously included in $H^2(\mathbb{C}^+)$, with reproducing kernel given by

$$\mathcal{K}_H = (H \bullet S \bullet H^*)^{hol}.$$

Here, S is the Stieltjes kernel and $(\cdot)^{hol}$ denotes the extension to $\mathbb{C}^+ \times \mathbb{C}^+$, which is holomorphic in the first variable and anti-holomorphic in the second one, whenever such an extension exists (Theorem 4.3).

Next, we establish Paley–Wiener-type results in Section 5. We show that the Laplace transform \mathcal{L} provides an isometric isomorphism between $\mathcal{A}(H)$ and $\mathcal{D}(H^T)$.
2 Banach algebras of Hardy kernels

In this section, we are concerned with arbitrary $p \in [1, \infty)$.

Definition 2.1 Let $1 \leq p < \infty$, and let $H : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{C}$ be a measurable map. H is said to be a Hardy kernel of index p if the following conditions hold.

(i) H is homogeneous of degree -1; that is, for all $\lambda > 0$, $H(\lambda r, \lambda s) = \lambda^{-1}H(r, s)$ for all $r, s > 0$.

(ii) $\int_0^\infty |H(1, s)|s^{-1/p}ds < \infty$, which is equivalent to $\int_0^\infty |H(r, 1)|r^{-1/p'}dr < \infty$, where p' is such that $1/p + 1/p' = 1$ (with $p' = \infty$ if $p = 1$ as usual).

Hardy kernels are useful tools to construct bounded operators on the Lebesgue spaces $L^p(\mathbb{R}^+)$ through (1.1). This is a well-known result of Hardy, Littlewood, and Pólya (see [9, Theorem 319]), and it is part of folklore that such operators can be described as convolution operators by identifying a Hardy kernel H with the function $g_H \in L^1(\mathbb{R})$ given by

$$g_H(t) := H(1, e^{-t})e^{-t/p'}, \ t \in \mathbb{R}$$

(see, for example, [2, 6]). If one wants $H \mapsto g_H$ to be a bijection, one must consider the following equivalence classes in the set of Hardy kernels of index p. We set that two Hardy kernels H, G of index p are equivalent, $H \sim G$, if and only if $H(r, 1) = G(r, 1)$ for a.e. $r > 0$. From now on, \mathcal{H}_p will denote this set of equivalence classes of Hardy kernels of index p, and we will refer to $H \in \mathcal{H}_p$ as a Hardy kernel rather than an equivalence class of Hardy kernels, so we identify an equivalence class by any of its elements.

As a consequence, the mapping $\Phi_p : \mathcal{H}_p \to L^1(\mathbb{R})$ defined by $\Phi_p(H) := g_H$ is a bijection, with inverse given by $(\Phi_p^{-1}g)(r, s) = r^{-1/p}s^{-1/p'}(\log s)^{1/p}$, for a.e. $r, s > 0$, $g \in L^1(\mathbb{R})$.

Next, we endow the linear space \mathcal{H}_p with the norm and product given, respectively, by

$$\|H\|_{\mathcal{H}_p} := \|\Phi_p(H)\|_{L^1(\mathbb{R})}, \quad H \cdot G := \Phi_p^{-1}((\Phi_p H) * (\Phi_p G)) \quad \text{for all} \quad H, G \in \mathcal{H}_p,$$

where $*$ stands for the usual convolution of two elements of $L^1(\mathbb{R})$. We will denote the Banach algebra of bounded linear operators on a Banach space X by $B(X)$.

Proposition 2.1 Let $1 \leq p < \infty$. The space \mathcal{H}_p is a commutative Banach algebra if provided with the norm and product

$$\|H\|_{\mathcal{H}_p} = \int_0^\infty |H(1, s)|s^{-1/p}ds,$$

$$(H \cdot G)(r, s) = \int_0^\infty H(r, t)G(t, s)dt, \quad r, s > 0.$$
Moreover, the mappings \(A_p : \mathcal{S}_p \to \mathcal{B}(L^p(\mathbb{R}^+)) \), \(D_p : \mathcal{S}_p \to \mathcal{B}(H^p(\mathbb{C}^+)) \), given by \(A_p(H) := A_H \) and \(D_p(H) := D_H \), are bounded Banach algebra homomorphisms.

Proof It is readily seen that \(\|H\|_{\mathcal{S}_p} = \|g_H\|_{L^1(\mathbb{R})} = \int_0^\infty |H(1, s)|s^{-1/p} \, ds \). Let us prove the product identity. It follows that for \(H, G \in \mathcal{S}_p \),

\[
(H \cdot G)(r, s) = \Phi_p^{-1} \left(\Phi_p(H) \ast \Phi_p(G) \right) (r, s) = r^{-1/p}s^{-1/p'} \left(g_H \ast g_G \right) \left(\log \frac{r}{s} \right) = \frac{1}{r} \int_0^\infty G(1, u^{-1})H \left(1, \frac{s}{r} u \right) \frac{du}{u} = \frac{1}{r} \int_0^\infty H \left(1, \frac{v}{r} \right) G \left(1, \frac{s}{v} \right) \frac{dv}{v} = \int_0^\infty H(r, v) G(v, s) \, dv, \quad r, s > 0.
\]

Next, it follows by Hardy’s inequality [9, Theorem 319] that \(\|A_H\|_{\mathcal{B}(L^p)} \leq \|H\|_{\mathcal{S}_p} \). Moreover, one has that

\[
(A_{H \cdot G}f)(r) = \int_0^\infty (H \cdot G)(r, s) f(s) \, ds = \int_0^\infty H(r, t) \int_0^\infty G(t, s) f(s) \, ds \, dt = (A_{HA}f)(r), \quad f \in L^p(\mathbb{R}^+), \text{ a.e. } r > 0.
\]

Note that \((D_H F)^\theta = A_H F^\theta \). Thus, by (1.3) and what we have just proved,

\[
\|D_H F\|_{H^p} \leq \|A_H\|_{\mathcal{B}(L^p)} \sup_{-\pi/2 < \theta < \pi/2} \frac{1}{2\pi} \|F^\theta\|_{L^p} \leq \|H\|_{\mathcal{S}_p} \|F\|_{H^p}, \quad F \in H^p(\mathbb{C}^+).
\]

Similarly, \((D_{H \cdot G} F)^\theta = A_{H \cdot G} F^\theta = A_{HA}F^\theta = (D_H D_G F)^\theta \) for any \(F \in H^p(\mathbb{C}^+) \) and \(\theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \), and thus \(D_{H \cdot G} = D_H D_G \).

Next, we give a few definitions and properties regarding Hardy kernels that will be needed later. Let us denote by \(\overline{z} \) the conjugate of \(z \in \mathbb{C} \).

Definition 2.2 Let \(1 < p < \infty \), and let \(H \in \mathcal{S}_p \). Set \(H^\top(r, s) := H(s, r) \) for all \(r, s > 0 \). Similarly, set \(H^*(r, s) := H(s, r) \) for all \(r, s > 0 \).

Remark 2.2 Let \(1 < p < \infty \), and let \(H, G \in \mathcal{S}_p \). One has that \(H^\top, H^* \in \mathcal{S}_{p'} \), that \((H \cdot G)^\top = H^\top \cdot G^\top, (H \cdot G)^* = H^* \cdot G^* \), and that \((H^\top)^* = (H^*)^\top \).

Definition 2.3 Let \(1 \leq p < \infty \). We define \(\mathcal{J}_p \subset \mathcal{S}_p \) as \(\mathcal{J}_p := \Phi_p^{-1}(L^1(\mathbb{R}) \cap L^p(\mathbb{R})) \).

Clearly, \(\mathcal{J}_p \) is a dense ideal of \(\mathcal{S}_p \) since so is \(L^1(\mathbb{R}) \cap L^p(\mathbb{R}) \) in \(L^1(\mathbb{R}) \). We characterize its elements in the lemma below. For \(H \in \mathcal{S}_p \), define the family \(\{H_s\}_{s \in \mathbb{R}^+} \) of complex-valued functions defined a.e. in \(\mathbb{R}^+ \), given by \(\{H_s := H(\cdot, s) \mid s \in \mathbb{R}^+\} \). In particular, \(H_r^\top = H(r, \cdot) \) for any \(r > 0 \).
In this section, we analyze the rangespaces of Hardy operators on $L^2(I^p)$. In any of the above cases, one has that

\[\|H_1^\tau\|_p = r^{-\frac{p}{2}} \|H_1^\tau\|_{L^p(I^p)} = r^{-\frac{p}{2}} \|g_H\|_{L^p(I^p)}, \quad r > 0. \]

Proof All the statements of the equivalence are straightforward to obtain using the homogeneity of degree -1 of H and the definition of the function g_H. Let us show the equivalence $(i) \iff (iii)$. For $1 < p < \infty$,

\[\|H_1^\tau\|_p = \left(\int_0^\infty |H(1,s)|^p \, ds \right)^{1/p} = \left(\int_{-\infty}^\infty |H(1, e^{-t})|^p e^{-t} \, dt \right)^{1/p} = \|g_H\|_p. \]

For $p = 1$, it is straightforward that $\|H_1^\tau\|_1 = \|g_H\|_1$ since $g_H(t) = H(1, e^{-t})$ for a.e. $t > 0$. ■

3 Hardy reproducing kernels on $\mathbb{R}^+ \times \mathbb{R}^+$

In this section, we analyze the range spaces of Hardy operators on $L^2(\mathbb{R}^+)$, although some minor results are also valid for general p. Our main motivation is to characterize the conditions for which these range spaces are RKHSs (Proposition 3.2).

Definition 3.1 Let $1 \leq p < \infty$, and let $H \in \mathcal{S}_p$. Let $\mathcal{A}(H)$ be the range space

\[\mathcal{A}(H) := \{ A_H f : f \in L^p(\mathbb{R}^+) \}. \]

We endow $\mathcal{A}(H)$ with a Banach (Hilbert if $p = 2$) space structure through the canonical identification $\mathcal{A}(H) \cong L^p(\mathbb{R}^+)/\ker A_H$.

Let $C(\mathbb{R}^+)$ denote the space of continuous functions on \mathbb{R}^+.

Lemma 3.1 Let $1 \leq p < \infty$, and let $H \in \mathcal{S}_p \subset \mathcal{S}_p$. Then $\mathcal{A}(H) \subset C(\mathbb{R}^+)$.

Proof Let $f \in L^p(\mathbb{R}^+)$. We have that

\[(A_H f)(r) = \int_0^\infty H(r,s) f(s) \, ds = \int_0^\infty H(1,t) f(rt) \, dt = \langle \tau_r f, H_1^\tau \rangle, \quad \text{for all } r > 0, \]

where $(\tau_r f)(t) := f(rt)$ for $t > 0$, $\langle \cdot, \cdot \rangle$ denotes the dual product between $L^p(\mathbb{R}^+)$ and $L^{p'}(\mathbb{R}^+)$, and H_1^τ is defined before Lemma 2.3.

Since the mapping $r \mapsto \tau_r f$ from \mathbb{R}^+ into $L^p(\mathbb{R}^+)$ is continuous for each $f \in L^p(\mathbb{R}^+)$, it follows that $\langle \tau_r f, H_1^\tau \rangle = (A_H f)(r)$ is also continuous in r; that is, $A_H f \in C(\mathbb{R}^+)$, as we wanted to show. ■

As a consequence of the lemma, point evaluations are well defined on $\mathcal{A}(H)$ whenever $H \in \mathcal{S}_p$. Indeed, the proposition below adds a bit more information.
Proposition 3.2 Let $1 \leq p < \infty$, and let $H \in \mathcal{H}_p$. Then point evaluations are continuous functionals on $\mathcal{A}(H)$ if and only if $H \in \mathcal{I}_p$. In this case, for all $f \in \mathcal{A}(H)$,

$$|f(r)| \leq r^{-1/p} \|H^* \|_{\mathcal{P}^p} \|f\|_{\mathcal{A}(H)}, \quad r > 0.$$

Proof Let us assume first that point evaluations are well defined and continuous on $\mathcal{A}(H)$, so for all $r > 0$, the mapping $\Omega_r : L^p(\mathbb{R}^+) \to \mathbb{C}$ given by $\Omega_r f := (A_H f)(r)$ is a well-defined continuous functional. Therefore, there exists $g_r \in L^p(\mathbb{R}^+)$ such that $(A_H f)(r) = \int_0^\infty g_r(s) f(s) ds$ for all $f \in L^p(\mathbb{R}^+)$, which implies that $H(r,s) = g_r(s)$ for a.e. $s > 0$. By Lemma 2.3, one gets that $H \in \mathcal{I}_p$.

Now, let us assume that $H \in \mathcal{I}_p$. By Lemma 3.1, it follows that point evaluations are well defined on $\mathcal{A}(H)$. By Lemma 2.3, one has that $(H^*_p)_r \in L^p(\mathbb{R}^+)$ be such that $f = A_H g$. Let $[g + \ker A_H]$ be the quotient class of $L^p(\mathbb{R}^+)/\ker A_H$ containing g. It follows that, for all $\tilde{g} \in [g + \ker A_H]$,

$$|f(r)| = |(A_H \tilde{g})(r)| = \left| \int_0^\infty H(r,s) \tilde{g}(s) ds \right| = \langle H^*_r, \tilde{g} \rangle$$

$$\leq \inf_{\tilde{g} \in [g + \ker A_H]} \|H^*_r \|_{\mathcal{P}^p} \|\tilde{g}\|_{\mathcal{P}^p} = \|H^*_r \|_{\mathcal{P}^p} \|g + \ker A_H\|_{L^p(\mathbb{R}^+)/\ker A_H}$$

$$= r^{-1/p} \|H^*_r \|_{\mathcal{P}^p} \|f\|_{\mathcal{A}(H)}, \quad \forall r > 0,$$

where $\langle \cdot, \cdot \rangle$ denotes the dual product between $L^p(\mathbb{R}^+)$ and $L^p(\mathbb{R}^+)$. Therefore, point evaluations are continuous on $\mathcal{A}(H)$.

The next theorem gives the reproducing kernel K_H of $\mathcal{A}(H)$ for $H \in \mathcal{I}_2$, which turns out to be a Hardy kernel as well.

Theorem 3.3 Let $H \in \mathcal{H}_2$. Then $\mathcal{A}(H)$ is an RKHS if and only if $H \in \mathcal{I}_2$, and in this case, its reproducing kernel K_H is continuous and given by

$$K_H(r,s) = \int_0^\infty H(r,t) \overline{H(s,t)} dt, \quad \text{for } r, s > 0.$$

Then $K_H \in \mathcal{H}_2$, satisfying $K_H = H \bullet H^*$. As a consequence, $K_{H^*} = K_H$.

Proof By Proposition 3.2, $\mathcal{A}(H)$ is an RKHS if and only if $H \in \mathcal{I}_2$, and in this case, $\mathcal{A}(H)$ is isometrically isomorphic to $L^2(\mathbb{R}^+)/\ker A_H \cong (\ker A_H)^\perp$. Let us compute its reproducing kernel. Assume that $f \in \ker A_H$, so it follows that

$$\langle f \mid H^*_u \rangle_{L^2} = \int_0^\infty H(u,v) f(v) dv = (A_H f)(u) = 0,$$

for all $u > 0$, where $H^*_u(v) = \overline{H(u,v)} = H^*_u(v)$ for a.e. $v > 0$. Therefore, one has that $H^*_u \in (\ker A_H)^\perp \subset L^2(\mathbb{R}^+)$ for all $u > 0$.

Now, let $h_u = A_H H^*_u \in \mathcal{A}(H)$, and let $f \in \mathcal{A}(H)$, so that $f = A_H g$ for a unique $g \in (\ker A_H)^\perp$. Since $\mathcal{A}(H) \cong (\ker A_H)^\perp$, it follows that, for all $u > 0$,

$$\langle f \mid h_u \rangle_{\mathcal{A}(H)} = \langle g \mid H^*_u \rangle_{(\ker A_H)^\perp} = \int_0^\infty H(u,v) g(v) dv = (A_H g)(u) = f(u).$$
Hence, \(K_H(v, u) = h_u(v) = \left(A_H H'_u\right)(v) = \int_0^\infty H(v, t)H(u, t)\,dt \) for all \(u, v > 0 \), as we wanted to show.

Moreover, \(K_H = H \bullet H^* = H^* \bullet H = K_{H^*} \) by Proposition 2.1 and Definition 2.2, and in particular \(K_H \) turns out to be a Hardy kernel. The continuity of \(K_H \) in each variable follows from the inclusion \(\mathcal{A}(H) \subset C(\mathbb{R}^+) \) (Lemma 3.1) and the fact that \(K_H(r, s) = K_{H^*}(s, r) \), for \(r, s > 0 \) (see, for example, [17, Lemma I.1.2]). But then, \(K_H : \mathbb{R}^+ \times \mathbb{R}^+ \rightarrow \mathbb{C} \) is continuous jointly on both variables since \(K_H(r, s) = s^{-1}K_H(r/s, 1) \).

Let \(\mathcal{H}_+ \) be the one-sided Hilbert transform on \(L^p(\mathbb{R}^+) \) defined by

\[
\mathcal{H}_+ f(x) := \text{p.v.} \frac{1}{\pi} \int_0^\infty \frac{f(r)}{x-r} \,dr, \quad x > 0, \quad f \in L^p(\mathbb{R}^+).
\]

The boundedness of \(\mathcal{H}_+ \) on \(L^p(\mathbb{R}^+) \) for \(1 < p < \infty \) immediately follows from the boundedness of the Hilbert transform on \(L^p(\mathbb{R}) \) (see, for example, [5]). The following theorem has been inspired by [11, 14].

Theorem 3.4 Let \(1 < p < \infty \), and let \(H \in \mathcal{S}_p \). One has that \(\mathcal{H}_+ A_H = A_H \mathcal{H}_+ \). Therefore, \(\mathcal{H}_+ \) defines a bounded operator on \(\mathcal{A}(H) \).

Proof Let \(f \in L^p(\mathbb{R}^+) \). Then, for all \(x > 0 \),

\[
\left(\mathcal{H}_+ (A_H f)\right)(x) = \lim_{\varepsilon \to 0^+} \frac{1}{\pi} \int_0^\infty H(1, s) f(rs) ds dr
\]

\[
= \lim_{\varepsilon \to 0^+} \int_0^\infty H(1, s) \frac{1}{\pi} \int_0^\infty \frac{f(r)}{x-r} \,dr \,ds dr
\]

\[
= \lim_{\varepsilon \to 0^+} \int_0^\infty H(1, s) \frac{1}{\pi} \int_0^\infty \frac{f(r)}{x-r} \,dr \,ds dr
\]

Here, we have applied Fubini to commute the integrals since \(\int_0^\infty |H(1, s)f(s)| \,ds \in L^p(\mathbb{R}^+) \) and \(\frac{1}{\pi} \chi(0, x-\varepsilon) \mathcal{H}_+(f) \chi(x+\varepsilon, \infty)(\cdot) \in L^p(\mathbb{R}^+) \) for all \(1 < p < \infty \).

Recall that the maximal operator \(M\mathcal{H}_+ \) defined as \((M\mathcal{H}_+ f)(x) := \sup_{\varepsilon > 0} |(\mathcal{H}_+ f)(x)| \), for all \(x > 0 \), belongs to \(B(L^p(\mathbb{R}^+)) \), where

\[
(M\mathcal{H}_+ f)(x) := \frac{1}{\pi} \int_{(0, x-\varepsilon) \cup (x+\varepsilon, \infty)} \frac{f(s)}{x-s} \,ds, \quad \varepsilon > 0, \text{ for } x > 0
\]

(see, for example, [5, Corollary 3.13]). As a consequence, the bound \(|H(1, s)(\mathcal{H}_+ f)(xs)| \leq |H(1, s)|(M\mathcal{H}_+ f)(xs) \) holds for every \(\varepsilon > 0 \), a.e. \(s > 0 \). By Hardy’s inequality [9, Theorem 3.19], \(|H(1, s)|(M\mathcal{H}_+ f)(xs) \), as a function on \(s > 0 \), belongs to \(L^1(\mathbb{R}^+) \) for a.e. \(x > 0 \). Thus, we apply the dominated convergence theorem to (3.1) to commute the limit and the integral \(\int_0^\infty \). Hence, \(\mathcal{A}(H) \) is \(\mathcal{H}_+ \) invariant, and then the continuity of \(\mathcal{H}_+ \) follows by the closed graph theorem.

4 **Hardy reproducing kernels on \(\mathbb{C}^+ \times \mathbb{C}^+ \)**

Next, we proceed to analyze the range spaces of Hardy operators on the Hardy spaces of holomorphic functions on the right-hand half plane \(H^2(\mathbb{C}^+) \).
Remark 4.1 Let H with extension (see [12, Chapter VI]). Notice that the restriction of \mathcal{F} on \mathcal{F}. One has that $\mathcal{F} = \mathcal{F}_p$ for all $1 \leq p < \infty$. Recall that D_H is the Hardy operator on $H^p(\mathbb{C}^+)$ associated with $H \in \mathcal{F}_p$ through (1.2).

Definition 4.2 Let $1 \leq p < \infty$, and let $H \in \mathcal{F}_p$. Endow $\mathcal{D}(H) := D_H(H^p(\mathbb{C}^+))$ with the structure of Banach space induced by the canonical isomorphism $\mathcal{D}(H) \cong H^p(\mathbb{C}^+)/\ker D_H$.

Remark 4.1 Let $H \in \mathcal{F}_p$. Using that $D_H F = \int_0^\infty H(1, s) F(s \cdot) ds$, it is simple to see that $(D_H F| G)_{H^2} = (F| D_H G)_{H^2}$ in the inner product in $H^2(\mathbb{C}^+)$. Since all Hardy operators commute between themselves (see Proposition 2.1), D_H is a normal operator.

Next, we give the main theorem of this section, for which we will need the following lemma and definition. Set $\mathcal{K}_w := \mathcal{K}(\cdot, w)$ for all $w \in \mathbb{C}^+$, so $\mathcal{K}_w \in H^2(\mathbb{C}^+)$.

Lemma 4.2 Let $H \in \mathcal{F}_p$. For all $z \in \mathbb{C}^+$, one has that

$$\int_0^\infty \|H(1, t)\mathcal{K}_{tz}\|_{H^2} dt < \infty.$$

Proof Note that the vector-valued function $t \mapsto H(1, t)\mathcal{K}_{tz}$ is strong measurable, since $t \mapsto H(1, t)$ is measurable, and $w \mapsto \mathcal{K}_w$ is continuous from \mathbb{C}^+ to $H^2(\mathbb{C}^2)$. Then, for all $z \in \mathbb{C}^+$,

$$\int_0^\infty |H(1, t)|\mathcal{K}_{tz}\|_{H^2} dt = \int_0^\infty |H(1, t)|\sqrt{(\mathcal{K}_{tz}\|_{H^2})} dt = \int_0^\infty |H(1, t)|\sqrt{\mathcal{K}(tz, tz)} dt$$

$$= \frac{\sqrt{\mathcal{K}(z, z)}}{\mathcal{K}(z, z)} \int_0^\infty |H(1, t)| t^{-1/2} dt = \sqrt{\mathcal{K}(z, z)} \|H\|_{\mathcal{F}_p} < \infty.$$

Definition 4.2 We define $\mathcal{F}_{p, hol}$ to be the subset of \mathcal{F}_p consisting of those $H \in \mathcal{F}_p$ with extension $H^{hol} : \mathbb{C}^+ \times \mathbb{C}^+ \to \mathbb{C}$ such that:

- $H(r, s) = H^{hol}(r, s)$ for $r, s > 0$,
- the map $z \mapsto H^{hol}(z, w)$ is holomorphic on \mathbb{C}^+ for all $w \in \mathbb{C}^+$, and
the map \(w \mapsto H^{hol}(z, w) \) is holomorphic on \(\mathbb{C}^+ \) for all \(z \in \mathbb{C}^+ \).

Note that if \(H \in \mathcal{S}_p^{hol} \), the extension \(H^{hol} \) is unique.

Notice that the Stieltjes kernel \(S \) satisfies that \(S \in \mathcal{S}_p^{hol} \) with \(S^{hol} = \mathcal{K} \).

Theorem 4.3 Let \(H \in \mathcal{S}_2 \). One has that \(H \cdot S \cdot H^* \in \mathcal{S}_2^{hol} \), and that \(\mathcal{D}(H) \) is an RKHS with reproducing kernel \(\mathcal{K}_H \) given by

\[
\mathcal{K}_H = (H \cdot S \cdot H^*)^{hol}.
\]

Proof Let \(G \) be in \((\ker D_H)^\perp \) such that \(F = D_H(G) \in \mathcal{D}(H) \).

\[
\| F \|_{\mathcal{H}} = \| D_H G \|_{\mathcal{H}} \leq \| D_H \|_{\mathcal{B}(\mathcal{H})} \| G \|_{\mathcal{H}} = \| D_H \|_{\mathcal{B}(\mathcal{H})} \| F \|_{\mathcal{D}(H)}.
\]

Since \(\mathcal{H}^2(\mathbb{C}^+) \) is an RKHS, it follows from above that \(\mathcal{D}(H) \) is an RKHS. Let us compute its reproducing kernel \(\mathcal{K}_H \). As before, set \(\mathcal{K}_w(z) = \mathcal{K}(z, w) \). For \(F = D_H G \in \mathcal{D}(H), z = |z|e^{i\theta} \in \mathbb{C}^+ \), and \(G \in (\ker D_H)^\perp \), we have

\[
(4.1) \quad F(z) = \int_0^\infty H(|z|, s) G^d(s) \, ds = \int_0^\infty H(|z|, s) (G|\mathcal{K}_{e^{i\theta}})_{\mathcal{H}^2} \, ds = \int_0^\infty H(1, t) (G|\mathcal{K}_{iz})_{\mathcal{H}^2} \, dt
= \int_0^\infty (G|H(1, t) \mathcal{K}_{iz})_{\mathcal{H}^2} \, dt = \left(G \bigg| \int_0^\infty H(1, t) \mathcal{K}_{iz} \, dt \right)_{\mathcal{H}^2},
\]

where one can intertwine the integral sign with the inner product by Lemma 4.2.

Let \(J \in \ker D_H \). By substituting \(F \) by \(D_H J = 0 \) and \(G \) by \(J \) in (4.1), one concludes that \(\int_0^\infty H(1, t) \mathcal{K}_{iz} \, dt \in (\ker D_H)^\perp \). Then, we have that

\[
F(z) = \left(G \bigg| \int_0^\infty H(1, t) \mathcal{K}_{iz} \, dt \right)_{\mathcal{H}^2} = \left(F \bigg| D_H \left(\int_0^\infty H(1, t) \mathcal{K}_{iz} \, dt \right) \right)_{\mathcal{D}(H)}.
\]

Therefore, after rearranging some variables, one gets that the reproducing kernel \(\mathcal{K}_H \) of \(\mathcal{D}(H) \) is given by

\[
\mathcal{K}_H(z, w) = \left[D_H \left(\int_0^\infty H(1, t) \mathcal{K}_{tw} \, dt \right) \right](z), \quad z, w \in \mathbb{C}^+.
\]

Now, let us see that the expression above coincides with the one given in the statement for all \(z, w \in \mathbb{R}^+ \):

\[
\left[D_H \left(\int_0^\infty H(1, t) \mathcal{K}_{tw} \, dt \right) \right](z) = \int_0^\infty H(z, s) \left(\int_0^\infty H(1, t) \mathcal{K}_{tw} \, dt \right)(s) \, ds
= \int_0^\infty H(z, s) \int_0^\infty H(1, t) \mathcal{K}(s, tw) \, dt \, ds = \int_0^\infty H(z, s) \int_0^\infty S(s, u) H(w, u) \, du \, ds
= \int_0^\infty H(z, s) \int_0^\infty S(s, u) H^*(u, w) \, du \, ds = \int_0^\infty H(z, s) (S \cdot H^*)(s, w) \, ds
= (H \cdot S \cdot H^*)(z, w).
\]

Therefore, \(\mathcal{K}_H(z, w) = (H \cdot S \cdot H^*)(z, w) \) for all \(z, w \in \mathbb{R}^+ \).

Since all the elements in \(\mathcal{D}(H) \subset H^2(\mathbb{C}^+) \) are holomorphic, we have that \(\mathcal{K}_H(z, w) \) is holomorphic in \(z \), so it is determined for all \((z, w) \in \mathbb{C}^+ \times \mathbb{R}^+ \) by its

https://doi.org/10.4153/S0008439522000406 Published online by Cambridge University Press
restriction at $\mathbb{R}^+ \times \mathbb{R}^+$. Moreover, since \mathcal{K}_H is a reproducing kernel, we have that $\mathcal{K}_H(z, w) = \mathcal{K}_H(w, z)$ (see [17, Lemma I.1.2]), and as a consequence, $\mathcal{K}_H(z, w)$ is anti-holomorphic in w, and by the same reasoning as before, $\mathcal{K}_H(z, w)$ is determined for all $z, w \in \mathbb{C}^+$ by its restriction to $\mathbb{C}^+ \times \mathbb{R}^+$. All these statements imply that $H \cdot S \cdot H^* \in S_2^{hol}$ and that its holomorphic extension is precisely \mathcal{K}_H. ■

5 Paley–Wiener theorems for range spaces

We wish to start this section with the following remark. Paley–Wiener’s theorem states that $\mathcal{L} : L^2(\mathbb{R}^+) \rightarrow H^2(\mathbb{C}^+)$ is an isometric isomorphism, where \mathcal{L} is the Laplace transform given by

(5.1) \[(\mathcal{L} f)(z) := \int_0^\infty e^{-rz} f(r) dr, \quad f \in L^2(\mathbb{R}^+), z \in \mathbb{C}^+ \]

(see [18, Theorem V]).

This classical L^2-H^2 Paley–Wiener theorem can be used to prove that $H^2(\mathbb{C}^+)$ is an RKHS with kernel $\mathcal{K}(z, w) = \frac{1}{z + \bar{w}}$ [10, Proposition 1.8]. Conversely, one can reverse the implications of such a proof to obtain the L^2-H^2 Paley–Wiener theorem using RKHS theory (note that the kernel \mathcal{K} of the space $H^2(\mathbb{C}^+)$ can be obtained independently of Paley–Wiener’s theorem; see, for instance, [12, Chapter VI]), as we show next.

Since the Laplace transform \mathcal{L} acting on $L^2(\mathbb{R}^+)$ is injective, one can endow the range space $\mathcal{L}(L^2(\mathbb{R}^+))$ with the structure of Hilbert space induced by the bijection $\mathcal{L} : L^2(\mathbb{R}^+) \rightarrow \mathcal{L}(L^2(\mathbb{R}^+))$. For $F = \mathcal{L} f \in \mathcal{L}(L^2(\mathbb{R}^+))$, one has

\[F(z) = \int_0^\infty e^{-rz} f(r) dr = (f[e^{-rz}])_{L^2} = (F[\mathcal{L}(e^{-rz})])_{\mathcal{L}(L^2)}, \quad z \in \mathbb{C}^+. \]

As a consequence, $\mathcal{L}(L^2(\mathbb{R}^+))$ is an RKHS with kernel $K_\mathcal{L}$ given by

\[K_\mathcal{L}(z, w) = \mathcal{L}(e^{-r\bar{w}})(z) = \int_0^\infty e^{-rz} e^{-r\bar{w}} dr = \frac{1}{z + \bar{w}} = \mathcal{K}(z, w), \quad z, w \in \mathbb{C}^+. \]

That is, both $\mathcal{L}(L^2(\mathbb{R}^+))$ and $H^2(\mathbb{C}^+)$ are RKHSs with the same kernel $K_\mathcal{L} = \mathcal{K}$, so $\mathcal{L}(L^2(\mathbb{R}^+)) = H^2(\mathbb{C}^+)$ as Hilbert spaces (see, for instance, [17, Lemma I.1.5]), and the claim follows.

Now, we establish results of Paley–Wiener type for range spaces. We first show that \mathcal{L} is an intertwining operator.

Proposition 5.1 $\mathcal{L}A_H = D_{H^*} \mathcal{L}$ on $L^2(\mathbb{R}^+)$ for all $H \in S_2$.

Proof Let $z \in \mathbb{C}^+$ and $f \in L^2(\mathbb{R}^+)$. One has

\[
(\mathcal{L}A_H f)(z) = \int_0^\infty e^{-rz} \int_0^\infty H(r, t) f(t) dt dr = \int_0^\infty e^{-rz} \int_0^s H(1, s) f(rs) ds dr
\]

\[
= \int_0^\infty H(1, s) \int_0^\infty e^{-rz} f(rs) dr ds = \int_0^\infty H(1, s)(\mathcal{L} f)(\frac{z}{s}) \frac{ds}{s}
\]

\[
= \int_0^\infty H(u, 1)(\mathcal{L} f)(uz) du = (D_{H^*} \mathcal{L} f)(z),
\]
where we have applied Fubini’s theorem since both \(r \mapsto \int_0^\infty |H(r, t) f(t)| \, dt \) and \(r \mapsto e^{-rt} \) are in \(L^2(\mathbb{R}^+) \).

Theorem 5.2 Let \(H \in \mathcal{S}_2 \). The Laplace transform \(\mathcal{L} \) restricted to \(\mathcal{A}(H) \) is an isometric isomorphism onto \(\mathcal{D}(H^\top) \), \(\mathcal{L} : \mathcal{A}(H) \to \mathcal{D}(H^\top) \).

Proof By the definition of \(\mathcal{A}(H) \) and \(\mathcal{D}(H^\top) \), the restrictions \(\mathcal{L}_H : (\ker A_H)^\perp \to \mathcal{A}(H) \) and \(D_{H^\top} : (\ker D_{H^\top})^\perp \to \mathcal{D}(H^\top) \) are isometric isomorphisms. By the \(L^2 - H^2 \) Paley–Wiener theorem and Proposition 5.1, it follows that \((\ker D_{H^\top})^\perp = \mathcal{L}((\ker A_H)^\perp) \). Indeed, by Proposition 5.1, it easily follows that \(\mathcal{L}(\ker A_H) = \ker D_{H^\top} \), and thus \((f, g)_{L^2} = 0 \) for all \(g \in \ker A_H \) if and only if \((\mathcal{L} f, g)_{H^\top} = 0 \) for all \(g \in \mathcal{L}(\ker A_H) = \ker D_{H^\top} \).

Therefore, by Proposition 5.1 again, we obtain \(\mathcal{L} f = D_{H^\top} (\mathcal{L}_H)^{-1} f \) for all \(f \in \mathcal{A}(H) \), where all the mappings \(D_{H^\top} \), \(\mathcal{L} \) (seen as an operator from the subspace \((\ker A_H)^\perp \subset L^2(\mathbb{R}^+) \) to the subspace \((\ker D_{H^\top})^\perp \subset H^2(\mathbb{C}^+) \)) are in fact unitary operators. As a consequence, \(\mathcal{L} : \mathcal{A}(H) \to \mathcal{D}(H^\top) \) defines an isometric isomorphism.

Corollary 5.3 Let \(H \in \mathcal{S}_2 \). The Laplace transform defines an isometric isomorphism \(\mathcal{L} : \mathcal{A}(H) \to \mathcal{D}(H) \) if and only if \(H \cdot H^* \) is a real-valued kernel.

Proof By the theorem above, we have that \(\mathcal{L} : \mathcal{A}(H) \to \mathcal{D}(H) \) is an isometric isomorphism if and only if \(\mathcal{D}(H) = \mathcal{D}(H^\top) \) as Hilbert spaces, and this happens if and only if their reproducing kernels are the same, \(\mathcal{K}_H = \mathcal{K}_{H^\top} \). By Theorem 4.3, this is equivalent to \(\mathcal{S} \cdot H \cdot H^* = \mathcal{S} \cdot H^\top \cdot (H^\top)^* \). The injectivity of the Stieltjes transform \(A_S \) (which can be proved via the Mellin transform; see, for example, [6]) implies that this holds if and only if \(H \cdot H^* = H^\top \cdot (H^\top)^* = (H \cdot H^*)^\top \). Then, the claim follows from the fact that \((H \cdot H^*)^\top = H \cdot H^* \) for all \(H \in \mathcal{S}_2 \).

Corollary 5.4 Let \(H \in \mathcal{S}_2 \). Either if \(H \) is symmetric, that is, \(H = H^\top \), or if \(H \) is real-valued, the Laplace transform \(\mathcal{L} \) restricts to an isometric isomorphism from \(\mathcal{A}(H) \) onto \(\mathcal{D}(H) \), \(\mathcal{L} : \mathcal{A}(H) \to \mathcal{D}(H) \).

We will see in Theorem 6.4 that, for any \(H \in \mathcal{S}_2 \), there exist isometric isomorphisms \(\mathcal{P}, \mathcal{Q} : \mathcal{A}(H) \to \mathcal{D}(H) \) related to the Poisson kernel.

6 Examples and applications

Here, we illustrate the theory given above with some examples and applications.

1. **Generalized Poisson operators.** For \(\alpha, \beta, \mu \) real numbers, let \(P_{\alpha, \beta, \mu}(r, s) = r^{\alpha \mu - \beta} s^{\beta - 1} (r^\alpha + s^\alpha)^{-\mu} \) for all \(r, s > 0 \). The spectral properties of its associated Hardy operator have been studied in [16]. Regarding the properties considered in the present paper, we have that, for \(p \in [1, \infty) \) and \(\alpha > 0 \), \(P_{\alpha, \beta, \mu} \in \mathcal{S}_p \) if and only if \(0 < \beta - 1/p < \alpha \mu \), and in this case, \(P_{\alpha, \beta, \mu} \in \mathcal{F}_p \). For \(p = 2 \), one has

\[
K_{P_{\alpha, \beta, \mu}}(r, s) = \frac{s^{\beta - 1}}{\alpha r^\beta} B \left(\frac{2\beta - 1}{\alpha}, 2\mu - \frac{2\beta - 1}{\alpha} \right) _2 F_1 \left(\mu, \frac{2\beta - 1}{\alpha}; 2\mu; 1 - \left(\frac{s}{r} \right)^\alpha \right), \quad r, s > 0,
\]
where \(B \) is the Euler Beta function and \(_2F_1 \) is the hypergeometric Gaussian function.

As particular cases, one has the following.

Stieltjes kernel. For \(\alpha = \beta = \mu = 1 \), we obtain \(P_{1,1,1}(r, s) = S(r, s) = \frac{1}{r + s} \) for \(r, s > 0 \).

By Theorem 3.3, \(A(S) \) is an RKHS with kernel

\[
K_S(r, s) = \int_0^\infty \frac{1}{r + t + s} dt = \begin{cases} \frac{1}{r-s} \log \frac{r-s}{r} & \text{if } r \neq s, \\ \frac{1}{r} & \text{if } r = s, \end{cases} \quad \text{for } r, s > 0.
\]

Poisson kernel and conjugate Poisson kernel. Recall that, for \(x > 0 \), the Poisson kernel \(P^x \) and conjugate Poisson kernel \(Q^x \) on the half-right plane \(\mathbb{C}^+ \) are given by

\[
P^x(y) = \frac{x}{\pi x^2 + y^2}, \quad Q^x(y) = \frac{y}{\pi x^2 + y^2}, \quad s > 0.
\]

These kernels give rise to Hardy kernels \(P, Q \) as follows:

\[
P(r, s) := P^x(s) = P_{2,1,1}(r, s), \quad Q(r, s) := Q^x(s) = P_{2,1,1}^*(r, s), \quad r, s > 0.
\]

These kernels are related to the operators \(\mathcal{P}, \mathcal{Q} : L^2(\mathbb{R}^+) \rightarrow H^2(\mathbb{C}^+) \) given by

\[
(\mathcal{P}f)(z) := \sqrt{\frac{2}{\pi}} \int_0^\infty \frac{z}{z^2 + s^2} f(s) ds, \quad (\mathcal{Q}f)(z) := \sqrt{\frac{2}{\pi}} \int_0^\infty \frac{s}{z^2 + s^2} f(s) ds,
\]

for any \(z \in \mathbb{C}^+, f \in L^2(\mathbb{R}^+) \). Indeed, \((\mathcal{P}f)(r) = \sqrt{2\pi}(A_{P}f)(r) \) and \((\mathcal{Q}f)(r) = \sqrt{2\pi}(A_{Q}f)(r) \) for \(r > 0, f \in L^2(\mathbb{R}^+) \). It is a matter of fact that \(\mathcal{P}, \mathcal{Q} \) are isometric isomorphisms (see Remark 6.2). Here, we provide a proof of it based on results of this paper.

Set

\[
L^2_{hol}(\mathbb{R}^+) := \{ f : \mathbb{R}^+ \rightarrow \mathbb{C}^+ \mid f(r) = F(r), r > 0, \text{ for some } F \in H^2(\mathbb{C}^+) \}.
\]

Since any holomorphic function in \(\mathbb{C}^+ \) is determined by its restriction to \(\mathbb{R}^+ \), the space \(L^2_{hol}(\mathbb{R}^+) \), regarded as a range space of \(H^2(\mathbb{C}^+) \), is an RKHS isometrically isomorphic to \(H^2(\mathbb{C}^+) \) with kernel \(S(r, s) = K(r, s) = \frac{1}{r+s}, r, s > 0 \). To see this, take \(F \in H^2(\mathbb{C}^+), f = F|_{\mathbb{R}^+}, \text{ and } s > 0 \). Then,

\[
f(s) = F(s) = (f|\mathcal{K}_s)_{H^2} = (f|\mathcal{K}_s|_{\mathbb{R}^+})_{L^2_{hol}} = (f|S_s)_{L^2_{hol}},
\]

as claimed.

Proposition 6.1 Both \(\mathcal{P}, \mathcal{Q} : L^2(\mathbb{R}^+) \rightarrow H^2(\mathbb{C}^+) \) are isometric isomorphisms.

Proof Since \(P = Q^*, \) Theorem 3.3 implies that \(A(\sqrt{2\pi}P) = A(\sqrt{2\pi}Q) \) is an RKHS on \(\mathbb{R}^+ \) with kernel \(K_{\sqrt{2\pi}P} = K_{\sqrt{2\pi}Q} \) given by

\[
K_{\sqrt{2\pi}P}(r, s) = \frac{2}{\pi} \int_0^\infty \frac{r}{r^2 + t^2} \frac{s}{t^2 + s^2} dt = \frac{1}{r+s} S(r, s), \quad r, s > 0.
\]

Therefore, \(A(\sqrt{2\pi}P) = A(\sqrt{2\pi}Q) = L^2_{hol}(\mathbb{R}^+) \) as Hilbert spaces. Thus, all is left to prove is that \(\mathcal{P}f, \mathcal{Q}f \) are holomorphic on \(\mathbb{C}^+ \) and that both \(\mathcal{P}, \mathcal{Q} \) are injective operators. First, claim which follows by an application of Morera’s theorem. For the
second one, note that the Stieltjes transform A_S is an injective operator and that
$A_S = A_P \circ Q = A_P A_Q = A_Q A_P$. Thus, both A_P, A_Q are injective, and so are \mathcal{P}, \mathcal{Q}.

Remark 6.2 The proposition above is equivalent to Paley–Wiener’s theorem. To see this, let $L^2_{\text{even}}(\mathbb{R})$ as the subset of even functions of $L^2(\mathbb{R})$, and note that the Fourier transform \mathcal{F} restricts to an isometric mapping from $L^2_{\text{even}}(\mathbb{R})$ onto itself. Set $t : L^2_{\text{even}}(\mathbb{R}) \rightarrow L^2(\mathbb{R}^+)$ by $(t(f))(r) := f(r)$ for a.e. $r > 0$. Then $\mathcal{F}t^{-1}$ is a unitary operator on $L^2(\mathbb{R}^+)$, and one easily obtains that $\mathcal{P} = \mathcal{L}t\mathcal{F}t^{-1}$. Hence, \mathcal{P} is an isometric isomorphism if and only if \mathcal{L} is an isometric isomorphism.

By considering the subset of odd functions of $L^2(\mathbb{R})$, one obtains an analogous statement for \mathcal{Q}.

Some other consequences of results of this paper are the following.

Corollary 6.3 As a range space, $\mathcal{L}(H^2(\mathbb{C}^+))$ is an RKHS with kernel K given by

$$K(z, w) = \begin{cases}
\frac{1}{\pi} \log \frac{z}{w}, & \text{if } z \neq w, \\
1, & \text{if } z = w,
\end{cases} \text{ for } z, w \in \mathbb{C}^+.$$

Here, we consider $\mathcal{L} : H^2(\mathbb{C}^+) \rightarrow H^2(\mathbb{C}^+)$ given by $(\mathcal{L}F)(z) := \int_0^\infty e^{-rz} F(r) \, dr$.

Proof By Proposition 5.1, one has $\mathcal{L} = \sqrt{2\pi} D_P \mathcal{L}$. Thus, $\mathcal{L}(H^2(\mathbb{C}^+)) = \mathcal{L}(L^2(\mathbb{R}^+)) = \mathcal{D}(\sqrt{2\pi}P)$ regarded as Hilbert spaces, since all the operators considered in the equalities are isometric isomorphisms. Hence, by Theorems 3.3 and 6.2,

$$K = K_{\sqrt{2\pi}P} = (K_{\sqrt{2\pi}P} \bullet S)^{hol} = (S \bullet S)^{hol} = (KS)^{hol},$$

and the claim follows by (6.1).

Next, we show that $\mathcal{A}(H)$ and $\mathcal{D}(H)$ are isometrically isomorphic for any $H \in \mathcal{S}_{\mathcal{H}}$.

Corollary 6.4 Let $H \in \mathcal{S}_{\mathcal{H}}$. Then $\mathcal{A}_H = D_H \mathcal{P}$ and $\mathcal{D}_H = D_H \mathcal{Q}$. Hence, both $\mathcal{P}, \mathcal{Q} : \mathcal{A}(H) \rightarrow \mathcal{D}(H)$ are isometric isomorphisms.

Proof Let us show the claim for \mathcal{P}, since the proof for \mathcal{Q} is completely analogous. Let $r > 0$ and $f \in L^2(\mathbb{R}^+)$. Then,

$$(\mathcal{P}A_H f)(r) = \sqrt{\frac{2}{\pi}} (A_P A_H f)(r) = \sqrt{\frac{2}{\pi}} (A_H A_P f)(r) = (D_H \mathcal{P} f)(r),$$

where we have used that $A_P A_H = A_H A_P$. It follows by analytic continuation that $\mathcal{P}A_H = D_H \mathcal{P}$ (Proposition 2.1). Then, reasoning as in the proof of Theorem 5.2, we obtain $\mathcal{P} : \mathcal{A}(H) \rightarrow \mathcal{D}(H)$ is a well-defined isometric isomorphism.

We define the one-sided Hilbert-like operator $\mathcal{H}_{+}^{\mathbb{C}^+} : H^2(\mathbb{C}^+) \rightarrow H^2(\mathbb{C}^+)$ by

$$(\mathcal{H}_{+}^{\mathbb{C}^+} F)(z) = \frac{1}{\pi} \text{p.v.} \int_{y_z} \frac{F(w)}{w} \, dw = \frac{1}{\pi} \text{p.v.} \int_{0}^{\infty} \frac{F(sz)}{1-s} \, ds, \quad z \in \mathbb{C}^+, F \in H^2(\mathbb{C}^+),$$

where $y_z : (0, \infty) \rightarrow \mathbb{C}^+$, $y_z(s) = sz$.

https://doi.org/10.4153/S0008439522000406 Published online by Cambridge University Press
Corollary 6.5 \(\mathcal{H}_+^{c^*} \) is a well-defined bounded operator on \(H^2(\mathbb{C}^+) \) and on \(\mathcal{D}(H) \) for any \(H \in \mathcal{S}_2 \).

Proof By Proposition 6.1, Corollary 6.4, and Theorem 3.4, the claim will follow once we prove that \(\mathcal{H}_+^{c^*} = \mathcal{P_+} \mathcal{H}_+ \mathcal{P}^{-1} \). For \(\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \), set \(P_\theta(r,s) := \frac{r e^{i \theta}}{r^2 + s^2} \) for \(r, s > 0 \). Then, \(P_\theta \in \mathcal{S}_2 \), so \(A_{P_\theta} \mathcal{H}_+ = \mathcal{H}_+ A_{P_\theta} \) on \(L^2(\mathbb{R}^+) \) by Theorem 3.4, and it is readily seen that \(\mathcal{P} f = \sqrt{2 \pi} A_{P_\theta} f \) for any \(f \in L^2(\mathbb{R}^+) \). Furthermore, notice that \(F^\theta \in L^2(\mathbb{R}^+) \) for any \(F \in H^2(\mathbb{C}^+) \) by (1.3). Then,

\[
(\mathcal{P} \mathcal{H}_+ \mathcal{P}^{-1} F)^\theta = \sqrt{2 \pi} A_{P_\theta} \mathcal{H}_+ \mathcal{P}^{-1} F = \sqrt{2 \pi} \mathcal{H}_+ A_{P_\theta} \mathcal{P}^{-1} F = \mathcal{H}_+(\mathcal{P} \mathcal{P}^{-1} F)^\theta,
\]

\(\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \), and the claim follows. Analogously, one can prove that \(\mathcal{H}_+^{c^*} = \mathcal{P_+} \mathcal{H}_+ \mathcal{P}^{-1} \).

(2) Fractional kernels. Let \(\alpha > 0 \), and let \((x)_+ = x \), if \(x \geq 0 \), and \((x)_+ = 0 \) otherwise. Set \(C_\alpha(r,s) = a(r - s)^{\alpha - 1}, r, s > 0 \). These kernels are related to the Riemann–Liouville and Weyl fractional integrals of order \(\alpha \). Their range spaces have been studied in [8], where they are realized as spaces of Sobolev type of absolutely continuous functions of fractional order on \(\mathbb{R}^+ \). Using the theory developed, we recover, with simpler proofs, some results given in [8].

Theorem 6.6 The range space \(\mathcal{A}(C_\alpha) = \mathcal{A}(C_\alpha^*) \) is an RKHS if and only if \(\alpha > 1/2 \). In this case, its kernel \(K_{C_\alpha} \) is given by

\[
K_{C_\alpha}(r,s) = \frac{\alpha}{\max(r,s)} \mathcal{F}_1 \left(1 - \alpha, 1; \frac{\min(r,s)}{\max(r,s)} \right), \quad \alpha > \frac{1}{2}, r \neq s > 0,
\]

and \(K_{C_\alpha}(r,r) = \frac{a^2}{\alpha - 1} \frac{1}{r^2} \), \(r > 0 \). For \(\alpha > 0 \), the range space \(\mathcal{D}(C_\alpha) = \mathcal{D}(C_\alpha^*) \) is an RKHS with kernel \(K_{C_\alpha} \) given by

\[
K_{C_\alpha}(z,w) = \alpha^2 \int_0^1 \int_0^1 \frac{(1 - x)^{\alpha - 1}(1 - y)^{\alpha - 1}}{xz + yw} dx dy, \quad z, w \in \mathbb{C}^+.
\]

In addition, the Laplace transform \(L \) defines an isometric isomorphism \(L : \mathcal{A}(C_\alpha) \rightarrow \mathcal{D}(C_\alpha) \) for any \(\alpha > 0 \).

Proof It is readily seen that \(C_\alpha \in \mathcal{J}_p \) if and only if \(\alpha > 1/p \). Hence, the claim is an immediate consequence of Theorems 3.3, 4.3 and Corollary 5.4.

Another kernel related to fractional theory, in particular with the Hadamard fractional integral (see [3]), is \(D_{\alpha,c} := \frac{1}{\Gamma(\alpha)} \left(\frac{t}{r} \right)^c (\log t)^{\alpha - 1} \chi_{(0,r)}(s) \) \((r, s > 0) \), for \(\alpha > 0 \) and \(c \in \mathbb{R} \). It is readily seen that \(D_{\alpha,c} \in \mathcal{J}_p \) if and only if \(c > 1/p \), and in this case, \(D_{\alpha,c} \in \mathcal{J}_p \) if and only if \(\alpha > 1/p \). In particular, if \(\alpha, c > 1/2 \), then

\[
K_{D_{\alpha,c}}(r,s) = \frac{1}{\Gamma(\alpha)^2} \int_0^{\min(r,s)} \left(\frac{t^2}{rs} \right)^{\mu} (\log r - \log s)^{\alpha - 1} dt, \quad r, s > 0,
\]
On Hardy kernels as reproducing kernels

and

$$K_{D_{\alpha}}(z, w) = \frac{1}{\Gamma(\alpha)} \int_0^\infty \int_0^{\min\{1, x\}} \left(\frac{y^2}{x} \right)^{\mu} \left(\log \frac{1}{y} \log \frac{x}{y} \right)^{\alpha - 1} \frac{1}{z + xw} \, dy \, dx,$$

for $z, w \in \mathbb{C}^+$.

Acknowledgment The author thanks J. E. Galé for several ideas, comments, and additional information, in particular for his helpful reviews. The author also thanks the referee for a meticulous review. Both of them have led to considerably improve the final version of the paper.

References

Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain

e-mail: joliva@unizar.es